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We consider magnetic instabilities in the two-dimensional Hubbard model at small doping. We find
that the renormalization of the effective interaction prevents an immediate instability of a commensurate
antiferromagnetic state upon doping. At increased doping levels, our calculations indicate the oc-
currence of an instability in the channel of transverse spin fluctuations. This instability is known to lead
to a spiral magnetic phase. We also consider a dynamical spin susceptibility near the instability and find
that conventional spin waves play no role in the transition. Instead, the incommensurate instability is
governed by collective fermionic excitations coupled to the spin background.

I. INTRODUCTION

The discovery of high-T, superconductivity initiated a
search for a theoretical model that would be simple yet
hold a promise to describe the crucial features of the new
superconductors. Many scientists working in this field
believe that a simple Hubbard model already contains at
least some of the important physics governing the proper-
ties of high-T, materials.! This model appears to be par-
ticularly relevant to the description of the interesting
magnetic properties of cuprate oxides.
The Hubbard model is described by the Hamiltonian

H=—1 2 (Ci‘txcja—l}—cjacia)‘*—Uzniynil ’ (1)
(ij) i

a

where ¢ is the nearest-neighbor hopping and U mimics
the effects of the Coulomb repulsion. The zero-
temperature properties of this model are characterized by
a single dimensionless ratio 8¢/U, which compares the
interaction strength U with the bandwidth. From the ex-
perimental point of view, the most relevant values of
8t /U are of order unity. Theoretically, it is possible to
perform expansions in the limiting cases of ¢t <<U and
t>>U.

Traditionally, the large- and small-U limits were stud-
ied by completely different methods. For small U, the
customary tool is the random phase approximation’
(RPA), while in the strong-coupling limit, one would per-
form a canonical transformation reducing the Hubbard
model to the so-called z-J model.>~® This model includes
the Heisenberg exchange interaction as well as the
nearest-neighbor hopping. A strong nonlinear feature of
the t-J model is the constraint which forbids a double oc-
cupancy of a single site.

In spite of such a different methodology, it was shown
by several authors that for many physical properties
there is a smooth crossover between the two limits.>’ In
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view of this one may expect to describe the experimental
situation by starting either with the RPA or the ¢-J model
approach.

In this paper, we choose the RPA description,
renormalized —when necessary—to account for strong-
coupling effects. This will allow us to compare the situa-
tion at small and large U. We note that the comparison
would not be possible if we started with the #-J model,
which in principle cannot apply to the weak-coupling
case because of the no double occupancy constraint.

At half filling, the Hubbard model, given by Eq. (1),
has an antiferromagnetically (AFM) ordered ground
state.®° The magnetic ordering leads to a gap in the elec-
tronic spectrum and thus at half filling the system is an
insulator. The goal of this paper is to study what hap-
pens with the AFM ordering away from half filling. This
question was studied by many authors, mainly in the
mean-field approximation.'®”2° It has been argued that
in two dimensions, immediately away from half filling the
commensurate AFM ordering becomes unstable.

For small U, it was suggested by Schulz'® that a small
density of holes doped into the AFM state discommensu-
rates it by forming domain walls. When the doping in-
creases, the magnetic structure gradually transforms into
a linearly polarized incommensurate spin-density wave
(SDW). In a mean-field approach, the transition to this
type of incommensurate state is driven by an instability
in the longitudinal spin susceptibility. For large U, the
analysis performed by Shraiman and Siggia pointed to an
immediate instability upon doping in the transverse spin
susceptibility.' This leads to an incommensurate spin
structure, which is usually referred to as a spiral phase.
An alternative suggestion for the possible low-doping
phase was put forward by Schrieffer, Wen, and Zhang
(SWZ).2 Based on the idea of “spin bags,” they argued
that the commensurate antiferromagnetism survives at
sufficiently small density of holes.?

In this paper we will study the question of the instabili-
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ties outside the limits of the mean-field description. We
will show that the vacuum renormalization of the
effective interaction suppresses the instability of the com-
mensurate AFM state in two dimensions for sufficiently
small deviations from half filling. For large doping con-
centrations the incommensurate instability may occur;
however, its possibility in both the large- and small-U
limits is not governed by a large parameter, but rather
depends on numerical factors.

The vacuum renormalization comes from a summation
of a ladder sequence of diagrams for the interaction be-
tween two particles. It converts the interaction potential
between the holes into a scattering amplitude, which is
the proper quantity to describe the effects of interactions
in a dilute Fermi gas.21 In two dimensions, the scattering
amplitude is known to vanish logarithmically in the low-
energy limit. Consequently, any effect of a small density
of holes will be weakened by this reduction of the
effective coupling.

We will also study the dynamics of the instability.
Specifically, we will show that the spin-wave excitations
do not take part in the transition, in contrast to what one
would normally expect based on the knowledge of the in-
commensurate transitions in purely magnetic sys-
tems.?2"2° The transition in the doped Hubbard model is
instead driven by a collective fermionic mode coupled to
the spin background.!”

The paper is organized as follows. In Sec. II, we re-
view a standard mean-field approach to the two-
dimensional (2D) Hubbard model at half filling. We also
show how one can obtain analytically the first quantum
corrections to the sublattice magnetization and some oth-
er magnetic properties in the Heisenberg antiferromagnet
starting from the large-U limit of the Hubbard model. In
Sec. III, we will perform the RPA study of the transverse
and longitudinal magnetic susceptibilities away from half
filling. Section IV is devoted to the analysis of how the
mean-field theory should be modified when the vertex and
self-energy corrections are taken into account. Here we
also consider the effects of vacuum renormalization in 2D
and the situation at finite doping. The dynamics of the
transition is studied in Sec. V. Finally, Sec. VI is devoted
to the conclusions.

II. HUBBARD MODEL
AT HALF FILLING

We start by reviewing a standard mean-field approach
to the two-dimensional Hubbard model at half filling.2%°
This section also fixes our notation, which we use
throughout this paper. We start with the Hubbard model
Hamiltonian with nearest-neighbor hopping. In momen-
tum space, the Hamiltonian of Eq. (1) is

— T
H —2 €18y oo
ko

v t gl
+ 2 k_Eg_ k,10,%k,0,%,0,%,0,90,0,80,0, » 2
where €, = —2t(cosk, +cosk,). It is well known that at

half filling, the 2D Hubbard model has a commensurate
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antiferromagnetic ground state. A way to see this is to
introduce spin-density operators,

. 1 -
S(g)=— Ea,fﬂaaaﬁakﬁ , (3)
2 kap '
where ¢ are the usual Pauli matrices. Antiferromagne-
tism at ¢ =(, ) can be described by a finite expectation
value of

1
Sz(q=Q)=52(a;+Q,TakT_alI+Q,lakl) , 4)
k

where we defined Q =(m,7). If, as we suppose, only a
spin-density wave is present in the system, then

<Ealz+Q,TakT)=_<Zalz+Q,lakL>=a . &)
k k

Hence, (S, ) =a.

In a mean-field (MF) approach one uses Eq. (5) to
decouple the quartic term. After decoupling, the quadra-
tic Hamiltonian takes a form

= t o ot
Hyr=2'€la;,a;, Ak +00% +Qa)
ko

—Ua 2’sgn(a)(a,fgak+Qyo+a,I+Q’oak,,) . (6)
ko

Primes to the summation signs indicate that the sums are
over the reduced Brillouin zone. This effective quadratic
Hamiltonian can be diagonalized by the Bogolyubov
transformation

Ao =UpCho T Vxdy, » o

a; +Q’U=Sgn(a)( _Ukaa+ukdko) )

where
: € 1/2
uk— 3 1+E‘k— )
12 (8)
.
ko l2 E, ’

and E, =(ei +A?)!? with A=Ua is the energy of the
quasiparticles. The diagonalization reduces Eq. (7) to

H=3'Ei(clycno—diodiy) - )
ko

Throughout the paper we will refer to ¢;, and d,, as the
conduction and valence band quasiparticles, respectively.

The self-consistency condition of the diagonalization
procedure requires

(S,(0N=3"ugv , (10)
k
which leads to the ‘“‘gap equation”
1 1
=3 1
U % E, (1n

At large U we have a conventional Mott-Hubbard insula-
tor and A=U/2. Correspondingly (S,)=1. This
agrees with a known fact that the Hubbard model at half
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filling reduces to the nearest-neighbor Heisenberg model
with J=4t2/U in the large-U limit. At small U, a
nonzero solution of the gap equation is possible due to
Van Hove singularities as well as the nesting properties of
the Fermi surface for noninteracting particles at half
filling. The combination of the two effects leads to a dou-
bly logarithmic singularity?® in the right-hand side of Eq.
(11) at small A. In explicit form

A=~te >Vt /U . (12)

The antiferromagnetic ordering also implies the existence
of the low-energy bosonic excitations, namely, the trans-
verse spin waves, as well as the longitudinal spin fluctua-
tions. The spin waves are gapless by the Goldstone
theorem since they reflect a spontaneously broken spin

J
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rotation invariance. These bosonic degrees of freedom
can be analyzed by studying the dynamical spin suscepti-
bility,

= [dt ——(TS L(0)) [efr .

Xq,q";0) (13)

In the RPA, the total susceptibility ¥ “(¢,q";o) is given
by a sum of “bubble” diagrams (Fig. 1). Each bubble
stands for a ‘“noninteracting” susceptibility evaluated
over the mean-field ground state.

The antiferromagnetic ordering at g =(m,7) doubles
the unit cell and makes the RPA calculations somewhat
peculiar because ¥ “(q,q';®) is generally nonzero either
when g =¢q’ or when ¢ =¢q'+ Q. Thus the RPA summa-
tion is a 2X2 matrix problem in this case. It was solved
in Ref. 2. For the transverse susceptibility, the result is

. Xg (go)[1—Uxsy (g +Q,0)]+Ulxg (g,0)]
X" (gq;0)= - - T > (14)
[1-Uxy (go)][1-Uxy (¢ +Q,0)]—U Xy (g )]
2 (g,0)
¥ (g9+Q0)= Xo 4 (15)

[1-Uxq (o) [1-Uxy (g +Q,0)]—U*xg (g@)]

In these equations, Y, (g,®) and Xér “(q,w) are the mean-field susceptibilities (single bubbles) with the momentum

transfer ¢ —q’=0 and Q, respectively. Explicitly,

2
. _ 1 _ Ex€x4g A 1 1
Xo (q0)=—— + (16)
0 N% EkEk+q Ek+Ek+q_w Ek+Ek+q+w
A(E, +E )
Xé,_(q’ 1 2 k k+gq 1 . 1 (17)
2N k EkEk+q Ek+Ek+q~w Ek+Ek+q+w

Note that y,(g,0)~w and thus contributes only to the
dynamical part of susceptibility.

In agreement with the general requirements, the poles
of ¥ " (q,q",w) define gapless bosonic excitations. The
vanishing of the spin-wave gap at ¢ =0 or Q follows from
the condition

1-Uxd (g =0,0=0)=0, (18)

FIG. 1. Representative members of the RPA series for (a) the
longitudinal channel susceptibilities ¥ and Y and (b) the
transverse susceptibility ¥ © . The dash-dotted lines represent
the Hubbard U interaction. The electronic Green’s functions
are evaluated in the spin-density-wave mean-field ground state.

f
which, as observed in Ref. 2, coincides with the gap equa-
tion [cf. Eq. (11)]. This provides a check on the validity
of the RPA approach.

To find the spin-wave velocity ¢, one expands the
denominator of Egs. (14) and (15) around ¢,0=0 up to
quadratic order. This procedure leads to

s € sin’k, ]

t - 1

- © Ei | |% Ei

cc= 3 T - (19)
216_" EIL +A2 2'_1_
v Ej v E; v E}

For large U this expression reduces to ¢’>~2J?, where
J=4t2/U. This agrees with the spin-wave solution of the
corresponding Heisenberg model. Moreover, in this limit
one can calculate the spectrum for all g and also find an

agreement with the spin-wave calculations. Indeed, the
solution for the spectrum is

0, =20V 1-72 , (20
where

v 4= 3(cosk, tcosk,) . (21)

In the small-U limit the second term in the denominator



46 RENORMALIZED PERTURBATION THEORY OF MAGNETIC. ..

of Eq. (19) is small by a factor of 1/In(t/A)~(U /t)!/?
compared to the first one, and the spin-wave velocity is

172
2 | U

t

2

C =~

4, (22)
m

This expression differs from c2~t2 obtained in Ref. 2.
Such an answer would follow from Eq. (19) if one re-
tained the second term in the denominator instead of the
first one.

The fact that one can neglect the second term in the
denominator of Eq. (19) in any limit seems somewhat
peculiar. This term comes from xg “(g,w), which links
pairs of canonically conjugate variables, say S,(q) and
S,(g + Q). Coupled vibrations of these two variables are
known to produce spin waves in Heisenberg antifer-
romagnets.”’”?® However, we have checked that Eq. (19)
exactly follows from the hydrodynamic theory of spin
waves.?2 According to hydrodynamics, the spin-wave
velocity is given by

cr=p, /X, » (23)
where Y, is the transverse susceptibility
X, =X (qg=0,0=0) (24)
and p; is the spin stiffness defined through
x""(q:Q,w=0)=ﬂ. (25)
ps(qg — QY
Here, N, is the antiferromagnetic order parameter
No=(S,(g=Q))=A/U . (26)

The evaluation of the transverse susceptibility near ¢ =0
and g =Q leads to exactly the same expression for c? as
the one found from dynamic susceptibility [cf. Eq. (19)]
for all values of U. We also note that in the large-U limit
the static transverse susceptibility y, ~1/8J, which coin-
cides with the mean-field expression for the Heisenberg
model.

Actually, the RPA approach to the Hubbard model in
the large-U limit allows one not only to find an agreement
J

’Q_—_
g W)= Efzwwa —Ei ., tid

The reason for having more than one term in the brackets
is that the integration over internal momenta should be
performed over the reduced Brillouin zone.

In the large-U limit, E; ., ~E; ~A>>w;. With this
condition, the integration is elementary and the result is

3(q,Q)=

Q—A

1 ,
where
_1=Vi-y}

V-7

O (33)

X" (kk;0)+X
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with the zeroth-order spin-wave theory for the Heisen-
berg model, but also correctly reproduces the first quan-
tum corrections. This was demonstrated numerically by
SWZ for the order-parameter renormalization. One can
show this analytically as well. Indeed, in the large-U lim-
it (S, ) is directly related to the density of valence band
quasiparticles

2 o 1
(S,)va-% <d,ITdH)—? @7

The deviation of {S,) from the mean-field value of I has
to do with the fact that the quasiparticles interact with
each other through collective modes. The lowest-order
diagram that contributes to the self-energy of valence
quasiparticles is shown in Fig. 2. The calculation of this
diagram requires a knowledge of the coupling between
the fermions and the spin waves, as well as an expression
for the susceptibility for all frequencies and momenta. In
the large-U limit, ¥ ¥ ~(g,®) becomes [cf. Egs. (14)-(17)],

+
(g,9; w)—vz—[co + 8t (l—yq)]
1 1
otw,—id o—w,+id ] ’ 28
— +— 1 1
g9+ Q;0)= -
X laat Qo= e, —i6  w—w, tib

(29)

where

w, =20V 1—72 . (30)

To obtain the interaction vertex, one should reexpress the
Hubbard interaction in terms of the valence and conduc-
tion band operators. After this procedure, the constant
U gets multiplied by the coherence factors (see Ref. 2 and
Sec. IV below). However, for the interaction vertex
relevant to Fig. 1, this combination becomes unity in the
large-U limit. As a result, the expression for the self-
energy takes a simple form,

T+ Qk+Q;0)+2¥ T Tk k+0Q50)] . (31)

This self-energy produces a correction to the quasipar-
ticle spectrum, but also results in a wave-function renor-
malization factor Z being different from unity:

Z=1-3'Q, . (34)
p

This Z factor is directly related to the expression for the
quasiparticle density and hence to (S, ),

($,)=Z—-

11,25
2 2 | N%
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FIG. 2. The self-energy correction to the valence electrons of
the spin-density-wave (SDW) state. The solid lines represent the
valence electrons, the dashed line corresponds to conduction
electrons, and the wavy line is the spin-wave excitation of the
SDW state.

which is the usual answer known from the spin-wave
theory.? A similar expression for (S,) was obtained in
Ref. 16. However, the authors of Ref. 16 related the
correction to {S,) to the renormalization of the gap in
the quasiparticle spectrum. We do not believe this is a
proper way of calculating (S, ).

That Eq. (35) and the spin-wave result should agree is
not obvious. Actually, in the conventional spin-wave
theory one performs an expansion in the inverse powers
of the spin (1/S). This expansion is inappropriate for the
Hubbard model which describes electrons with S=1.
However, there exists another way to construct a pertur-
bation theory for magnetic systems. One can suppose
that the underlying lattice has a large coordination num-
ber and perform a perturbation expansion in the inverse
powers of z, where z is a number of nearest neighbors.
The zeroth order in this expansion corresponds to a
mean-field solution of the problem.

The expansion in powers of 1/z can be applied to the
Hubbard model as well. Indeed, the RPA solution of Eq.
(2) is essentially the mean-field result, while the expres-
sion for the self-energy [Eq. (32)] contains a factor 1/z
due to ¥, ~1/z and thus represents the first correction in
the expansion in the inverse coordination number.

Strictly speaking, when performing a 1/z expansion,
one should expand Eq. (33) in powers of 2, and retain
the leading-order term. However, it is known® that in
Heisenberg systems the formal expression for the one-
loop correction to the mean-field result [i.e., Eq. (33)] ex-
actly coincides with the leading term in the spin-wave ex-
pansion taken for §=1. In view of this, it is not surpris-
ing that the correction to the RPA theory for the Hub-
bard model coincides with the spin-wave calculations for
the Heisenberg model.

In fact, with a little more effort one can also reproduce
the spin-wave results for the static susceptibility and
spin-wave velocity. To do this, one should retain terms
of order J in the self-energy. This in turn requires the
coherence factors (which we had previously set equal to
unity) to be incorporated into Eq. (31).

To leading order in 1/z, the single-particle spectrum
preserves its form, but A and ¢ change to A and 7, where

Vi
Vi—vi
where Z is given by Eq. (34). After this, a simple inspec-

tion of Eq. (14) with Yy calculated with the renormalized
Green’s functions shows that corrections to the static sus-

A=A/Z% T=t|14++ S (36)
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ceptibility come solely from the renormalization of z:

2 2

1 2 Yk
~ — ]—-—2'————
8J N % ‘/1__7,}2(

which coincides with the spin-wave result.

The susceptibility near ¢ =Q is renormalized in the
same way and with the use of Egs. (23)-(26) one obtains
for the spin-wave velocity

L
T

c=Vv3J 1+%2’(1—\/1—y}’;) , (38)
k

which also coincides with the known expression from the
spin-wave theory.

Finally, we consider charge and longitudinal spin-
density fluctuations. In the RPA theory, the correspond-
ing susceptibilities are represented by sequences of
particle-hole bubbles with parallel spins. At half filling,
both the ¥ * and ¥ *? are given by simple expressions, fa-
miliar from the paramagnon theory

Xi(g,»)
T7q,q,0) = —T 39
e ) B9
and
Xl(q’ )
PP(gq )= — D 40
XG4 =10 () 40

Here x,(q,w) is a particle-hole bubble which for parallel
spins is given by

€x€p g TA?
EkEk +gq

1
Xi(g,0)= IN % l

1
Ek +Ek+q—w

1

+—
E+Ei i, to

(41)

Similarly to the transverse case, the longitudinal spin
susceptibility ¥ “(q,q,0) is peaked at ¢ =Q. However,
unlike ¥ ¥ ~(g,q,0), it does not contain any gapless bo-
sonic modes.

Note that Egs. (39) and (40) contain neither a mixing
between charge and spin fluctuations nor a contribution
from bubbles with the momentum transfer ¢’ —g¢=Q. It
is generally true for symmetry reasons that
X #*(q,9 +Q,w) and ¥*P(q,q +Q,w) are identically zero.
However, the absence of mixing between the spin and
charge channels is not a general property and is true only
at half filling. Indeed, the symmetry of the antiferromag-
netic ordering implies that the ground state is invariant
under the combination of translation by one lattice
period and rotation by 7 with respect to, say, the X axis.
Under this operation

S,(q)——e'"S,(q) , (42)

while
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plg")—+ep(g") . @3) III. MEAN-FIELD THEORY AT FINITE DOPING

These transformation properties imply that ¥ *(q,q’,0)
and Y”°(q,q',») are nonzero only for a momentum Just as in the case of half filling, we first consider the
transfer ¢ —q' =0, but they do allow a nonzero value for transverse susceptibility and then the longitudinal one.
X Pq,q +Q,). At half filling, ¥ * turns out to be zero, Obviously, an arbitrarily small density of holes forces the
which allows us to decouple the charge and spin channels chemical potential to lie within the valence band. Away
in this case. However, away from half filling ¥ *? acquires from half filling, the RPA expression which links the to-
a finite value and plays an important role in the study of  tal susceptibility ¥ *7(q,q9',») with the bare ones [see
the incommensurate spin-density-wave instabilities in the Egs. (14) and (15)] remains the same. However, there are
doped case. now two types of bubbles which define the bare suscepti-
We are now ready to study the system at small but bilities g ~(g,) and )(5 “(g,w). The bubbles of the first
finite concentration of holes. We first focus on the type have one fermion in the valence and one in the con-
mean-field solution and later discuss how it should be duction band, just as at half filling. The new bubbles
modified in the case of a strong on-site repulsion, when  have both fermions in the valence band. Accordingly,
the effective interaction between the holes is expected to  each of the expressions for g ~(g,») and Xa “(q,0) now

undergo a significant renormalization. have two contributions,
J
)= L . €x€x 1A 1 N 1
yO)= -
Xo q 2N Ek-§>|!‘| EkEk+q Ek+Ek+q—a) Ek+Ek+q+w
2
1 €x€xrg—A 1 1
+ — ! 1+ - (44)
2N Ek§>lp,] EkEk+q Ek+q-‘Ek—a) Ek—Ek-f-q—w ]
Ep )
and
— 1 A 1 1
+ — ’
(gq0)=—= - (E,+E;.,)
Xo %@ 5y 5, 2ot ExBirg |ExrgtEx—0  Ep tEcto | 005"
1 A 1 1
—_ ! - (Ek+ _Ek) ’ (45)
2N Ek+q>|/"| EkEk+q Ek-{—q—Ek_w Ek+q—Ek+w a
Ek<|ll-|
[
where p (which is negative) is the chemical potential. At low doping, the first term remains practically the

The finite density of holes also modifies the self- same as at half filling, and for ¢ — g +Q reduces to ag?,
consistency condition of the mean-field solution, which where
should now involve only the filled electronic levels in the

valence band, U, sin’k,
1 1 =N E (48)
C = (46) Ei>lel - Tk
E, > M Ek Y

In the two limiting cases, a~ Ut /mA? for U <<t and
a=2t*/U? for U >>t. The second contribution basically
has the structure of Pauli susceptibility for a Fermi gas.
It is nonzero only away from half filling, when the chemi-
cal potential moves into the valence band and produces a
finite density of states at the Fermi level. To make this
analogy more explicit, it is convenient to rewrite the
second term in a form ¢%(Ut?/A?)y * ~, where

For small U, this reduces the gap to A=Al
—2ep/Ag)'"%, where e2=p>—A? and A, is the gap value
at half filling. It is easy to check that the self-consistency
condition still ensures the divergence of the static suscep-
tibility at g—Q. However, the nonzero doping
significantly modifies the spin stiffness. To study this
effect, we first focus on the expansion of the static part of
the total susceptibility near ¢ =Q. In this limit, Xé' -

disappears, and the denominator of ¥ ¥ ~(g,q’,0=0) is = 2 , 1
given b_z’_ N Ek+q/2>|p‘| Ek+q/2—Ek—q/2
1-Uyx, (q,0=0) E_q2<lul
_U , (e te +q)2 x (q,sink, +g,sink, )2 @)
4N E} 2
E > m k q
(€ +€x10)?
U > k_ ktq 1 . 47) Thus ¥ ¥~ is actually Pauli susceptibility modified by a
2N Egyg>lul EiEc+qg  Ex+q—Ex momentum-dependent structure factor.

Ep <lpl Since both contributions to Eq. (47) are proportional to
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q*, they combine to produce a renormalized spin stiffness
ps=pJ(1—C""x*7), (50)

where I'" ™ is given by Ut?/A%a and in the two limiting
cases reduces to ' " ~¢ when U<<t, and T~ ~U
when U >>t.

The calculation of ¥ ©~ strongly depends on the
specific structure of the hole spectrum. In the mean-field
approximation, the Fermi surface stretches along the
whole reduced Brillouin zone boundary. At the same
time the Fermi velocity is zero right on the zone bound-
ary. This results in a very large (~1/€g) density of
states, which in turn leads to Pauli susceptibility which
diverges as one approaches the limit of zero doping,’!

_J

X g,0)[1+Uxflqg +Q,0)1+ Ulx¥(g,0) ]
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_+_ A1

gr~22 (51)
t ep

The divergence in ¥ 7~ results in a negative spin stiffness
for arbitrarily small doping levels. This result was ob-
tained in Ref. 31. We will discuss the validity of the
divergence in ¥ * ~ in the next section. At the moment
we wish to complete the mean-field description and so we
turn to the treatment of the longitudinal fluctuations.

As we discussed above, away from half filling there is
no decoupling between the charge and longitudinal spin
fluctuations. Thus the calculation of the total susceptibil-
ity requires a solution of a 2X2 matrix equation. The
ﬁnfl expression is similar to the one previously given for

X >

X #(g,g,0)= > S (52)
[1-Ux§(q,0)][1+ Uxf(g +Q,0) ]+ U [xf(g,0)]
Here, x¥5(q,») and x§°(z,w) are given by
€ €4, TA
X(z)zleé _—__1_ 2' 1— k“k+g 1 + 1
2N Ek+q>\,ui EkEk+q Ek+Ek+q—w Ek+Ek+q+w
€ €+, +A?
1 o] kRt 1 ’ 53)
2N Ek+q>|l-t1 EkEk+q Ek+q_Ek——w Ek+q—‘Ek+w
E, <l
while x5(g, ®) only has a contribution from the valence band fermions
A E,+E; 1 1
Xo(q,0)=—+ ' + (54)
Q 2N Ek+q>'#‘ EkEk+q Ek+q"—Ek_w Ek+q—Ek+w
E;( < ‘.U‘
r
The absence of the Goldstone poles in these channels al- . 1 A1 4t
lows us to limit ourselves to considering only the static X*Hg—Q)= T2 e e (56)
susceptibility. Near ¢ =, the denominator in Eq. (52) is F

modified from its value at half filling by a factor which in-
volves Pauli-like susceptibility, much as we found for
X ' 7. This factor is given by 1—I'*Yy%(q) where ¥ %(q)
differs from the corresponding expression in the trans-
verse spin channel only by the absence of the
momentum-dependent structure factor, and I'* is related

to the bare susceptibility at half filling,
2,2z,
o= Uxq(Q)
1—-Ux&(Q)

where Y§(Q)=x5(Q,0=0).

In the limiting cases, ['Z~¢t(U/t)!/? for t << U, and
r#~J=4t/U for t >>U.

Just as in the transverse channel, Pauli-like susceptibil-
ity ¥ # is divergent at small dopings because the density
of states scales as 1/€; anywhere along the continuous
Fermi surface. However, there is also an additional loga-
rithmic divergence of the density of states from the van
Hove singularities near the corners of the Brillouin zone.
These singularities were suppressed in the ¥ 7~ channel
by the structure factor. In explicit form, the expression
for Y # is

(55)

It thus follows that in mean-field approximation there
are immediate instabilities away from half filling in both
the transverse and the longitudinal channels.

IV. RENORMALIZATION EFFECTS

A. Effective Hamiltonian

Now we turn to a discussion of the validity of the re-
sults obtained in the mean-field approach. The first point
to be addressed is the divergence of the Pauli-like suscep-
tibility.

We have seen that the power-law singularities in ¥ ©~
and Y # are related to the fact that the mean-field Fermi
surface stretches all around the Brillouin zone even while
the doping goes to zero. This effectively makes the prob-
lem one-dimensional. However, power-law divergencies
in one dimension are often artificial and disappear upon
vertex renormalization. We will show in Sec. IV C that
this is the case for the present problem as well, i.e., for an
“open” Fermi surface the vertex corrections cancel the
power-law divergence both in the large- and small-U lim-
its. Meanwhile, there are other reasons that make the
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question of the power-law divergencies somewhat un-
physical. It was pointed out by many authors that the
open Fermi surface for arbitrarily small doping concen-
trations is an artifact of the mean-field approximation.
From the symmetry point of view, there are no reasons
for the hole energy to be exactly constant along the Bril-
louin zone boundary. Numerical,?? variational,>>~3° as
well as some perturbative®® calculations suggest that the
actual band for a single hole has minima at
qg=(Ltm/2,1tmw/2), at least for moderately large values of
U/t. Thus, at low dopings the problem is actually two-
dimensional since then the Fermi surface forms separate
small pockets near the band minima. In this situation,
the susceptibility is given by a two-dimensional expres-
sion which does not depend on the Fermi energy.
Indeed, near its minima the band structure is well ap-
proximated by a quadratic form!©

E,~FE_. + ki + kﬁ (57)
k= min 2m;  2m, ’

where k is measured with respect to the corresponding
minimum, while m, and m are the effective masses nor-
mal and tangent to the Brillouin zone boundary.

In this case, the density of states at the Fermi surface is
independent of the density of holes, and the susceptibility
is

S \/m“ml

= (58)

for both the transverse and longitudinal spin channels,
since the structure factor in Eq. (49) can be set to unity at
k=(xm7/2,x7/2).

The finiteness of the two-dimensional Pauli susceptibil-
ity reduces the question of immediate instability to the in-
vestigation of the scales of the effective masses and the
effective interaction between the holes. The basic scale of
the effective masses is determined by the bandwidth. For
small U, the bandwidth is of order ¢, since the hopping
term in the Hubbard model is dominant.’” For large U,
the gap A=~U/2>>t, and the mean-field expression for
the energy of the valence band fermions can be expanded
for any k to be

€ _ 2t*(cosk, +cosk,)?
=7A A . (59)
From this formula the bandwidth of excitations is of the
order of J =4t%/U.

Certainly, the mean-field expression for E, should be
taken with caution at large U since the self-energy correc-
tions are by no means small. However, we will see that
while the mean-field description of the Hubbard model in
the large-U limit should be significantly modified, the
bandwidth of the fermionic spectra remains of the order
of J in the more sophisticated theories as well. This scale
for the bandwidth has been confirmed by the variation-
al¥7 3% and numerical®®3? studies of the ¢-J model, with
m, and m, being of order 1/¢ or 1/J in the small- and
large-U limits, respectively.

There is now a clear difference between the longitudi-
nal and the transverse channels. The effective coupling

Ek_A
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I'*? which multiplies Pauli-like susceptibility in the longi-
tudinal channel is less than the bandwidth in the small-U
limit and is of the same order of magnitude as the band-
width at large U. Accordingly there is no longer a large
parameter which would force the instability in ¥ * at low
doping.

On the contrary, the effective coupling I'* ™ in the
transverse spin channel is of the order of the bandwidth
for small couplings, but for strong coupling is large by a
factor of (U/t)* compared to the bandwidth. Thus the
improvements on the mean-field theory we have incor-
porated so far still suggest an immediate instability in
Xt governed by a large parameter. However, this re-
sult also looks suspicious. Indeed, we have a situation
where the coupling is much larger than the bandwidth.
Such a theory is expected to have a strong renormaliza-
tion of both the self-energy and the coupling constant.
To clarify this point we introduce a diagrammatic
description of the problem.

In the diagrammatic language, the RPA expressions
for the total susceptibilities result from summations of
infinite sequences of the ladder (for ¥ * ~) and bubble (for
¥ %) diagrams (see Fig. 1). We will focus on the ¥ '~
channel, but will keep using the term ‘bubble” for the
ladder sequence constituents as well. Away from half
filling, each bubble has either one fermion from the con-
duction and one from the valence band or both fermions
from the valence band [see Fig. 3(a)]. There are terms in
the expansion which have adjacent bubbles with only
valence fermions in both of them. However, we will
show below that whenever two such bubbles are next to

(c)

FIG. 3. Reduction of the electronic problem to the system
described as holes interacting by the exchange of collective exci-
tations. (a) Each “bubble” in the RPA sequence for susceptibili-
ties can be broken up into a diagram with both fermions in the
valence band (solid lines) as well as a diagram with one fermion
in the valence and one in the conduction (dashed line) band. (b)
The valence-conduction bubbles of (a) are summed up to
represent spin waves whose exchange mediates hole-hole in-
teractions, as shown here. (c) A triple vertex for a single hole
interacting with a spin wave.
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each other, the diagram acquires an extra factor of g2,
where ¢ is measured with respect to Q =(a, 7). Thus in
the low-g limit that we are interested in, one should re-
tain only those diagrams in which the “valence-valence”
bubbles are separated by subsequences of the ‘“‘valence-
conduction” ones. Each such subsequence can be
summed up to give what is essentially a susceptibility at
half filling. The poles of this susceptibility correspond to
spin-wave excitations and we thus come to a picture
where the dominant interaction between the valence fer-
mions is an exchange of spin waves. In diagrammatic
language, this means that in perturbation theory we deal
with the interaction vertex of the type shown in Fig. 3(b),
where the solid lines represent the Green’s functions of
the holes and the wavy line is the total static transverse
susceptibility near the antiferromagnetic wave vector.
Incidentally, this formulation of the problem closely cor-
responds to the approach based on the t-J model'®!!%
and is convenient for comparisons with it.*

We now demonstrate our assertion that a g factor
arises whenever two ‘‘valence-valence’ bubbles are adja-
cent in the PRA ladder. To see this, we calculate the
direct interaction between valence electrons. It is given
by a Hubbard U term multiplied by the coherence factors
which arise from projecting the interaction onto the
valence band. The calculation is straightforward and re-
sults in a four-fermion interaction given by

Ak, kyiky,ky)

=U{(u, uy, —v, v Uy U, —U, U * .
{( KUk, T Uk, kz)( kUi, Uk, k4)}0a1a20a3a4
(60)

Here, k,k; and k,,k, are the momenta of the outgoing
and incoming valence fermions with opposite spins, re-
spectively, and u;,v; are the coherence factors given by
Eq. (7). Expanding the Bogolyubov coefficients, we ob-
tain

Alkykysks k)~ Ule, +e e +e )~q>  (61)

if the momentum transfer k, —k,=k,—k; is near
Q=(m,m).

We would also like to show that if we incorporate the
momentum-dependent structure factor in Eq. (49) into
the coefficient I'" ~ of Eq. (50), it will exactly coincide
with the four-fermion vertex of Fig. 3(b), taken in the lim-
it k,=k,, k,=k,. This vertex can be represented as a
product of the static susceptibility ¥ ©~ and two triple
vertices [Fig. 3(c)]. The interaction between the fermions
and spin waves is again a Hubbard U term multiplied by
the corresponding coherence factors. In the original
RPA sequence this vertex comes from an interaction
term between a “conduction-valence” bubble and an ad-
jacent ‘‘valence-valence” one. The coherence factors
from the *“‘conduction-valence” side are included in the
total static susceptibility. What is left contributes to the
triple vertex

fk‘+ekz

U—— . (62)
2\/E,(1Ek2

<I>(k1,k2)=U(vkzvk] _ukzukl )=
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For the momentum transfer k, —k, close to Q, this ex-
pression is linear in g. However, the total fourfold vertex
is finite in this limit since the g? term which comes from
two threefold vertices is cancelled by the 1/g* depen-
dence of the static susceptibility’

¥ (g+0Q,9+Q;0=0)~1/alUq*, (63)

where a is given by Eq. (48). The final result for the
four-fermion interaction for the momentum transfer close
toQand k; =k, is

(g, sink, +q,sink )’

q’ ’

Ut?

r*~=oXk,k,)x' =
1R2IX Al

(64)

where k,=k,=k +q/2 and k,=k;=k —q/2. This is
exactly what we obtained within the RPA approach [cf.
Egs. (49) and (51)]. Below we will keep the notations
'™~ and ¥ © ~, but assume that the structure factor is in-
corporated in I ™ .

The diagrammatic representation of the problem is a
convenient way to discuss the validity of the mean-field
approximation. For small U, the effective interaction be-
tween quasiparticles is of the order of the bandwidth in
the transverse channel and so both vertex and self-energy
corrections are of the order of unity. In this limit one
might expect that the mean-field treatment of the prob-
lem leads to at least qualitatively correct results. On the
contrary, for large U the interaction is much larger than
the bandwidth of both the holes and the spin waves. This
is an inherently strong-coupling situation in which we are
bound to have strong vertex and self-energy renormaliza-
tion. For example, the first corrections to the vertex
function and self-energy are given by the diagrams in
Figs. 4(a) and 4(b). When calculated with bare vertices
and Green’s functions they produce a correction of order
(t /J)* to the vertex and of order (7 /J)? to the self-energy.
Hence the mean-field solution cannot be directly used,

FIG. 4. (a) Self-energy of holes; (b) Leading-order vertex
corrections to the hole—spin-wave interaction vertex. In (b), be-
cause of the presence of the spin indices, the leading-order
graph has two, rather than one, spin-wave lines. Both diagrams
here are to be understood as applying to a single hole intro-
duced into an antiferromagnetic background.
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and the only possible way to proceed is to look for some
effective theory which will describe the system at small
energy scales of order J.

Some information about the general structure of the
spectral weight A (k,w) of the exact hole Green’s func-
tion can be inferred from the available numerical*®3? and
variational®>~ 34! treatments of the ¢-J model for
moderately large values of t/J. The picture which
emerges is that A4 (k,w) has a single 8-function peak at
the frequencies of order J and an incoherent part whose
dominant weight is located at the energy scales which are
larger than J by some fractional power of ¢t /J. In other
words, G (k,w) can be approximated by

Z

Gkw)~—2%
ko)~ s

+Gin (ko) , (65)

where G, (k,0) is the incoherent part. A nontrivial
consequence of these studies is that the basic energy scale
of the coherent hole band remains of the same order of
magnitude (E; ~J) as in the mean-field treatment.

Our goal is to obtain a low-energy theory at the energy
scales of the order of J. At these scales the interaction
reduces to some function of momenta and, generally, the
frequency. The momentum dependence of the interac-
tion is determined by symmetry considerations, which re-
quire the interaction ® to scale linearly with g at small
q —Q, just as the bare vertex given in Eq. (62). For exam-
ple, if both holes are located near k=(x#/2,t7/2),
then the momentum dependence of the vertex is
®~(q,%tq,). The frequency dependence of the vertex is
unlikely to be singular on the scale of J and so the only
important parameter in the problem is the overall scale of
the interaction at these frequencies.

Actually, we do not need to know the separate values
of the vertex ®(k,k,,») and the Z factor in the Green’s
function. The physically relevant coupling at low ener-
gies is determined by a product ®R(k ,k,,0)
=Zd(k,,k,,0). Strictly speaking, any precise statement
about the magnitude of this quantity requires solving a
strong-coupling problem. However, we observe that with
®R(p,,p,;0~J) being of order J, T T~ ~J and the low-
energy theory becomes “‘self-consistent” in a sense that it
does not generate any new energy scales besides J.
Indeed, if one calculates the same diagrams as in Fig. 4,
using renormalized Green’s functions and vertices, then
the self-energy and vertex corrections contain factors
(®R/J)? and (®R /J )%, respectively, which are simply nu-
merical factors if ®¥~J.

The assumption that at large U the physical interaction
between the holes is likely to be of order J had been put
forward by Shraiman and Siggia.®® Kane, Lee, and
Read* calculated the self-energy correction with non-
renormalized triple vertices ~t and obtained Z~J/t.
This will also give ®R~T"~~J. We take a viewpoint
that it is hard to separate self-energy renormalization
from the renormalization of the vertex. At the same
time, the result that ®R~T'"~ ~J seems very plausible,
and we will adopt it in the rest of the paper.

A similar treatment can be applied to the y* channel.
The effective interaction can be represented as an ex-
change of longitudinal spin fluctuations. In this case the
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validity of such treatment is not, however, based on the
smallness of ¢, but rather on the smallness of €r/A,
which works at low dopings.

The renormalization of the effective interaction in the
longitudinal channel is less important since the mean-
field value is already of the same order of magnitude as
the bandwidth. We have not been able to reach a definite
conclusion as to whether the effective coupling constant
in this channel is significantly renormalized down from a
value of order J. In any case, we will assume that the in-
teraction in the ¥ % channel is smaller than that in the
channel of transverse spin fluctuations. This is also con-
sistent with the mean-field results in the small-U limit.

B. Vacuum renormalization

With the effective vertex ®* being of the order of the
bandwidth, there is no longer a large parameter which
would govern an instability in the ¥ T~ channel at arbi-
trarily small doping levels. It was argued in Ref. 10 that
in a strictly 2D situation, the instability is still likely to
occur immediately away from half filling if the ratio of
the two effective masses, m /m, is sufficiently large.
This would be the case if the hole band retained some of
its mean-field features and, although it now had minima
at (7 /2,£7/2), remained flat along the Brillouin zone
boundary. As was said above, the susceptibility of a 2D
Fermi gas with a parabolic dispersion is given by

\/m“ /ml
S P

The transverse mass m, was of the order of the band-
width in the mean-field solution, and is expected to
remain that way, while m was infinite in the mean-field
treatment and may be considerably larger than m | in the
actual band structure. Note that this question is impor-
tant only for large U. For small U, the large ratio of
m/m was already taken into account when defining the
basic scale for the effective mass.>’

The conclusion of Ref. 10 is based on the fact that the
2D susceptibility has a discontinuity at €p=0, i.e.,
'Y ~¥ T~ is a constant even at arbitrarily small €. Ac-
tually, this is true only within the Hartree-Fock treat-
ment. The authors of Ref. 10 pointed to the limitation of
the mean-field approach, but resorted to finite tempera-
ture and the effects due to the third dimension to delay
the instability. We have found that the physics in two di-
mensions at T =0 already does not have such a discon-
tinuity. The reason is that the vacuum renormalization
which transforms the interaction potential into a scatter-
ing amplitude is singular at low energies in the 2D case.*’
This renormalization comes from a ladder sequence of di-
agrams in the particle-particle channel, shown in Fig. 5.
For the interaction of Eq. (64), which is only weakly
momentum dependent, each such diagram is logarithmic-
ally divergent in the limit of low energies. The sum of the
ladder diagrams depends crucially on the sign of the
effective coupling. As follows from Eq. (64), the four-
fermion interaction in the ¥ "~ channel contains a dom-
inant short-range repulsive part (also see Ref. 7 and the
Appendix). The question of the sign of this interaction

_ \/m”ml _

2

(66)
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FIG. 5. The lowest-order ladder diagrams for the scattering
amplitude. Summations of the whole sequence leads to an
effective interaction which is much weaker than the “bare” one
in the repulsive case in 2D at low doping.

has caused some confusion in the literature and is further
clarified in the Appendix.

In the case of repulsion, the summation of the ladder
sequence of diagrams leads to a scattering amplitude
which logarithmically goes to zero with the Fermi ener-
gy. The explicit summation for the anisotropic mass case
yields

.
T (k)= L . (6
1+(T* ™ /4m)V/ m m In(1/om)

T* (k,w) is a scattering amplitude and w is a charac-
teristic energy scale in the particle-hole channel which at
low doping is of the order of €% /A. The cutoff parameter
1/m is determined by the energy scale up to which the
approximation of the effective interaction by leading or-
der in g is valid. For large U, it obviously coincides with
the bandwidth, while for small U, spin-wave excitations
are present only at low energies and with a logarithmic
accuracy 1/m is of order A.

The quantity governing the instability is the product
T+~ " . This product now is

g~ (T 200V mym, .
1+(T*~ /4m)/ m m In(1/wm)

(68)

It thus follows that the logarithmic singularity also
makes the question about the ratio of the effective masses
irrelevant, since at small doping
v 2
X In(1/wm) (69)
independently of the mass ratio.

Thus we conclude that the corrections to the spin
stiffness are actually small at low doping, and the com-
mensurate antiferromagnetic state is stable against the
transverse fluctuations at a sufficiently small concentra-
tion of holes. Now we discuss what happens at finite
doping.

C. Instability at finite doping

The vacuum renormalization is a powerful way to
weaken the interaction between the holes when the ex-
change of a transverse spin wave leads to a nearly 8-
function-type repulsion. This is definitely the case when
the holes are located in pockets near (tw/2,%tw/2).
However, when €5 grows enough to open the Fermi sur-
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face along the whole Brillouin zone boundary, the
momentum dispersion of the interaction prevents the
vacuum renormalization from significantly changing the
interaction potential between the holes.

We have shown in Sec. III that in a mean-field approxi-
mation, which produces an open Fermi surface, the
Pauli-like  susceptibility of holes diverges as
¥ ~(1/t)A/ep) and ¥Z~1/t(A/€ep)In(t /€p), when
one approaches the limit of zero doping. Actually, on the
basis of a previous one can expect that the Fermi surface
spans the whole Brillouin zone boundary when the Fermi
momenta kf become of the order of unity. This happens
when €, becomes of order A for U <<t and of order ¢ for
U>>t1. At these values of €z, ¥ © _ is of the order of the
inverse bandwidth for both small and large U, while
¥E~(1/t)t/U)V? for small U, and ¥ *~1/J for large
U.

Since for U >>t, ¥ © ~) “?~1/J, the transverse chan-
nel is more favorable for the magnetic instability in the
large-U limit because of a larger interaction between the
holes (see Sec. IVA). On the other hand, '™ "y "~
~0(1) and so even for a moderate density of holes there
is no large parameter which would allow one to make a
definite conclusion about whether the transition to a
spiral phase actually occurs.

For small U, the factor (z/U)'/? in ¥ * compensates
the relative smallness of I'** [see Eq. (55)] and the product
'y, which governs the possible magnetic instability,
turns out to be of the order of unity in both the trans-
verse and longitudinal channels. This makes the situa-
tion even more indefinite.

At the same time, the photoemission studies of the
high-T, materials** show that the Fermi surface is con-
tinuous over the whole reduced Brillouin zone already at
relatively small dopings. In this situation, it might well
be that for the doping concentrations of interest the
Pauli-like susceptibilities are numerically much larger
than the corresponding bandwidths. On the one hand,
this again implies that the renormalization effects are
large. On the other hand, when Y is large, there is a way
to distinguish between the transverse and longitudinal
channels in the small-U limit. We have already men-
tioned that a power-law (~1/€p) divergence in Y is a
direct consequence of quasi-one-dimensionality which is
present in the mean-field approach to the problem. As in
many other 1D problems, this divergence is likely to
disappear upon the vertex renormalization induced by a
finite density of holes. This renormalization comes from
the diagrams where additional bubbles are inserted into a
given one.

The leading renormalization of I'* comes from the dia-
gram of Fig. 6(a). The integration over the internal mo-
menta on both sides of the effective interaction gives
(¥ #)* provided the interaction inside the bubble reduces
to some constant at the momentum transfers equal to Q.
This requirement is related to the fact that in order to ob-
tain In(1/€g) in ¥ %, the momenta of the fermions should
be close to the corners of the Brillouin zone.

The effective interaction which is inserted into the bub-
ble is a total interaction between the holes with parallel
spins. It has contributions from Y * and Y*” channels,
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(b)

(c)

FIG. 6. Vertex corrections at small U. (a) The leading-order
vertex correction in the longitudinal spin channel: the double
line represents an exchange of the longitudinal fluctuations
given by a sequence of Fig. 1(a). (b) A ladder obtained by iterat-
ing the correction in (a). (c) The lowest-order vertex correction
in the transverse channel; solid lines are the valence band fer-
mions, dashed lines represent the conduction band fermions,
and the dash-dotted line is the Hubbard U interaction.

and in the RPA treatment has a finite value

U2 zz( )
[r=(Q)+ Q)] = — 202 )
2{1- [UXFQ)T)

NP

when the momentum transfer is equal to Q.

For small U, T#(Q)>>T*P(Q) and the renormalization
multiplies ¥ * by a factor {I'**) %, i.e., the product '} #
acquires a correction of the same order as itself. One can
sum up the ladder sequence of diagrams for a total vertex
T # [Fig. 6(b)] and obtain that the product T Z¥ %, which
governs the instability in a longitudinal spin channel,
reduces to a constant even in the limit when 'y #>>1:

I"ZZY zz
1+10=g =

T zzy57 22—

(71)

A similar renormalization can be performed for ' ~.
The lowest-order diagram is shown in Fig. 6(c). It neces-
sarily involves two additional particle-hole bubbles to fit
the requirements on spin indices.

In contrast to the bare interaction between the holes
with antiparallel spins, which scaled as A~ €% for parti-
cles on the Fermi surface [see Eq. (61)], the renormalized
interaction A remains finite in the limit €;—0. Hence,
the diagram of Fig. 6(c) contains (x* ~)? and after sum-
ming up the ladder sequence of diagrams, one again ob-
tains that the product I V¥ *~ remains finite even if
one deals with the open Fermi surface at very small €.

11 895

However, in the transverse channel, there is no restric-
tion on the transferred momenta and the integration over
the internal momentum in each bubble contributes only a
single power of InA~(t/U)"/%. Asaresult, T " 7% " is
given by

F+_f+_
1+BU/TY g+~

T+t-y+—=

) (72)

where B is a numerical constant.

It thus follows that when ' ¥ ¥~ >>1, the effective
dimensionless coupling in the transverse channel is large:
T T~ ¥~ ~(t/U)*>>1. Hence, in the small-U limit, the
“strength” of the magnetic fluctuations in the transverse
channel is much larger than that in the longitudinal spin
fluctuation channel. This favors the occurrence of the in-
stability in the transverse channel, just as we argued for
large U.

Of course, the above arguments are not rigorous since
we cannot prove that I'" ~¥ * ™ is actually large in some
region of the parameter space. However, the result that
there is no qualitative difference between the situation at
small and large U seems to be rather plausible since the
low-energy physics at zero and small doping is essentially
the same in the two limits.

We also note that if the spiral instability occurs at the
doping levels at which the Fermi surface is open, it is no
longer essential whether the band minima are at
(xm/2,£m/2). Thus while on the one hand the instabili-
ty depends on an unknown numerical factor, on the other
it appears possible under more general conditions than
the original derivation may lead one to believe.

V. DYNAMICAL PROPERTIES AT FINITE DOPING

The consequences of the instability in the ¥ ¥~ chan-
nel were considered in detail by Shraiman and Siggia.'°
They have shown that on a mean-field level the instability
leads to an incommensurate magnetic structure known as
the spiral phase. Several authors have looked into the
question of stability of this phase against quantum fluc-
tuations.** ™%’ We will not discuss this point but rather
focus on the dynamical properties of the transition. It
turns out that the nature of the instability is completely
different from the conventional picture of incommensu-
rate transitions in purely magnetic systems.?! "2* In the
latter case, the appearance of the incommensurate struc-
ture is inevitably preceded by a softening of spin-wave ex-
citations. We will show that in the present case the tran-
sition does not affect the spin-wave excitations, which in
the doped case remain at practically the same frequencies
as at half filling. The instability of the commensurate an-
tiferromagnetic state is instead driven by collective fer-
mionic modes. Specifically, when the static susceptibility
changes its sign, the dynamical susceptibility acquires a
second pole at an imaginary frequency with a residue
which goes to zero at the transition point.

To see how this occurs, consider an RPA expression
for the dynamic susceptibility, given in Eq. (14). Expand-
ing the denominator for small ¢ and w, we obtain
(¥ ¥ 7)) 'is proportional to
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where y =UA?/(1—Uyx,o(q =0=0)). At half filling, this expression vanishes at spin-wave energies w, =cq, where c is
given by Egs. (19) and (22). Away from half filling, Eq. (73) contains contributions from the fermionic excitations whose
energy scale is of order vyq, where vy is a Fermi velocity which is much less than the spin-wave velocity. Hence, when
calculating how the spin-wave pole shifts upon doping, one can neglect (E; ,, —E; )2 compared to w? in the denomina-
tors occurring in Eq. (73). As a result the spin-wave pole occurs at nearly the same frequencies as at half filling.

Within the RPA approximation with renormalized interactions and for an open Fermi surface without pockets, the

expressions for the renormalized spin-wave velocity are

c?q*{14+(Uq/3m T ) ep/t)(1+sin*2¢)}, U>>t
c2q* {1+ (4m/3)(t /U Hep /)(1+1sin*2¢)}, U <<t

w’=

where ¢ is a spin-wave velocity at half filling, the angle ¢
is measured from the X axis, and U,; is the effective in-
teraction, which at large U is of order J, as discussed at
length above. A nontrivial feature of these expressions is
the appearance of an angular dependence of the spin-
wave velocity. This reflects the fact that away from half
filling the holes mediate an additional long-range dipolar
interaction between the spins. Furthermore, we can see
that the spin-wave velocity increases upon doping in both
large- and small-U limits.

A drastic effect of finite doping can be seen at very
small frequencies, |w| <<cq. An explicit analysis of the
mean-field expression [Eq. (73)] shows that immediately
away from half filling ¥ ¥~ acquires a second pole at

3 €p

A

2 16
2

t
al’?

q%, (75)

3

where a is defined by Eq. (48). For simplicity, the calcu-
lations were performed for ¢, =¢,.

The appearance of a pole at w* <0 obviously signals an
instability of the commensurate state. However, we have
already discussed that an immediate instability upon dop-
ing in the RPA approach is related to an unphysical one-
dimensional divergence of Pauli-like susceptibility. In
view of this it is preferable to describe the transition by a
model where the Fermi surface consists of pockets near
(£w/2,£7/2) and the interaction between the fermions
is described by a scattering amplitude T*~. This model
follows from the description in Sec. IV.

Within this model, the denominator in ¥ 7~ at w <<cq
is given by

(74)
I
__ _2 E i, E;
1 2 + ’ q
X ~q|1-T"" = ¥ ,
N Ep g > lul (E1<+q_Ek)2_a’2
Ek<\1‘u\
(76)
where
47’t, t<<U
TH = (77)

~J, t>U

and E; is given by Eq. (57). For simplicity, we evaluate
the integral in the isotropic mass limit m;=m  =m, and
obtain

Ek +q—Ek

(Ek +gq —Ek )2—602

=_'_’L[1_
2T

where 8*=w?m?/q*k?. Hence

2
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82
82 —1

172
} , (78)

> —1__ 2mT+~
X q 2

(79)

It follows from Eq. (79) that if the scattering amplitude
is small in comparison with the bandwidth (this is
definitely the case for a very small doping), the transverse
susceptibility has no poles besides a spin-wave one. How-
ever, when the scattering amplitude exceeds a critical
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value T}~ =2m/m, the static stiffness changes its sign
and Eq. (79) acquires a root at »”<0. Close to the insta-
bility, ® =tiwy(q), where

T~

— 1 (80)
Ta

The finiteness of the spin-wave velocity at the transi-
tion point leads to a rather peculiar structure of the low-
energy excitations in a spiral phase. From general sym-
metry considerations, this phase should have three gap-
less bosonic modes, related to a breakdown of SO (3)
symmetry. One of the Goldstone modes is at k =0 and
the two others are at +Q, where Q, is a pitch of a
spiral.'® The system thus has two spin-wave velocities, ¢,
and CQo' In conventional magnets, both velocities go to

zero as one approaches a transition between commensu-
rate and incommensurate phases. In the present case,
however, nothing special happens at kK =0 and the low-
energy excitations near this point scale with momenta as
®~coq both above and below the transition. However,
near k =Q, the low-energy dynamics below the transition
is governed by a second pole in ¥ - ie, by the collec-
tive mode of the holes. It produces the Goldstone excita-
tions near +Q, with CQ0~(kF/m)(T+‘/T;:— —1),

while the would be zero spin-wave mode at k =Q ac-
quires a finite gap of the order of w,. Such structure of
the low-energy excitations was also found in a mean-field
trel%tment of the spiral phase working from the ¢-J mod-
el.

Another important issue is the stability of an ordered
spiral phase against quantum fluctuations. One may
think that fluctuations would definitely destroy the long-
range order close to the transition since the velocity of
the Goldstone bosons at ¢ =0, can be made arbitrarily
small. However, by comparing susceptibilities at
o~ |wy(q)| with that near the spin-wave pole, we found
an additional smallness of the residue in ¥ ¥~ near
w~|wy(q)| which goes to zero at T*~=TZ ", and neu-
tralizes the 1/ [CQol divergence in the corrections to the

sublattice magnetization. Thus, to have a definite
opinion about whether the fluctuations destroy the long-
range order close to the spiral instability requires further
considerations.

VI. CONCLUSIONS

In this paper we studied the stability of the commensu-
rate AFM phase of the 2D Hubbard model at a small but
finite density of holes. The main conclusions of our work
are as follows.

(1) At a small density of holes, the Fermi surface is
known to form small pockets which are likely to be locat-
ed near ¢ =(x7/2,+7/2). In this case, the vacuum re-
normalization of the effective interaction between holes
inevitably violates an immediate instability upon doping,
and thus commensurate AFM survives until a finite con-
centration of holes is reached.

(2) At larger concentrations, the incommensurate insta-
bility may occur, however, its possibility is not related to
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the presence of any large parameter, but rather to the in-
terplay of various numerical factors. At these concentra-
tions, the Fermi surface may no longer consist of pockets,
but we argue that this in no way precludes the instability.

(3) We compared the “relative strength” of the magnet-
ic fluctuations in the transverse and longitudinal chan-
nels. We found that for both small and large values of
the interaction, the first instability is likely to occur in the
transverse channel. When treated on a mean-field level,
this instability leads to a spiral magnetic phase.!°

(4) We considered the dynamical susceptibility near the
possible instability and found that spin waves play no role
in the transition. In contrast, the incommensurate insta-
bility is governed by collective Fermionic excitations cou-
pled to the spin background.

The preceding discussion was focused on the magnetic
properties of the doped AFM. Another important issue
that we wish to address briefly is the possibility for a pair-
ing instability that would lead to superconductivity in the
2D Hubbard model. The authors of Ref. 2 considered
the interaction between holes produced by the exchange
of longitudinal spin fluctuations and found it to be attrac-
tive when two holes share the same pocket in the reduced
Brillouin zone. In the case where the Fermi surface has
pockets near (+,0) and (0,%x7), this would be a dom-
inant interaction and superconducting instability might
well compete with the magnetic one.

Throughout our article we focused on the situation
where the pockets on a Fermi surface are located around
(£m/2,£m/2). In this case, there is a large contribution
to the total interaction between the holes with opposite
spins which comes from the transverse channel. This in-
teraction is repulsive and overshadows the effect of at-
traction from the longitudinal channel. For small U, the
repulsion due to the ¥ ¥~ channel is of order #, while the
attractive part, which comes from Y%, is of order
t(U/t)/%. Note that in this limit }¥?(q) is strongly
enhanced near ¢~Q compared to charge fluctuation
channel ¥ ??, which can be neglected. For large U, both
X T~ and ¥ “ produce the interaction of order J. Howev-
er, in this case ¥ % is no longer peaked at ¢ ~Q, and we
have to consider the combined effect of ¥* and Y*°.
They turn out to nearly cancel each other. The combined
attractive contribution from the ¥ * and ¥ ** channels is
of order J (¢t /U)? which is again overshadowed by ¥ * ~,
which produces a repulsive interaction of order J.

The cancellation between ¥ * and Y’ is a natural
consequence of nearly perfect long-range order. Close to
the transition to the disordered state, the longitudinal
fluctuations are quite soft, and ¥ * acquires a well-defined
peak at (m,). In this case, the }¥*? channel no longer
reduces the interaction in the longitudinal channel, thus
leaving the possibility for a competition between magnet-
ic and superconducting instabilities.

We found that a magnetic instability may occur well
before the long-range order is destroyed. In principle,
this leaves open the possibility of a superconducting in-
stability at larger doping concentrations. Without fur-
ther belaboring this point, we merely note that the super-
conducting phase, if it is caused by magnetic fluctuations,
should have d »_ symmetry.*®** The gap in such a
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state vanishes near (7 /2, %7 /2), which is a natural way
to reduce the repulsion which comes from the ¥ ©~ chan-
nel and is peaked at those points in the Brillouin zone.
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APPENDIX: HOLE-HOLE INTERACTION
DUE TO SPIN-WAVE EXCHANGE

A key ingredient in the calculations at nonzero doping
is the interaction between two holes in an AFM back-
ground due to exchange of spin waves. This interaction
has a somewhat involved structure in both the momen-
tum and spin variables. This has resulted in some con-
fusion in the literature with regard to such seemingly in-
nocent properties of the interaction as its overall sign and
the structure of the superconducting gap equation that it
might lead to. We clarify the issue of the hole-hole in-
teraction in this appendix.

The existing derivations of the interaction have been
performed both in the RPA (Ref. 2) and the ¢-J model
(Ref. 11) formalisms. We will focus on the RPA ap-
proach of Ref. 2. Equation (3.8) of that paper is the ex-
pression for the effective hole-hole interaction due to ex-
change of spin fluctuations. Rewritten slightly to con-
form to the notation of our paper, it reads

H, _= L

o=y DIk —k")n*(k,k")

kk' aa’
BB

—V,_(k—k'+Q)pXk,k")]
xo’;aaglﬂl'avdtklﬁld_kﬁdka 5 (Al)
where the coherence factors p (k,k’) and n(k,k’) are

n{k,k’)=u u,—v v,
(A2)
p(k,k,):ukvk'_vkuk' N

and u,, v, are defined in Eq. (8) of the main text. Also
note that the momenta of incoming and outgoing parti-
cles are chosen to be opposite, as one does when analyz-
ing the pairing aspects of the problem. This special
choice is sufficient for analyzing the sign of the interac-
tion.

In Eq. (A1) all the momenta lie in the reduced Bril-
louin zone. A cavalier “analytic continuation” of this ex-
pression to a full Brillouin zone can result in errors.

To analyze the sign of the interaction, consider the
process shown in Fig. 7. It corresponds to a matrix ele-
ment for a “hop” of a two-particle state,
(kl,—k?1)—(k'T,—k’l). Both k and k' are inside the
reduced Brillouin zone. In Fig. 7(a), k and k' are both
near (w/2,7/2), while in Fig. 7(b), k is near
(—m/2,—m/2). This corresponds to the momentum
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(a)

k¢

(b)

FIG. 7. The hole-hole interaction due to the spin-wave ex-
change in the reduced Brillouin zone representation. When the
hole band minima are near (+7/2,+7/2), we have to distin-
guish two kinds of processes. In (a) k and k' are both near
(+m/2,+7/2) and the process |k1,—kl)—|k'l,—k'1) im-
plies the momentum transfer g =k’—k ~Q, where Q=(m, ).
In (b) k is near (+m7/2,+m/2) but k' is near (—w/2,—mw/2).
The same process as in (a) now has g =0.

transfers ¢ =k — k' of nearly zero and Q =(, ), respec-
tively. The dominant terms in H , _ in the two cases are
+V, _(g+Q)pik,k’) and —V, _(q)n*(k,k’), since
V, _(p)is peaked at p =Q. A rash interpretation would
suggest that “the sign of the interaction” differs for the
two processes. This is not a viable viewpoint, as we will
see shortly.

Note that (7/2,7/2) and (—7 /2, —m/2) are physical-
ly identical points. Thus, in the processes of Fig. 7, all
the initial and final momenta stay near each other in the
physically relevant sense. However, the operators corre-
sponding to these nearby points do not evolve continu-
ously when crossing the Brillouin zone boundary. To see
this, consider the valence band operators that are ob-
tained by inverting Eq. (7) of the main text,

dpy =V T Ugag o1 s A3)

dy | =0pa — U 40 -

Under the replacement k —k +Q in these equations, the
up- and down-spin operators transform differently,

dkT=+dk+QT7 dkl:_dk+Ql . (A4)

In particular, we have d (.., 1= —@(—n/2,—n/2),1
Thus, we have opposite signs for two operators which
represent exactly the same physical state. The choice of
this sign depends on which side of the Brillouin zone we
approach that physically unique point. We now show
that such a sign change modifies the way in which one
should interpret the interaction properties.
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The general information about the “sign of the interac-
tion” usually comes from considering its real space form,
V(r). To connect the real-space and momentum-space
formulations, it is convenient to consider well-localized
wave packets, made out of the valence band fermions,
whose band minima are at (+7/2,+7/2). The key point
is that such a wave packet will not have a smooth en-
velope in the momentum space because of the sign
discontinuity of the fermion operators.

As an illustration, consider a particle obeying a
Schrodinger equation in one dimension. A typical wave
packet would be a Gaussian in k space, f(k)~e 9%
However, this standard result applies to the usual choice
of the momentum eigenstates, 1, (x)=e™**. Let us now
perform a “gauge” (in this case, sign) transformation and
define, ¥, (x)=sgn(k)e’**. Then the envelope for a local-
ized wave packg:tzhas to be f(k)~sgn(k)e’ ™. Were we to
use f(k)~e %% we would not obtain a localized wave
packet. This is exactly what happens in Eq. (Al). We
have a discontinuous (in the sense explained above) set of
basis states, and thus cannot simply take the signs in
front of V', _(q) and V, _(q + Q) as indicative of the at-
tractive or repulsive nature of the interaction. Further-
more, the reduced Brillouin zone, the Fermi surface at,
say, (7 /2,%+m/2), which is physically a single object, is
broken up into two semicircular pieces near (7/2,7/2)
and (—m/2,—m/2). It would be best to work in the ex-
tended zone, and confine our attention to a single (i.e.,
circularly shaped) Fermi surface at, say, (7/2,7/2).

This is accomplished by a transformation to the ex-
tended zone, which we analyze separately for the situa-
tions shown in Figs. 7(a) and 7(b). In the case of Fig. 7(a),
we wish to replace the operators acting near
(—m/2,—m/2) by those acting near (/2,7/2), i.e., we
want to substitute d _,, 1T and FAR gl ford 4, p,1 and
dt k+g> |- Since we simultaneously shift two opposite
spin operators, by Eq. (84) we pick up a minus sign,
which should be absorbed into the V', _ term. Thus, the
effective interaction now is —V,._(g+Q)p%k,k'),
where k,k’ and ¢ =k’ — k remain unchanged.

In the case of Fig. 7(b), it is —k and k' momenta that
are near (—mw/2, -—11'/2) Thus, in this case we have
to replace d _;,1 and dkr T by d_yio,1 and dk 4o T
The difference with the previous situation is that we are
now moving two identical spins, and thus no sign change
is needed in front of the effective interaction
— V., _(g)n*k,k'). However, this time we moved +k’,
and we ought to redefine this expression in terms of
kpew=k'+Q and ¢, =k, —k=g+Q. Making the
required substitutions, we obtain

-—V+—(q)n2(k’k,)=—_ V+—‘(qnew+Q)p2(k k:lew) ’

where the equality n(k,k’')=p(k,k,., ) can be verified
from Eq. (A2). We will omit the subscript “new” in the
following.

We see that the leading terms in the interaction Hamil-
tonian near (7 /2,7 /2) are now the same in both cases,

H, =—V, (q +Q)P2(krk’)0;aUEB
Xd]j:a:dtk'gd—kﬁdka . (A5)
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We stress that “—k” is now defined as an opposite of k
with respect to (7/2,7/2), and as a result, we have g << 1
in Eq. (AS).

We have thus disposed of the unusual momentum
dependence of the initial expressions. We still do not
have an entirely conventional situation because of the
peculiar spin dependence in Eq. (AS). In particular, it is
not yet time to conclude that this is an attractive interac-
tion. In the usual basis of “up” and “down” hole spins,
our interaction has no diagonal matrix elements. Fur-
thermore, it is not invariant with respect to spin-space ro-
tations.

As has been shown in Ref. 7, greater clarity is achieved
by going into real-space representation. In Eq. (AS5) there
are no discontinuities in the definition of the fermion
operators, and an ordinary Fourier transform can be tak-
en without any need for further interpretation. The final
answer is

Vg=—V(r,—r,)ofo; +o70)), (A6)
where V(r, —r,) is a Fourier transform of the interaction
in Eq. (A9S).

The Fourier transform is analyzed in Ref. 7, and the
result is
Veﬂ‘~ - 8(

)t (ofoy+o7af). (AT

When the interaction is written in this form, we can
clearly see that it is diagonalized not in the “up-down”
spin state basis, but in the basis made of the spin-
symmetric and spin-antisymmetric states, which are
1/V2(I114)+1L1)) and 1/V2(|11)—|11)), respective-
ly. The interaction does not couple to the [11) and |l !)
states at all. This is consistent with the observation we
made earlier that it is not rotationally invariant in spin
space.

We note that the sign of the interaction depends on the
relative orientation of holes, as seen from Eq. (A7) be-
cause of a long-range dipolar piece in it. Shraiman and
Siggia argued that one could simply drop this term and
work with the 8-function term alone.”*® This is based on
the expectation that when electrons form a degenerate
Fermi sea, this term gets averaged out.’® We follow Ref.
11 and drop the dipolar term. Actually, one can raise
questions about the stability of the spiral phase against
quantum fluctuations that might be induced by the dipo-
lar coupling, but we do not address them in this paper.

Once we decide to keep the 8-function term only, we
see that it actually does not have any effect when the two
holes are in the spin-symmetric state, since due to the
Pauli exclusion principle they cannot then be at one point
in space at the same time.

The only effect left is a repulsion between two holes in
the spin-antisymmetric channel, since the eigenvalue of
(0705 4010, ) is then equal to —1. In an abuse of
language we could say that “opposite spin” holes repel
each other, which makes the situation similar to Stoner
model of ferromagnetism, an analogy emphasized in Refs.
10 and 11. Thus there is no attraction due to the trans-
verse spin fluctuations, and therefore no superconductivi-
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ty from this interaction in the usual spin-antisymmetric
channel.

We conclude with a comment on the results of Ref. 31,
in which they obtain an effective interaction between
holes with the sign opposite of that in Eq. (A7). This re-
sult was obtained by using the negative static susceptibili-
ty ¥ 7~ to mediate interactions. The negative suscepti-
bility ¥ 7~ was a result of considering the system below
the spiral magnetic instability, but not in its proper new
ground state. We believe this procedure is not well
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justified. The negative susceptibility means that the mag-
netic fluctuations used to mediate interactions are ex-
ponentially growing in time. Instead, the static suscepti-
bility in a stable state should remain positive, and at
sufficiently low doping levels we expect the interaction
between two holes in the new ground state to be nearly
the same as in Eq. (A7). Moreover, the magnitude of the
interaction, which is of order J, as we argued in Sec. IV,
is also different from that in Ref. 31, but agrees with Ref.
10.
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