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We report on the details of the insulator-metal transition (IMT) induced in Bi2Srz(Ca„R l, )Cu208+~
(R =Y, Gd, Nd) by Ca + doping. The resistivity in the insulating regime is analyzed using a generalized

hopping approach based on the connectivity criterion. This enables us to estimate the dependence of the
localization radius a& on the Ca concentration independent of dimensionality. Insulating samples with a
Y content not too far from the critical concentration zc =(0.43+0.02) show metallic conduction at high

temperature and hopping conduction at low temperature. This shows the coexistence of delocalized and
localized states separated by a disorder-induced mobility edge. Ultraviolet-photoemission-spectroscopy
(UPS) spectra give evidence for both a shift in the Fermi level to lower energies and the development of
new states at the Fermi level. The existence of a mobility edge together with the shift in EF upon Ca +

doping shows that the transition is probably of the Anderson type. We present a schematic picture for
the density of states in the vicinity of EF based on the results of spectroscopic and transport data. For
this density of states we calculate the electrical resistivity using the Kubo-Greenwood formula. The re-

sults are in good qualitative agreement with the experiments. At the IMT the localization radius

diverges and the metallic conductivity vanishes following a scaling law o =crp(1 —z/zc}", with a critical
exponent g = 1A.

I. INTRODUCTION

In oxide superconductors the metallic state and super-
conductivity can be easily suppressed by a proper varia-
tion of the chemical composition. ' In the case of
BizSr2CaCu20s+ (Bi 2:2:1:2), the metal-insulator transi-
tion may be realized by substitution of trivalent rare
earth (R) for divalent Ca iona ' and has been investigat-
ed by many authors using various different tech-
niques. ' In Bi 2:2:1:2 the metal-insulator transition
can be introduced by substituting almost all rare-earth
elements ' ' and even Th (Ref. 17) for Ca.

While other authors have mostly focused on the com-
position range where the samples are superconducting,
we will focus our attention on the insulating samples and
scaling behavior of the conductivity at the insulator-
metal transition (IMT). The Bi2Sr2(Ca„R&, )CuzOs+r
system is very well suited for studying the transition from
a charge-transfer insulator (CTI) (Refs. 18 and 19) to a
high-temperature superconductor (HTSC) because sam-
ples can be prepared which are reproducible and the re-
sults of different groups are in good agreement. In this
paper we will use the insulating compound
BizSr2YCu208+~, which is the parent compound for the
HTSC Bi 2:2:1:2as a starting point for our discussion.
This point of view is analogous to the (La, Sr)2Cu04
(Refs. 20 and 21) case where the insulator LazCu04 is

used as a starting point. Using this approach, the carrier
concentration grows with the amount of doping z, similar
to the case of traditional doped semiconductors.

%'hen studying insulator-metal transitions, samples are
usually classified into two groups. Either they are insula-
tors, meaning

lim p(T, co) = ac,
T~0,0J~O

or they are metals, meaning

lim p(T, co) =const .
T~O, a)~0

Metals show a linear resistivity p- T at least in a limited
region. In traditional metals such as the elements, this
temperature dependence is well understood as originating
from the scattering of free electrons by thermally excited
Debye phonons. HTSC's also possess a linear resistivity,
and this linear resistivity extends over a surprisingly large
temperature interval. ' However, the assumption of free
electrons and Debye phonons is probably not valid in
these compounds because of the strong correlations
among the rather localized Cu 3d electrons. ' ' Never-
theless, we will talk about a "metallic" resistivity in sam-
ples showing p-T, keeping in mind that its origin may
be quite different. A possible origin for the observed
linear resistivity will be discussed later in this paper.
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II. EXPERIMENTAL DETAILS

A. Sample preparation and crystal structure

All experiments were performed on single-phase poly-
crystalline material. We have used polycrystalline ma-
terial rather than single crystals because it is very difficult
to grow homogeneous single crystals with controlled RE
content in the region of low Ca content, which was most
interesting to us. The samples were prepared by the stan-
dard procedure using oxides and carbonates as precur-
sors. The preparation was identical for all samples ex-
cept for the final sintering, which was carried out at
920'C for samples with high Y content and at 865'C for
samples without Y. The higher sintering temperatures
for samples with high Y content are necessary in order to
avoid phase separation. The sintering was carried out in
air, and samples were oven cooled to room temperature
after sintering. The crystal structure was analyzed using
powder x-ray diffraction. All reflexes could be assigned

the orthorhombic Fyg~m space group. ' The
linewidths were almost independent of the Ca content
[full width at half maximum (FWHM) ~0.23' for the
(0010) peak], showing the homogeneous incorporation of
the dopant. Upon doping, the c axis increases from 30.20
A (z =0) to 30.81 A (z =1). Both a and b axes decrease,
and the orthorhombic splitting, which is 0.7% at z =0,
becomes smaller and drops below our resolution at
z =0.7.

B. Electrical resistivity and Hall eÃect

Electrical resistivity was measured by a four-probe ac
technique using a constant-current source and a lock-in
amplifier. The samples were bar shaped, and contacts
were made by applying highly conductive silver paint.
The absolute error in the resistivity data is dominated by
the error in the sample geometry, which is approximately
5%. For Hall-effect measurements, we used a five-probe
bridge technique to eliminate effects of the magnetoresis-
tance. Samples were again bar shaped, and currents
ranged between 10 and 50 mA. The measurements were
performed in a superconducting solenoid with fields up to
6 T, and data were taken between T, and room tempera-
ture. The Hall coefficient RH was determined by using
the derivative of the Hall voltage with respect to the
magnetic field. During a field sweep, the temperature
was kept stable to within 60 mK. The main error in RH
is the sample thickness, which is accurate to about 5%.
Additional errors of about 3% come from noise pickup
during the measurement because of the very weak signals
(
—500 nV).

C. Photoemission

situ by scraping with a diamond file under ultra high-
vacuum conditions just before the measurement. In or-
der to avoid contamination of the surface during the
measurement, the base pressure was kept in the low-
10 ' -mbar range at all times. The Fermi edge of a gold
film, which was evaporated in situ onto a separate sample
holder prior to the measurements, was used as an energy
reference. All spectra were taken at room temperature.

III. INSULATOR-METAL TRANSITION
INDUCED BY CHEMICAL SUBSTITUTION
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The composition and temperature dependence of the
electrical resistivity shown in Fig. 1 most clearly shows
the drastic changes introduced by chemical substitution
in BizSr2(Ca„Y, , )CuyOs+~. The samples with low Ca
concentration are insulators [2 p/d T (0 and
limy pp(T)= oo ] with resistivity values up to 10' Qcm
at 100 K. As the Ca content increases, the absolute value
of p decreases while the insulating behavior persists. But
at a Ca content higher than a critical value z, =0.43, the
resistivity changes qualitatively. The temperature
coeScient dp/dT becomes positive (p-T), indicating
metallic conduction. The system has transformed from
an insulator to a metal. Surprisingly, none of the samples
shows a finite value of p at T~O. Instead, all samples
that show metallic conduction at high temperatures show
superconductivity with T, up to 90 K. To our knowledge
nobody has so far succeeded in obtaining samples which
show a finite resistance at T~O (see, for example, Refs.
1, 2, 7, 8, 10, 11, and 30). At T =0, the samples are ei-
ther superconductors with zero resistance or insulators
with infinite resistance. The absence of purely metallic
samples is even more surprising if the high T, values are
taken into account. Even the sample with z =0.5 (see

The photoemission spectra were taken with He I radia-
tion (21.22 eV) from a rare-gas discharge lamp. Photo-
electrons were detected in normal emission with a herni-
spherical analyzer. The energy resolution was 130 meV
for the valence-band spectra and 60 meV for the spectra
near the Fermi level. The samples were attached to the
samp1e holder by a conducting epoxy glue and cleaned in

0 50 100 150 200 250 300

FIG. 1. Resistivity vs temperature for

Bi2Srz(Ca„Y1, )Cu&08+~ samples of different Ca content z.
Note the transition from metallic and superconducting samples

(z 0.5) to insulating samples (z 0.4) and the absence of sam-

ples with finite resistivity at T~O.
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Fig. 1), which is very close to the IMT, still has

T, ;d=37 K. This is a value higher than in any conven-
tional superconductor. The existence of an insulating
and a superconducting region without an intermediate
purely metallic region shows that the HTSC's are very
unusual materials already in their normal state. As
shown in Fig. 2, the superconducting transition tempera-
ture ( T, ) rises with the Ca content in samples with z )z„
reaching a maximum of T, m,„=90K at z =(0.8+0.05)
and then falls to T, =72 K at z =1.0. This maximum is
in agreement with the results of other groups. '7' ' ' '

In order to understand the charge transport in this sys-
tem and the inhuence of chemical doping, we have mea-
sured the Hall effect. Above T„ the Hall coefficient RH
is almost constant with a weak temperature dependence
which can be described by Rrr =a+ b/T. ' The tempera-
ture dependence of the Hall coefficient and its relation to
the separation of spin and charge excitations in HTSC's
proposed by Anderson ' will be discussed separately. '

The Hall coefficient is positive, indicating holelike charge
carriers. In a one-band model, the carrier density p can
be obtained from the Hall coefficient using RH = 1/pe. In
Fig. 2 we show the dependence of the carrier density p (z)
calculated using the value of RH at T=200 K, upon Ca
content for metallic (z )z, ) samples of the system
Bi2Sr2(Ca„Y, , )Cu20s+ . The hole density p(z) in-

creases with Ca content, in agreement with published re-
sults. ' ' Taking the error bars into account, the in-
crease is approximately linear. In the following we will
therefore assume that the hole density and Ca content are
linearly related to each other, at least in the metallic re-
gime.

IV. CHARGE TRANSPORT
ON THE INSULATING SIDE OF THE IMT

Tp
p( T) =poexp .

T

where To is a characteristic temperature which will be
discussed later [see Eqs. (4) and (5)] and

Pl +1
n+D+1 (2)

D is the dimensionality of the hopping process, and n de-
scribes the energy dependence of the density of states
g (E) in the vicinity of the Fermi energy, which behaves
like

(3)

The understanding of the charge transport in insulat-
ing samples is very important because it provides infor-
mation about electronic correlations and the density of
states. As it is seen in Fig. 1, the resistivity of insulating
samples increases strongly with decreasing temperature
below about 100 K. This increase cannot be described by
thermally activated conduction, which would require a
temperature dependence such as p(T)-exp[1/T]. In-
stead, it can be described by hopping conduction be-
tween localized states. In hopping conduction the tem-
perature dependence is generally weaker than exp[1/T]
and has been calculated for a number of different cases.
The best-known examples for hopping conduction are
due to Mott and Davis and Shklovskii and Efros. For
these two cases, the temperature dependence is

100- -4.0
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60-

20-
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0
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Z
0.8

0.0
1.0

FIG. 2. Carrier density p (circles, left scale) and supercon-
ducting transition temperature T, (triangles, right scale) vs Ca
concentration z in Bi2Sr2(Ca„Y&, )Cu208+~. The carrier den-
sity was derived from the Hall coefficient Rz at T =200 K using
p=1/RHe. The solid line shows the expected linear relation
p-z. The error bars mark the onset (p=0.9p„) and offset
(p=0. 1p„) of the superconducting transition. The dashed line
is a guide to the eye.

For an energy-independent density of states (n =0), this
leads to a Mott-Davis variable-range hopping case of
a= —,

' in two dimensions and a= —,
' in three dimensions.

Shklovskii and Efros have analyzed the case of low car-
rier concentration where electrons interact via the un-
screened Coulomb potential, which leads to a gap in g (E)
that is pinned at Ez. They showed that in two dimen-
sions n =1, whereas in three dimensions n =2. This
leads to the same exponent a= —,

' for two and three di-

mensions in (2).
The electrical resistivity of the Bi2Sr2(Ca„Y, , )Cu202

system cannot be described by the simple Mott-Davis or
Shklovskii-Efros case alone. The reason for this failure is
probably that g(E) has more structure within several
times kii T than is allowed for by (3) and changes
significantly upon Ca substitution. The detailed behavior
of g (E) will be discussed later. Most reports in the litera-
ture have analyzed their data using only the above-
mentioned values of a=

4 3 and —,', trying to extract the
dimensionality of the conduction process from this
fit. ' ' ' %e will use a more generalized approach
where a is allowed to vary, and we will not address the
question of dimensionality because the theoretical as-
sumptions used in deriving the exponent a= —,

' and —,
' in

the Mott-Davis case of (2) are not fulfilled in HTSC's.
The resistivity of six insulating samples of the Bi 2:2:1:2
system is shown in Fig. 3. The data are the same as in
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FIG. 3. Temperature dependence of the resistivity for sam-
ples in the insulating regime of Bi2Sr2(Ca„Y, , )Cu208+~. The
data are plotted on a logarithmic scale vs T "to show the
hopping character of the conduction (1). The a(z) values are
different for all samples and are indicated next to the curves to-
gether with the respective Ca concentrations. The determina-
tion of the a(z) value is discussed in the text.

Fig. 1, but here they are plotted as ln(p) vs T " to
show the hopping behavior in agreement with (1).

The exponent a used for plotting the data in Fig. 3 is
different for each of the six samples, causing the different
starting point of the six curves on the T axis. The
determination of a for a given Ca concentration is rather
difficult because of the strong exponential temperature
dependence in (1), which almost masks the much weaker
power-law dependence. Conventional fitting procedures
are further complicated by deviations from the hopping
conduction at high temperatures, which can be seen best
for the z =0.4 sample. The physical reason for these de-
viations will be discussed later. They lead to both quite
inaccurate values of a and unphysical variations of Tp
and pp. We have therefore determined a differently.

For a given Ca concentration, the resistivity data were
plotted as ln(p) vs T with values of a between 0.15 to
0.6. The correct value of n is the one giving a straight
line over the largest region in the low-temperature part.
By this method, a can be determined with an estimated
error of 10%%uo. We have obtained values of
a=(0.5+0.05) for z =0 and a=(0.2+0.02) for z =0.4
by this method. Because of the large error, we have not
determined the a values for all Ca concentrations by this
method. Instead, we have assumed a(z) to vary linearly
between the two above-mentioned values. In view of the
small absolute change in a(z), this seems a reasonable ap-
proximation. The fact that all six curves show reason-
ably straight lines in a resistance range of up to three or-
ders of magnitude justifies our approach. The exponent
a =(0.5+0.05) which we find for the sample
Bi2Sr2YCu208+ is in agreement with the Shklovskii-
Efros case of a gap in g (E). The same exponent has been
observed by Mandrus et al. " in a Ca-deficient single

crystal of BizSr2(Ca~2~, Yo ~5)Cu20s+ . As the IMT is
approached, the carrier density increases, which leads to
better screening. Therefore the gap in g (E) has to disap-
pear and o. has to become smaller than —,'. This is in

agreement with the experimentally observed decrease to
a=0.2 at the IMT. The observed variation of a(z) ex-
plains the disagreement in the literature about the ex-
ponent in the hopping conduction for the
Bi2Sr2(Ca„R, , )Cu20&+~ system and with it the
disagreement about dimensionality. ' ' ' Depending on
the carrier concentration in the sample, very different
values of a and therefore for the dimensionality can be
obtained if only the Mott-Davis and Shklovskii-Efros
cases are considered.

Another feature, easily seen in Fig. 3, is the decreasing
slope of the curves as the Ca content increases. The slope
is given by To (1) and is related to the localization radius

aH, which is the decay length of the localized carrier
wave function. The exact relation between a& and Tp is
known for the simple Mott-Davis (D =3) and the
Shklovskii-Efros cases, respectively, where it is given by

2. 1
Tp

keg (EF )&H

and by2~

2. 8e 1
p

4vepk~ raH

(4)

(5)

VX=B
C

where B,' ' is a constant depending only on dimensionali-

ty D, V is the characteristic volume V —r,", and
X—(E,~ )" + ' is the number of sites taking place in the
conduction process, which is found from integrating the
density of states (3). At g=(„

( )D(E )n+1 g(D)
lj C 1J C C

Here e is the static dielectric constant. In order to ex-
tract the localization radius from the experimental a and

Tp values for all Ca concentrations independent of D and

n, we follow an approach developed by Moshchalkov and
Muttik for doped semiconductors.

The process of hopping conduction may be modeled by
the behavior of a network of resistors with the charac-
teristic resistivity being determined by the resistivity of
the critical percolating path:

p-exp[&, ] .

The dimensionless variable g takes into account two pos-
sible conductivity channels arising from both wave-
function overlap and thermal excitations:

r, E,+
QH kg T

Here r; and E, are the distance and energy difference be-

tween sites i and j participating in the hopping process.
The critical percolating path g, is found from the per-
colation condition
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Inserting (r~), —((,aH) and (E;/), —g, k&T above, we ob-

tain
Gdo.e

(10)

and, with (1) and (6),

p- exp I (, I
-exp

with

TO

10

Ndo. e

or

const n +1
gD/(n+))] ' D +n +1

1

[D/(n +1)]+1

To = const ag

(12)

(13)

10

0.30 0.40 0.50 0.60
T o.a(K o ai

0.70 0.80

Tja /( a—) ) ]
QH (14)

Taking the relation D/(n+1)=(1 —a)/a for the hop-
ping exponent from (2), we get the relation

FIG. 4. Logarithmic plot of resistivity vs T showing the
similarity in hopping conduction for Bi2Sr2(Cap 6&Rp 4)Cu208+~
with different R =(Gd, Nd, Y). Dashed lines are fits to (1) in the
low-temperature regime.

This makes it possible to estimate the variation of the lo-
calization radius a& with chemical composition using ex-
perimental To and a values. The three particular cases
(n =0, D =3; n = 1, D =2; and n =2, D =3) discussed in
(4) and (5) are also described by this expression. This
simple method completely ignores a possible effect of the
prefactor in (6) on the localization radius in (14). In addi-
tion, the coefficient of proportionality in (14) may also de-

pend weakly upon the details of the density of states in
the vicinity of EF, besides the B,' ' variation with dimen-

sionality, which is known from percolation theory. In
spite of these shortcomings, (14) gives a good possibility
to study the behavior of the localization radius aH from
resistivity measurements.

The variation of the localization radius aH with Ca
content is shown later (in Fig. 10 and discussed there). It
diverges at the IMT, indicating that here the charge car-
riers get delocalized through increasing overlap between
the wave functions on neighboring sites. In the following
section, we will show that the characteristic quantities of
the hopping transport, namely, a and To in the insulating
samples, are determined only by carrier density, which in
our case is given by the Ca content. ' To do so, we have
investigated various samples where Y was replaced by
other R elements. Their resistivity is shown in Fig. 4 as
ln(p) vs T to show the hopping conduction.

The samples have the same nominal carrier concentra-
tion because they have the same content of trivalent Y or
R ions. All samples give straight lines in the low-
temperature region, showing that the transport is due to
hopping and that the exponent is a=(0.2+0.02), in-
dependent of the R ions. This shows that the character
of the hopping is the same for the three samples and is in-
dependent of the specific R ion separating the CuOz
planes. In particular, it is independent of the magnetic
moment of the R ion (p&=0, pNd=3. 5pz, pod=8. 5)M~)
and of the CuOz-plane spacing, which is changed

significantly by substituting ions that differ by as much as
10% in their ionic radii (rY=0.893 A, rod=0. 938 A,
r&, =0.990 A, rNd=0. 995 A). The slope of all curves in

Fig. 4 is the same within experimental error. The insensi-
tivity of the slope To to the substituted RE ion shows
that the localization radius which is given by (14) de-
pends only upon the carrier density. The only quantity
depending on the RE ion is the prefactor po in (1), which
increases by an order of magnitude when going from non-
magnetic Y to magnetic Gd. This dependence on the
magnetic moment will be discussed elsewhere. '

V. DENSITY OF STATES

To study the electronic density of states and its depen-
dence on the Ca content, we have performed ultraviolet
photoemission spectroscopy (UPS) on both metallic and
insulating samples. The UPS experiments were per-
formed at room temperature. When attempting to ex-
tract the electronic density of states from UPS experi-
ments, one has to keep in mind that in strongly correlat-
ed systems, such as HTSC's, the electronic density of
states in the vicinity of EF may be strongly temperature
dependent. Nevertheless, for HTSC's, the relevant tem-
perature scale should be given by the exchange interac-
tion constant J=1600K)&300 K. Therefore we can use
the UPS spectra at 300 K as an estimate for the density
of states at T=0.

The spectra of four samples with different composi-
tions are shown in Fig. 5. Figure 5(a) shows the spectra
down to a binding energy of 9 eV below EF. The density
of states at EF is small for all samples. At higher binding
energy, it rises and has a peak at approximately 3 eV.
Studies of the resonance behavior of this peak show that
these are dominantly Cu 3d states. ' The shape of the
peak is almost the same for all four samples, showing that
these low-lying states are unaffected by Ca substitution.
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FIG. 5. UPS spectra for Bi2Sr2(Ca, Y, , )Cu208+~ samples.
(a) The arrows indicate the position of the peak at -3 eV bind-

ing energy. The dashed line shows the position of the peak in
the insulating sample with z =0.4. (b) Expanded view of the
spectra in Fig. 6(a) near the Fermi level.

On the other hand, the distance of this peak relative to
EF, which is the zero energy for all spectra, clearly
changes. The peak is closest to EF for the metallic sam-

ple with z = 1 and farthest away for the insulating sample
z =0.4. Because these are relatively low-lying states and
are due to Cu 3d orbitals, they should not shift their ener-
getical position upon substitution at the Ca site. In UPS
experiments the binding energy is measured relative to
EF. This means that the apparent shift of the 3-eV peak
is in reality caused by a shift in the Fermi energy due to
the change in carrier concentration. The insulating sam-
ples have a relatively low hole concentration, resulting in
a Fermi energy sitting in the upper part of the highest oc-
cupied band. As the hole density is increased by substi-
tuting Ca + for Y +, the Fermi energy gets shifted
deeper into the band and closer to the low-lying Cu 3d
states at 3 eV binding energy. The shift is approximately
0.2 eV between the spectra of the z =0.4 and 1.0 samples
and about 0.5 eV between z =0 and 1. This shift was not
seen clearly in earlier photoemission experiments, ' but
has been observed to be qualitatively similar in a core and
valence-band photoemission study by Golden et al.

Because the same shift was also observed in a second
set of samples and the sample resistance is low (R (10

m 0), we can exclude the possibility of electronic charg-
ing as a source of the shift.

The shift in EF means that a rigid-band picture is a
reasonable approximation at higher binding energies
(F. ) 2 eV). On the other hand, we will now show that
it is not a good approximation in the vicinity of the Fer-
mi energy. This can be seen in Fig. 5(b), where we show a
closeup view of the spectra in the vicinity of EF. For the
insulating sample (z =0.4), the spectrum shows a mono-
tonically decreasing density of states with no structure
near EF. In contrast to this behavior, the metallic sam-

ples with higher hole concentration all show a hump at a
binding energy of =0.2 eV on top of a decreasing back-
ground. This hump increases with Ca content and is best
seen for z =1. It can be interpreted mainly as a narrow
band of total width 8'=0.6 eV (occupied and unoccu-
pied part), which is formed upon hole doping. The in-
tensity of this band increases with Ca content. It has also
been observed by other authors, ' and the width of the
occupied part is agreed upon to be approximately 0.3 eV.
This narrow band is present in all p-type HTSC s investi-
gated with UPS or electron-energy-loss spectroscopy
(EELS). ' ' More indirect evidence for the existence is
also found in the optical conductivity' ' and Raman
scattering. EELS experiments have shown that this
narrow band has predominantly 0 2p character ' ' and
lies mostly in the CuO& plane. ' ' Because this narrow
band is situated at the Fermi energy, it will contribute to
the dc conductivity, and as it is observed in all HTSC
compounds, it is most probably linked to their supercon-
ductivity. In the UPS spectra, the intensity of the narrow
band rapidly decreases in the insulating samples, but the
band probably persists down to very low Ca concentra-
tions. Here it will be difficult to observe because of its
low intensity and a narrowing caused by the decreasing
interaction among the states in the band.

The fact that the intensity of this band increases with
the hole concentration has important consequences for
the nature of the band which has been under intense
theoretical investigation. The question is whether
the band is formed by conventional impurity states like in

doped semiconductors or by highly correlated electron
states inherent to the Cu02 plane. In doped Si, for exam-

ple, ' where the carrier concentration is at most —10'
cm, impurities with initially sharp energy levels form a
band as a result of their mutual interaction, which causes
a statistical energy spread. This band is extremely nar-
row ( W-0. 1 meV). ~2 The bandwidth of &=0.6 eV ob-
served in the HTSC's is orders of magnitude larger.
There are two possible reasons for the increased band-
width. First, the interaction among the carriers will be
higher because the carrier density is orders of magnitude
higher. Second, the disorder is higher in HTSC s because
a large fraction of the Y atoms are exchanged. This dis-
order will also broaden the band. In this impurity mod-

el, the growth of intensity for the narrow band at EF is a
very natural feature.

A different approach, heavily investigated by theorists,
deals with a singlet which is formed by the interaction of
a hole doped on the 0 2p orbital which interacts with the
hole in the d orbital of the Cu + ion. The singlet state
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consists of the Cu + spin in the center of a square of oxy-

gen ions and is compensated by an oxygen hole spin
shared among the four corners. This so-called Zhang-
Rice singlet also results in a narrow-band-like state at the
Fermi level for the doped system. The question of how
the intensity of this singlet state grows as the system is
doped with holes has to our knowledge not been investi-
gated in detail so far. Such an investigation would be
very helpful for an understanding of the nature of the
states at EF in HTSC's.

Before discussing our narrow-band model, we would
like to come back to the temperature dependence of the
resistivity for samples with z z, . As can be seen in Fig.
6, these samples are insulators [dp/dT &0,
p( T~O) = ac j at low temperatures where they show hop-
ping conduction as was shown in Fig. 3. Above a cross-
over temperature T;„,which is indicated by arrows, the
resistivity becomes metallic (p- T}. The slope of the me-
tallic resistivity dp/dT decreases with increasing Ca con-
tent from dp/dT=7. 98 X 10 at z =0.3 to
dp/dT=6. 75X10 at z =1. The sample with z =1 is
not shown in Fig. 6. It changes continuously through the
IMT, which shows that the process leading to the p- T
behavior is the same in the superconducting and insulat-
ing samples. The crossover in the resistivity has also
been observed by other groups for this system"' ' and
also in (La, Sr)2Cu04, but its origin has not been dis-
cussed so far.

The crossover from hopping to metallic conduction for
samples slightly below the IMT (z Sz, ) is easily ex-
plained if the disorder in this system is taken into ac-
count. Disorder is presented in this system because of
the rando~ occupation of the sites between the CuOz
planes by Ca or Y. As shown by Anderson, the pres-
ence of weak disorder in a periodic system causes the lo-
calization of the electronic states in the tails of the con-
duction band. Therefore, in one and the same band, lo-
calized states which conduct by hopping will coexist with
delocalized states that show metallic conduction. The en-

ergy separating the delocalized from the localized states
is called the mobility edge E, . The factor determining
the character of conduction is then the position of EF
with respect to E, .

We now propose a schematic picture for the develop-

S(E)
&1

a(E)
Jh,

(b)

0.15- 0'0np g

O. io-

0.05—

0.00
50 i00 150 200 250 300

Y(K)

FIG. 6. Resistivity vs temperature for
Bi2Sr2(Ca„Y&, )Cu208+~ samples with z below the critical
concentration for the IMT (z, =0.43). The dashed lines are fits
to the metallic resistivity p- T at high temperature. The cross-
over from metallic to hopping conduction p-exp[ T ] at T;„
is indicated by arrows.

E~ Ecz

FIG. 7. Schematic electronic density of states g(E) of the
conduction band for high-temperature superconductors at three
different levels of hole doping. The vertical scale is the same for
all three curves. Localized states are shaded. (a) Low hole dop-
ing, insulating samples. All states are localized. (b) Intermedi-
ate doping just below the critical concentration for the
insulator-metal transition. (c) High doping, metallic, and super-
conducting samples. The dashed line indicates the rectangular
band assumed in our model calculation.
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ment of the density of states around EF as one moves
from the insulating to the metallic regime by chemical
substitution. All states at higher or lower binding energy
are omitted for simplicity. The schematic picture is
based on the data of the Hall effect, electrical resistivity,
UPS, and the above-mentioned disorder. Figure 7 shows
the density of states for three levels of doping. Our
schematic picture is an extension of the picture proposed
by Matsuyama et al. and includes effects of disorder '

and the experimentally observed shift of the Fermi ener-
gy

As was seen in the UPS spectra, the maximum of the
narrow band lies below EF, which is also in agreement
with the holelike conduction observed in the Hall effect.
The band will have a domelike shape, and there will be a
region of localized states below E, and above E, due to

1 2

disorder. The case of a sample deep in the insulating re-
gime with very low carrier concentration is shown in Fig.
7(a). Here all states are localized. Since the localization
radius aH is small compared to the carrier separation
(d~ + +~

—-p' ), the interaction among the carriers is

weak and the band is narrow. There are no delocalized
states in this case, and conduction can only take place by
hopping between localized states within k&T around EF,
in agreement with the results of Fig. 3. The existence of a
Coulomb gap has been neglected in Fig. 7(a) for simplici-
ty.

The situation at higher doping, slightly below the IMT,
is shown in Fig. 7(b). The smaller carrier separation leads
to a larger overlap integral between the carrier states, and
therefore a narrow region of delocalized states appears in
the band center. The increased interaction among the
carriers and the larger disorder both lead to an increase
of the bandwidth. The Fermi energy has moved closer to
the band center as evidenced by UPS and thus gives a
higher carrier density in the Hall effect. Because EF is
still in the localized part of the band, we observe hopping
conduction at low temperatures. At higher temperatures,
where, because of a broadening of the Fermi distribution,
delocalized states become accessible, the situation
changes. The delocalized states have a much higher mo-
bility and will therefore dominate the conduction, leading
to a metallic resistivity (p- T) at sufficiently high temper-
ature (ksT~E~ E, ). This explains —the crossover of

2

the resistivity shown in Fig. 6.
The difference EF —E, can be calculated from the data

by two methods. For samples showing a resistance
minimum, we have used the relation

k~ T;„=EF—E (15)

For samples not showing the resistance minimum, we
have made use of the fact that the resistivity just below
the crossover at T;„will show thermally activated be-
havior across the mobility gap which is equal to
(Ez E, ). The only ass—umption made here is that the
mobility of the localized states is very small compared to
that of the delocalized states. We can then determine
E, —EF by fitting the resistivity to

p( T) =poexp
(E —E )

k~T

VI. NARROW-BAND MODEL

In the following we present a simple model which qual-
itatively reproduces the observed IMT, the crossover
from insulating to metallic resistivity, and the linear
resistivity for the metallic samples. The model was first
proposed by Moshchalkov ' and enables the calculation
of the temperature-dependent conductivity o ( T) from a
very simple model function for the energy-dependent
conductivity o (E)r o, which is proportional to the
square of the electronic density of states.

The calculation is done using the Kubo-Greenwood
formula, which is valid for both l —d + +, and(e,e )'
l »d, + +, where I is the mean free path and d, +

the carrier-carrier separation. It therefore covers the en-
tire IMT from samples showing hopping conduction
where I -d + + to metallic samples with weak scatter-

(e , e )

ing l »d, + +, . We are interested in the transport
(e , e

properties up to a few hundred degrees kelvin; therefore,
we need to consider only the states in the vicinity of EF.
All states at higher energy are neglected. We assume that

This procedure was adopted for z &0.3 in the tempera-
ture range 400 & T & 600 K and gives values that match
well the values obtained by using (15). (The results will
be discussed in conjunction with Fig 10.) The resistance
minimum and thermally activated behavior of p(T) in a
certain temperature region in this system were also ob-
served by Mandal et al. ' They did not link the two facts
and explained the thermally activated behavior by pola-
ronic conduction. Their values for the polaronic activa-
tion energy gap agree with our values of (E, EF )

—within
10%. We think our explanation based on the existence of
a mobility edge is more natural because it links the ob-
served resistance minimum, the thermally activated be-
havior, and the hopping conduction assuming only disor-
der, which in a chemically substituted system such as
HTSC's is out of the question. It also explains the ab-
sence of a resistance minimum for samples with z (0.2,
because here the minimum is shifted to very high temper-
atures. The good agreement between our data and those
of Mandal et al. shows that the position of the mobility
edge E, is determined by intrinsic disorder and only
weakly inQuenced by sample preparation and quality.

The third schematic density-of-states picture in Fig.
7(c) shows the band for a metallic sample. These are the
samples that show superconductivity. The intensity of
the band has increased, as suggested by the UPS results.
The width has further broadened because of even
stronger interaction among the doped carriers and the
larger disorder. The increased hole concentration has
moved EF into the delocalized part of the band. The sys-
tem is therefore a metallic conductor. If the system was
even further doped, the Fermi energy would eventually
move below the band center, resulting in electronlike
conduction as observed in heavily doped (La,Sr) Cu04. ' '
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cr0, —W E 0
0 E='

0, elsewhere (17)

The zero energy is taken at the upper band edge, leading
to 8'(0. Therefore EF)0 means a Fermi energy out-
side of the conduction band corresponding to Figs. 7(a)
and 7(b) and EF &0 means a Fermi energy within the
conduction band corresponding to Fig. 7(c). In this mod-
el a temperature-dependent Fermi level EF(T) need not
be taken into account because, if the narrow band arises
from electron-electron correlations, it is pinned at EF and
all shifts of EF with temperature are followed by a corre-
sponding shift of the narrow band. The temperature
dependence cr(T) is related to the energy dependence
0 (E) by the Kubo-Greenwood formula

df(E, EF)
cr(T)= —f 0(E) dE .

00 dE
(18)

Here f (E,EF ) is the Fermi distribution function. Insert-
ing 0 (E) from (17), the integral transforms into a sum:

o(T)=oo
exp EF/k~T +1—

(19)

the density of states can be modeled by a rectangular
band of width W= (E„—E,2) and constant height
o 0- (g(E) ), as is shown by the dashed lines in Fig. 7(c).
The width of this mobile band 8' is obviously smaller
than the bandwidth 8'observed in the UPS experiments.
The assumption of a rectangular band neglects the mobil-
ity of the localized states in the band tail. A finite mobili-
ty could be included, but would only increase the number
of free parameters without giving qualitatively new infor-
mation. For simplicity, the height of the band 0.0 is taken
to be independent of the Ca content z. This is in
disagreement with the UPS results, which showed an in-
crease of the narrow band with Ca content, but as this in-
crease cannot be determined precisely from the experi-
ments, we have ignored it. Thus we use an energy-
dependent conductivity of the form

p+0
10.0—

1.0-

8.0—

6.0—

4.0—

2.0—

-0.5
0.0

0.0 0.5 1.0

kgT/W
1.5 2.0

The resistivity should therefore increase linearly with
temperature, a behavior that is not only observed in
Bi2Sr2(Ca„Y, , )Cu20s+, but also in all other
HTSC's. ' ' The slope of the linear resistivity depends
on the product ( Wo 0). If the band is only determined by
the properties of the doped Cu02 plane, then the slope
should be independent of the surrounding crystal struc-
ture and depend on the carrier density via 0.0. This is in

good agreement with the fact that the value dp/dT for
the linear resistivity is very similar for all HTSC com-
pounds.

Next, we discuss the insulating case Ez) 0 when the
Fermi level is above but not too far from the mobility
edge. In the low-temperature approximation
(EF))k~ T), we get

FIG. 8. Resistivity p multiplied by oo vs temperature calcu-
lated for a narrow rectangular band of width %=1 using (19).
The distance of the Fermi level relative to the upper band edge
is indicated next to the curves and corresponds to Fig. 7(c). The
arrows indicate the resistance minimum at T;„. The inset
shows numerical results for the variation of T;„with the posi-
tion of the Fermi level.

exp (W EF)/kzT +1—

Equation (19) contains the entire information about the
temperature and composition dependence of the resistivi-
ty in our model.

We have to distinguish the cases where Ez is larger or
smaller than zero. Both can be treated in a high- and a
low-temperature approximation. Numerical results of
(19) are shown in Fig. 8 for a bandwidth W = 1 and EF as
a parameter.

We first discuss the metallic case (EF &0). Using a
high-temperature approximation [EF« kz T and
(W EF) «k~T), we ge—t

p(T) =
0'p

E
P'

kB
(21)

4kB
p(T)= = T .

o(T) oo( —W)
(20)

The resistivity should therefore rise exponentially at low
temperatures. The experimentally observed hopping con-
ductivity with an increase weaker than 1/T can also be
obtained if the finite mobility of the localized states out-
side of the rectangular band is taken into account. In the
high-temperature limit (EF «k~ T) of Eq. (19), we again
recover the linear dependence of (20). The crossover
from exponential to linear temperature dependence in the
numerical results is indicated by an arrow in Fig. 8. It
can be compared to the observed behavior which was
shown in Fig. 6. The inset of Fig. 8 shows numerical re-
sults for the variation of T;„with EF at 8'=1. It is
seen that T;„ is proportional to EF for not too small
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VII. SCALING DEPENDENCE
OF THE CONDUCTIVITY

From the IMT in doped semiconductors, it is well
known that the conductivity in the vicinity of the IMT
obeys a scaling law

o(z)=oo
Z ZQ

7l

zc
(22)

values of EF, justifying our assumption in (15).
The numerical results in Fig. 8 can be compared to the

experimental results in Figs. 1 and 6. Keeping in mind
the simplicity of the model, the agreement is surprisingly
good. The linear resistivity at high temperatures, the up-
turn toward T =0, and the minimum, which shifts to-
ward higher temperature as the samples become more in-

sulating, are all well reproduced. Superconductivity is
obviously not contained in the model as there exists no
attractive potential. Although the qualitative agreement
is good, the quantitative agreement is not so good. The
numerical results show a linearly increasing resistivity for
T & —,

' 8' as seen in Fig. 8. If we use the estimated band-

width from UPS experiments, which is about 8'=0. 5 eV,
and take into account that only the mobile states in the
band center contribute to the linear resistivity, we can es-
timate a bandwidth of 8'=0.2 eV~ 8'. This would
mean that the linear resistivity should only be found
above T=1000 K. This value is an order of magnitude
higher than the experimentally observed lower limit for
the linear temperature dependence of about 100 K.
Whether this discrepancy indicates that only a very small
fraction of the band observed with UPS is mobile
( W-0.01 eV « W), as has been suggested, ' or whether
this is a failure of the model remains to be seen.

T =100 K, which is the lowest temperature where the re-
sults are not inAuenced by the superconductivity, to
search for scaling behavior. The results are shown in Fig.
9 in a double-logarithmic plot as conductivity o (T =100
K) vs reduced concentration t (z —z,. ) /z, . I

(z, =0.43+0.02) to show the power-law behavior. The
solid circles are our results, and the open circles are
values taken from the work of Mandrus et a/. " The er-
ror in z, can be estimated from the fact that the sample
with z =0.45 is metallic and shows superconductivity
and the sample with z =0.4 is insulating at low tempera-
ture. Thus we get z, =(0.43+0.02). For the data of
Mandrus eI. al. , we have used a critical concentration
z, =0.42. This value gives the best agreement with a
power law and is in very good agreement with our value.
Both data sets show a power-law behavior, proving that
the conductivity in the Bi2Sr2(Ca„Y, , )Cu~O„+~ system
obeys a scaling law. The critical exponent is approxi-
mately g=1 for both data sets. Although the data sets
agree remarkably well in their functional dependence and
their critical exponent, there is a disagreement in the ab-
solute conductivity. The data by Mandrus et a/. have a
conductivity almost a factor of 10 higher than our data
and than other data published in the literature. ' ' " This
could be due to the fact that they have used single-
crystalline samples, which eliminates scattering from
grain boundaries and gives a higher absolute conductivi-
ty. The fact that their data also show a scaling law with
the same critical exponent q = 1 is evidence for the
universality of the scaling behavior. The value g=-1 is
the same as is observed in amorphous metals such as
Nb:Si, ' which have a rather wide conduction band and
where the IMT is believed to be disorder induced. In
contrast, narrow-band systems such as Si:P, where the
IMT is thought to be induced by Coulomb correlations,
show g= —„'. This underlines the importance of disorder
for the IMT in HTSC's.

with a critical exponent g, which can be calculated using

the scaling theory which was first proposed by Abrahams
et a/. The parameter z in (22) is normally taken to be

the carrier concentration in the system. In the following

analysis, we will assume that in

BizSr2(Ca„Y, , )CuzOs+~ we can replace the carrier
density by the Ca concentration z. This assumption is

supported by the linear dependence of the Hall coefBcient

RH on the Ca content z in the metallic regime, which was

shown in Fig. 2. The exponent g is unique for the char-
acter of the transition and independent of the specific
substance under investigation. Therefore the critical ex-

ponent provides important information about the mecha-
nism inducing the IMT. The determination of the scaling
behavior in HTSC's is somewhat more complicated than
in traditional semiconductors because, first, the conduc-
tivity at T=0 is needed in (22) and, second, the sample

quality is not yet comparable to that of traditional semi-

conductors. As the conductivity at T =0 is not accessi-
ble because of the occurrence of superconductivity in all

metallic samples, we have used the conductivity at

I I

l

I I

C)
CO

10 '-

10 '=

10

(z —z.)jz,
FIG. 9. Double-logarithmic plot of conductivity at T =100

K vs reduced Ca concentration for Bi2Sr2(Ca„Y, .)Cu, O„, ,
Solid circles are data from this work with z, =0.43. Open cir-

cles are data taken from Mandrus et al. (Ref. 12) with z, =0.42.
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VIII. BEHAVIOR
OF CHARACTERISTIC QUANTITIES

AT THE INSULATOR-METAL TRANSITION

In Fig. 10 we present a summary of our results con-
cerning the IMT in BizSrz(Ca„YI, )CuzOs+ . Shown
are the mobility gap (E, EF—), the localization radius
a&, normalized to the value at z =0, and the conductivity
in the metallic state at T =100 K (o IIIO&). These three
parameters are all plotted versus the Ca content z, which
was shown to be proportional to the carrier concentra-
tion (see Fig. 2). The dashed lines are guides to the eye.
The solid line shows the scaling law for the conductivity.
Starting at BizSrz YCuzO&+y (z =0), the system is a
charge-transfer insulator. By doping Ca + for Y +, we
introduce hole states into the charge-transfer gap. For
low z the localization radius of these doped states is very
small, leading to negligible wave-function overlap and
hopping conduction. As the hole density increases, Ez
moves toward the band center. At the same time, the lo-
calization radius grows, leading to a larger overlap in-
tegral between the carriers and thereby moving E, into
the band tail. Thus the mobility gap (E, —EF ) is reduced
by doping. At the critical concentration z, =0.43, the
Fermi level reaches the mobility edge and the localization
radius diverges. This leads to carrier states which extend
over the entire crystal and to metallic conduction. These
delocalized states become superconducting at low tern-
peratures. The system has changed from a charge-
transfer insulator to a high-temperature superconductor.
The separation between the insulating region to the left
and the metallic region to the right is marked by the vert-
ical dashed line. As even more holes are introduced by

Bi,Sr,(Ca„YI,)CuzOII+y
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FIG. 10. Plot showing the disappearance of the mobility gap
(E,—EF) (triangles), the divergence of the localization radius
aH (squares), and the linearly vanishing conductivity o. ,ooz (cir-
cles) at the insulator-metal transition in
Bi2Sr&(Ca„Y, , )Cu20, +„. The dashed vertical line separates
insulating samples on the left from metallic samples on the right
side. The values for the localization radius are normalized to
the value at z =0. The solid line shows the scaling law for o.(z)
[Eq. (22)] with y)

= 1, z, =0.43, and o.
o
= 890 ( 0 cm)

further Ca doping, the absolute value of the metallic con-
ductivity rises linearly. As shown in Fig. 2, the supercon-
ducting transition temperature T, also rises, reaches a
maximum of T, =90 K at z =0.2, and then drops to
T, =85 K at z =1.0 despite the still rising conductivity.
The disappearance of the mobility gap (E, EF—), the
divergence of the localization radius aH, and the vanish-

ing metallic conductivity o.&00~ at z, all are consistent
with each other.

An important question remaining is whether this IMT
is driven by Coulomb correlations and therefore of the
Mott-Davis type or by disorder and of the Anderson
type. ' As discussed above, the UPS spectra give clear
evidence of a Fermi level which is shifted through a rath-
er rigid-band structure by doping. In addition, the tem-
perature dependence of the resistivity for samples close to
the IMT, which is of the hopping type below and metallic
above T;„,shows the coexistence of delocalized states in
the band center with localized states in the band tail.
These two results both point toward disorder-induced lo-
calization. Furthermore, the critical exponent q=1 is
the same as in amorphous metals where the IMT is be-
lieved to be disorder induced. The insulator-metal transi-
tion in BizSrz(Ca„Y, , )CuzOs+y is therefore most likely
caused by disorder and of the Anderson type, although
the existence of a correlation gap can at the present not
completely be excluded.

IX. CONCLUSION

Doping of Ca + in BizSrz(Ca„R, , )CuzOs+y induces
holelike carriers and leads to an insulator-metal transi-
tion above a critical concentration z, =(0.43+0.02)
(R=Y). All metallic samples show superconductivity
with a maximum T, =90 K at z =(0.8+0.05). The insu-
lating samples show hopping conduction p-exp[T ]
with an exponent a depending only on the carrier con-
centration and not on the speci6c R ion. Samples with a
carrier concentration slightly below z, show a crossover
from hopping conduction at low temperatures to metallic
conduction at high temperatures. This is evidence for the
presence of localized states in the band tail due to disor-
der. Ultraviolet photoemission spectroscopy shows the
appearance of new states at the Fermi level upon Ca +

doping accompanied by a shift of the Fermi energy by 0.5
eV between z =0 and 1. A model is presented which de-
scribes the temperature-dependent conductivity, based on
a density-of-states picture derived from the photoemis-
sion data. This model qualitatively explains the
insulator-metal transition and the metallic resistivity in
high-temperature superconductors. In the metallic re-
gime of this insulator-metal transition, the conductivity
obeys a scaling law with a critica1 exponent g=1. In the
insulating regime, the localization radius diverges and the
separation between localized states and the Fermi energy
vanishes for z~z, . The insulator-metal transition is dis-
order induced and accompanied by a shift of the Fermi
energy. It is therefore most probably of the Anderson
type.
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