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Density of states of the two-dimensional Hubbard model on a 4 x 4 lattice
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Using exact diagonalization, we calculate the density of states of the two-dimensional Hubbard
model on a 4 x 4 square lattice at U/t = 0.5, 4, and 10, and even number of electrons with Filling

factors n ranging from a quarter filling up to half filling. We compare the ground-state energy
and density of states at U/t = 0.5 and 4 with second-order perturbation theory in U/t in the
paramagnetic phase, and find that while the agreement is reasonable at U/t = 0.5, it becomes
worse as the perturbatively determined (i.e. , using Stoner s criterion) boundary of the paramagnetic
to spin-density-wave instability is approached. In the strong coupling regime (U/t = 10), we find

reasonable agreement between the density of states of the Hubbard and the t-J model especially for

low doping fractions. In general, we find that at half filling the filled states are separated from the
empty states by a gap. At U/t = 10, the density of states shows two bands clearly separated by a
Mott-Hubbard gap of order U.

I. INTRODUCTION

The single-electron density of states in materials
such as the oxide superconductors can be probed by
photoemissioni which can reveal the complexity of the
band structure, the validity of a quasiparticle description,
and the size of correlation efFects. The latter effects can
be described in a simple way by Hubbard models where
the complexity of the local atomic orbitals is included. In
order to make progress in understanding the key features
of a material such as the superconducting oxides, it is
interesting (if at all possible) to try to understand some
of the important electron correlation effects by a simple
one-band Hubbard model,

H = t ) (ct cs +—Hc)+U) n ln t,
(ij),o

where c, creates an electron with spin o at site i, (ij)
are neighboring sites, and n, = c,. c, ~ is the number
operator. Here, we shall study by means of exact diago-
nalization the spectral function and the density of states
of the Hubbard model on a 4 x 4 lattice. Unfortunately
this system size is too small to make direct comparison
with experiments. Thus, it is desirable to be able to carry
out similar calculations on larger size lattices. It is, how-
ever, very diKcult to perform a similar study on larger

lattices due to limitations in both computer memory and
CPU time. Even though we use translational symmetry
to reduce the size of the Hilbert space, this system still
has about 10 million states at half filling. There are ex-
act diagonalization studies of the energy eigenvalues at
various filling factors for the Hubbard model on the 4 x 4
lattice. 2 The density of states (DOS) calculation, how-
ever, is especially demanding since we have to repeat the
iterations in our Lanczoss algorithm for each distinct re-
ciprocal lattice vector. Quantum Monte Carlo, which is
a possible alternative approach, sufFers from well-known
problems associated with the fermionic statistics and in
addition it is not known how to extract dynamical infor-
mation directly using Monte Carlo techniques. Neverthe-
less, the results of such an exact calculation, as the one
performed here, are useful for enhancing our understand-
ing of the model and correlation eEects and in addition
they can be used to infer the validity of other approaches.

In this paper we present results obtained by exact di-
agonalization for the DOS. We have considered an even
number of electrons and filling factors ranging from a
quarter filling up to half filling. We have chosen three
different values of U/t: a rather small value, U/t = 0.5,
which is expected to be in the weak coupling regime; an
intermediate value, U/t = 4; and a large value, U/t = 10,
which is expected to be in the strong coupling region.

We shall compare our results with simple weak cou-
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pling perturbation theory in the paramagnetic ground
state mainly because the superconducting oxides are be-
lieved to be in this phase. Within low-order perturbation
theory, the system is unstable against a spin-density wave
(SDW) at a value of U = U, (n) determined by the Stoner
criterion, which depends on the electron-filling factor n.
This boundary, within the perturbative approach, is the
paramagnetic SDW phase boundary. However, we be-
lieve that the actual phase boundary should be signifi-
cantly different from the results of such a perturbative
approach in two dimensions. Since our perturbation the-
ory assumes that the ground state is paramagnetic, we
need to know the phase boundary which determines the
range of validity of such a perturbation theory. We find
that the correlation energy is small even close to the SDW
instability and that low-order perturbation theory gives
ground-state energy close to the exact value. Hence the
ground-state energy alone may not be a sensitive indica-
tor for the validity of the perturbation theory. Weak cou-
pling perturbation theory could be valid provided that
either U/t or n, or both, are small; namely, even though
U may be large, at very low electron filling factors, the
electrons do not feel the Coulomb repulsion too often.
Although we only perform this calculation on the 4 x 4
lattice, the perturbation theory can be easily extended to
much bigger lattices once its validity is checked through
this comparison with the exact results on small size lat-
tices.

We find that for low enough filling factors, even for val-
ues of U/t as large as 10, the density of states of the Hub-
bard model close to the chemical potential found by exact
diagonalization is qualitatively similar to those found at
small U/t. In addition, even at large U/t and close to half
filling, the main peak close to the chemical potential in
the spectral function follows the form of the noninteract-
ing dispersion relation with a renormalized bandwidth.

The outline of the paper is as follows. En Secs. II and
III we briefly describe how we calculate the DOS using,
respectively, exact diagonalization and second-order per-
turbation theory. In Sec. IV, we discuss and compare
the ground-state energies and DOS obtained by the two
methods, compare the exact diagonalization results at
U/t = 10 with the results of the t Jmodel, and d-iscuss
the spectral functions of the Hubbard model. Section V
contains our conclusions.

A~ l(k, ~) = —) 'lc~, l&o ')I'

The wave function @o is obtained by the Lanczos
algorithm. The corresponding DOS are defined by

where g is a small positive number. The effect of il is to
broaden the peaks in the DOS.

G~+l(k, z) have a continued fraction expansion, s for
example,

(golckc~l@o)
g2

6
X —G2-

Q3 0 ~ ~

where a, ,b, are the coefficients of the tridiagonal
matrix generated by the Lanczos iteration using

ci, ~go)/ (@o~c&ck~@o) as the starting vector. The Lanc-

zos iteration can be stopped when the continued fraction
expansion has converged satisfactorily. Details of our
implementation of the Lanczos algorithm for this sys-
tem on the Connection Machine CM-2 will be published
elsewhere. 6

Because of the symmetry of the up and down spins, we
consider adding and removing electrons with up spins
only and the spin index cr will be omitted.

Consider a particular filling factor where the system
has N, electrons and drop the superscript N, . Prom the
definition of the one-body Green's function

G~ l(k, z) = (Qo~ckt (z —H) ' ci, ~Qo),

G~+l(k, z) = (go~ck (z —H) '
ck~Qo).

A~+l(k, u) can be expressed in terms of G~+l(k, z) by

II. DENSITY OF STATES USING
THE LANCZOS ALGORITHM

The spectral function for adding an electron of spin o,
momentum k, and energy cu to the ground state is given
by

A~+l(k, (u) = —)
—(E"'+' —E"')) (2)

~here E„' and @„' are the eigenenergy and eigenfunc-
tion of the system of N, electrons on a lattice with N
sites. Similarly, the spectral function for removing an
electron from the ground state is given by

III. DENSITY OF STATES
FROM PERTURBATION THEORY

To start the perturbation approach, let us transform
the Hubbard model to momentum space,

&kck ~cking +
N p ck+p ycq p gck l q T)

k, o k, p, q

where ek = —2t[cos(k a) + cos(k„a)] is the eigenenergy
of the noninteracting ground state. At half filling, be-
cause of the nesting of the Fermi surface, the ground
state is unstable against spin-density fiuctuations for ar-
bitrary U/t. Away from half filling, as the hole doping
level increases, the critical value of U/t needed for the
transition between the paramagnetic phase and the spin-
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density phase also increases. The phase boundary can be
found by the Stoner criterion. 4 The antiferromagnetic-
paramagnetic phase boundary is not known and it is not
expected to be reliably determined by such a perturba-
tive approach. For our purposes, however, it is needed in
order to know for a given n the critical value of U = U, (n)
where perturbation theory which assumes a paramag-
netic ground state breaks down. In the following cal-
culations, we consider only perturbation expansions in
the paramagnetic phase and we shall compute the DOS
within this phase.

We define a time-ordered single-electron Green's func-
tion as

G (k, t) = i T (g—p
~

cg (t)c„(0)~ gp),

10

0 I I
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I I I I I I I I I I I I I I I I I
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where ~Qp) is the ground state of the Hamiltonian given
by Eq. (9). It is easy to show that

) Im G~(k, u) = N~~+)(—~) + N~( )(u), (11)
k

where N(+) (v) and N( )
(cu) are the DOS for adding and

removing an electron with spin cr defined in Eq. (4).
For different hole doping levels, we calculate the self-

energy up to order (U/t)2. The contribution from the
term of order U/t just gives the Hartree-Fock result and
can be included easily. The second-order term of the
electron self-energy Z(k, u) can be written as

. Uz . dv
Z(k, ~) = i ) —G—p(k —q, u) —v)yp(q, v),

q

(12)

with

1
Gp(k, ~) =

(u —sk + i sgn(eg —Ey ) rl
'

and

( )
1 ). ng(ngpq —1)
N - &+ t'k —6k+q+ ~Q

ng+~(1 —ng)
(14)

(d + Ck 6k+q &g

Here Go and yo are the Green's function and spin suscep-
tibility, respectively, in the absence of the interaction, ng
is the electron occupation number, and ri is a broadening
parameter used to construct the b function.

As mentioned above, we start from a paramagnetic
noninteracting state. Consequently, these perturba-
tion calculations are valid only when the actual states
are paramagnetic. Figure 1 shows the paramagnetic-
antiferromagnetic phase boundary of the infinite two-
dimensional lattice found by the Stoner criterion. Only
in the neighborhood of n = 1 in the (U/t, n) phase di-
agram is the system expected to be antiferromagnetic,
which would require a different treatment. 7 This pertur-
bation expansion is expected to be valid for small values
of the product Un. Thus it is meaningful to compare the
results of our exact diagonalization in the region of the
paramagnetic phase where Un (( 1, with results of per-

FIG. 1. Phase boundary between the paramagnetic and
antiferromagnetic phase of the infinite size Hubbard model.
We have not shown the ferromagnetic phase, since it is not
relevant to our discussion.

turbation theory. The perturbation treatment can be ex-
tended near half filling, where there is antiferromagnetic
order in the ground state, using the approach outlined
by Schrieffer et al.7

IV. RESULTS AND ANALYSIS

A. Ground-state energy

TABLE I. Ground-state energy at various values of U/t
and filling factors obtained by exact diagonalization. N, is
the number of electrons on a 4 x 4 lattice. The numbers in
parentheses are calculated from second-order perturbation in
U/t

N,

16
15
14
13
12
11
10
9
8
7

U/t = 0.5
—22.34023(—22.34)
—22.49213(—22.48)
—22.64591(—22.65)
—22.79695(—22.80)
—22.94985(—22.95)
—23.10007(—23.10)
-23.25211(—23.25)
—21.40396
—19.55701(—19.56)
—17.70347

U/t = 4

—13.62185(—14.2)
—14.66524(—14.5)
-15.74459(—16.2)
—16.72757(—17.1)
—17.72958(—18.1)
—18.64833(—18.9)
—19.58094(—19.9)
—18.55363
—17.53490(—17.7)
—16.32054

U/t = 10
—7.02900
—8.89301

—10.80701
—12.46957
—14.16438
—15.51372
—16.90356
—16.55123
—16.14321
—15.34537

Using exact diagonalization, we have calculated the
DOS for the parameters U/t = 0.5, 4, and 10, and filling
factors n = 16/16, 14/16, 12/16, 10/16, and 8/16. The
ground-state energies for all N, between 16 and 7 are
obtained from our Lanczos calculation (see also Table I
of the paper by Fano et at. in Ref. 2) and are compared
in Table I with the results of perturbation theory.

The ground-state energies can also be calculated using
the perturbation theory. On a 4 x 4 lattice, except for the
cases of 1, 2, and 10 electrons, the unperturbed ground-
state energies are highly degenerate. The ground-state
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energy in a second-order degenerate perturbation calcu-
lation involves the diagonalization of the secular matrix
in the degenerate Hilbert subspace. This has been cal-
culated in Ref. 8. We use the second-order correlation
energy given in Fig. 1 of Ref. 8 to calculate the ground-
state energy for U/t = 0.5 and 4. The results are also
shown in Table I. We observe that the agreement be-
tween the perturbation and the exact results is good at
all filling factors for U/t = 0.5, with relative errors of
about 0.01%%uo. At U/t = 4, the larger error (at half fill-

ing) is about 4'%%uo. Although the errors are within 1'%%uo for
smaller filling factors, the DOS in the next section reveal
a more subtle disagreement.

B. Density of states

We now compare the DOS obtained by exact diago-
nalization and second-order perturbation theory in U/t
In the exact diagonalization, we use 100 iterations in the
continued fraction expansion, Eq. (8). The parameter il
in both calculations is taken to be ii = O. lt. Figures 2(a)
and 2(b) compare the DOS obtained by the two methods.
We observe that at U/t = 0.5 and n = 10/16 [Fig. 2(a)],
the agreement is good, as expected. At U/t = 4 and
n = 10/16, N& & and N(+) from perturbation theory

start to deviate from the exact result. Both calculations
agree for both the energy and the strength of the peaks
near the chemical potential. The disagreement in both
X~ ~ and X~+~ become worse as one moves away from
the chemical potential.

Figures 3, 4, and 5 show the DOS at various n and
at U/t = 0.5, 4, and 10, respectively. Notice that at
half filling [(a)] and in all three cases of U/t there is a
gap separating the states in N~ ~ from those in X&+~.
The gap in the case of U/t = 0.5 is very small and the
density of states is close to the norunteracting (U = 0)
case, and very close to our perturbation theory results.
We interpret this gap as the SDW gap (using the weak
coupling terminology) while in the strong coupling it
becomes the Mott-Hubbard gap. The transition from
the strong to weak coupling is believed to be a smooth
crossover and the gap in the weak coupling limit is given
by 2A t exp( —2+gt/U), while in the strong coupling
limit it is of the order of U'. In the strong coupling per-
turbation theory in powers of t/U the upper band cor-
responds to states with one doubly occupied site. As n
decreases, more sites are available to accommodate the
added electrons without double occupancy, and conse-
quently some of the spectral weight of N~+~ shiRs to the
lower band. In our exact diagonalization calculation, we
notice that away from half filling there is no gap sep-
arating the states contributing to X~ ~ and the states
contributing to N~+~, i.e. , the system becomes metallic.
However, in the case of n = 10/16 and for all three values

ll

A)Vv ~'

I

0 i i i i I AJiLI "W''i'M

—10 -5 0 5 10
(c)

(d)
I

AJ Uf VLJ'c
I

L/ U DY

(e)

0
—10 —5

LilV, '~V. . .

0 5 10

FIG. 2. Comparisons of the DOS obtained by weak cou-
pling perturbation theory (upper graph) and exact diagonal-
ization (lower graph) at n = 10/16 and (a) U/t = 0.5, (b)
U/t = 4. The solid lines are N (ur) and the dashed lines are
N~+l(u) (m is given in units of t) The perturbation . result is
shifted upwards for clarity.

FIQ. 3. DQS by exact diagonalization at U/t = 0.5 and

(a) n = 16/16, (b) n = 14/16, (c) n = 12/16, (d) n, = 10/16,
and (e) n = 6/16. The solid lines are Ni (u) and the dashed

lines are N + (cu). All curves except (e) are shifted upwards

for clarity.
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FIG. 4. Same as Fig. 3, except at U/t = 4.
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of U t we used, there is also a gap separating N(+) and
N( . This gap is due to a finite-size effect and can be
understood from the noninteracting density of states also:
N(+)(Id) for the three values of U/t considered here and
for n = 10/16 share this feature [see (d) of Figs. 3—5]. Ir.

the noninteracting case on a 4 x 4 lattice, when we remove
six electrons from the half-filled case, the lowest unoccu-
pied state is separated from the highest occupied state
by a large discrete amount, and the grou-, .d .,tate of the
system is nondegenerate. In the case ~eh~, re ere remove
less than six electrons, the noninteracting Fez.ra.i 'c-r 1 =~
mains unchanged, the system has a degenerate ground
state, and the interactions mix these states, create new
levels, and move the chemical potential near the highest
occupied level of the half-filled ground state. Additional
conclusions which can be drawn by studying these re-
sults are the following. (a) The structure of the density of
states in the neighborhood of the chemical potentials (the
lowest energy state in N&+& or highest in N& )) is similar
for U/t = 4 and 10. (b) As the density of the electrons
is lowered the spectra for various values of U/t become
more similar. The latter conclusion was expected, since
the effective interaction and the correlations between the
electrons are density dependent and in the dilute limit
the large U/t is renormalized to a smaller value. We
point out that at low filling factors the density of states
for all U/t [compare (d) of Figs. 3, 4, and 5] is both qual-
itatively and quantitatively similar to the noninteracting
case (weak coupling limit, i.e., Fig. 3).

At U/t = 10 there is a clear pseudogap for all values of
filling factors as shown in Fig. 5. However, the chemical
potential falls well below the gap for the doping levels
away from the half filling. Thus in our calculation the
Hubbard model behaves as a Mott insulator only at half
filling, while below half filling it always acts as a metal.

C. Comparison with t-J model

We now compare the Hubbard model at large U/t with
the t Jmodel on-the same 4x4 lattice. Using the relation
between the parameters of the two models, J = 4t /Uz,
the largest value in our calculation U/t = 10 corresponds
to J/t = 0.4 in the t-J model Since. the t Jmodel is-

restricted in the single-occupancy subspace its DOS has
only the lower Hubbard band. To make a comparison
between the DOS of the two models, we truncate the
upper band and rescale the lower band of N(+) of the
Hubbard model so that the areas under N(+) are the
same as that of the t-J model. The results are shown
in Figs. 6(a) and 6(b). The density of states of the t
J model are taken from Ref. 12. We find that the t-J
model can produce the essential features of the DOS of
the Hubbard model at this U/t value at the lower filling
factor. Namely, the best agreement is found at lower
filling factors (n = 8/16) where the chance of having
doubly occupied sites in the Hubbard model is smaller.

— (e)

—10 0 10 20

FIG. 5. Same as Fig. 3, except at U/t = 10.

Spectral functions

In Figs. 7, 8, and 9 we plot the spectral functions at
all distinct reciprocal lattice vectors k at U/t = 10 and
n = 16/16, 14/16, and 10/16, respectively. Figure 7 is
the half-filled case and we notice that the system is a
Mott insulator with the chemical potential in the mid-
dle of a gap well separating the occupied from the un-
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occupied states. The main peak of A(+)(k, ~) for given
k is at an energy ~ = ~(k) and if we order the var-
ious k values according to the order of increasing en-
ergy, they follow the same order as the dispersion relation
~(k) = gAz+ 4tz(cosk + cosk„)~ which can be found
by a SDW calculation. 7

Below half filling (Figs. 8 and 9) we can also find promi-
nent quasiparticle peaks in A(+)(k, u) near the value of
the chemical potential (which is shown by a vertical line
in these figures). In Fig. 8 (n = 14/16) the quasiparticle
peaks for k = (0, 0) and (0, 2) are in the A( ) spec-
trum. Note that in the noninteracting case (U = 0) with
n = 14/16, the states with k = (0, 0) or (0, z) lie below

the Fermi surface and thus A( ) has the peak below the
Fermi energy while A(+) is zero. Similarly the quasipar-
ticle peaks at k = ($, vr) and (x, x) are in the A(+) spec-
trum as in both at U = 0 and at U/t = 10. However, for
the states k = (0, x) and (z, 2) the quasiparticle peaks
are on the A+ and A spectra, respectively, although in
the noninteracting case both of these states are on the
Fermi surface. This can be understood by means of a
simple perturbation calculation. Because of the degener-
acy, the single particle states with these two momenta can

0'4

k=(o,o)

0.3—
k(o,~/2)

3
0.2—

k=(0,~)

—k=(~/a, ~)

k=(~,~)

k =(7r/B, m/2)

Q Q I

—10 0 10 20

0.5
— (a

0.4—

0.3

I I I I I I I I I I I I FIG. 7. Spectral functions at U/t = 10 and n = 16/16.
The vertical line is the chemical potential p, = 5.0t.

be occupied, empty or partially occupied for n = 14/16,
depending on the choice of the noninteracting ground
state; namely, there are 29 degenerate ground states in
the Hilbert space of zero total spin and zero momentum.
We restrict ourselves in the zero momentum Hilbert sub-

0 3

Q Q
I I I

—10 —5 0 5 10

k=(0,0)

k=(0,~/z)

I I I I I I I I I I I I I I I I

— (b)
0.2—

3
R 0.5—

3
A

k= (m/2, m)

Q Q I I I I

—10 —5

I I &IUL I I I

0 5 10
k=(~/2, ~/a)

FIG. 6. Densities of states of the Hubbard (lower graphs)
and t-J (upper graphs) models at (s) n = 14/16, snd (b)
n = 8/16. The solid lines are NI I(ur) and the dashed lines

are N + (cu). The upper bands in the Hubbard model are
truncated and the lower bands of NI+I are rescaled (see text).
Densities of states of the t-J model are from Ref. 12 and are
shifted by an arbitrary amount in ~ to facilitate comparisons.

0.0
—10 10 20

FIG. 8. Spectral functions at U/t = 10 and n = 14/16.
The vertical line is the chemical potential p = 1.788t.
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0.6— k=(o,n/a)—

3
0.4—

k=(m/2, m)

0.2—

0 ~ 8
k~(0.0)

k = (0, 0) and (0, $) in the A( 1 spectrum while for all

other momenta the quasiparticle peaks are in the A(+l.
This is in qualitative agreement with the noninteracting
case, where for n = 10 the states with k = (0, 0) and
the four states obtained from (0, z) by $ rotations are
completely filled, while the rest are empty.

Figure 10 shows the dispersion relations of the quasi-
particle states for both cases (n = 8/16 and 14/16). The
quasiparticle peaks in the spectral functions follow the
minima [at k = (0, 0)] and the maxima [at k = (n, n)]
of a noninteracting dispersion curve with a renormalized
bandwidth. The bandwidth W of the quasiparticle band
depends strongly on doping, namely, W/Wo 0.59 for
n = 10/16 and W/Wo 0.28 for n = 14/16, where Wo
denotes the noninteracting bandwidth (We = 8t). Qual-
itatively similar results are also obtained for the other
filling factors.

k (m/2, rr/8)

p p i »
-10 0 10 20

FIG. 9. Spectral functions at U/t = 10 and n = 10/16.
The vertical line is the chemical potential p, = 0.519t.

space because our exact diagonalization is also performed
in this subspace. Using first-order degenerate perturba-
tion theory, one can readily show that once the Hubbard
interaction is turned on, there is a singly degenerate low-

est energy state with zero momentum (i.e., a linear com-
bination of eight noninteracting states with d-wave sym-
metry) in which the single particle states with momenta
(kx2, +z) are occupied, while the states with k = (0, 7r)

and its rotations by ~z are empty. This perturbation re-
sult clearly explains the exact diagonalization result, as
is seen in Fig. 8. The spectral functions for n = 10/16
are shown in Fig. 9. There are quasiparticle states for

4

2)-

FIG. 10. Energies of the quasiparticle states relative to
the chemical potential at U/t = 10 and n = 10/16 (x), n =
14/16 (+).

V. SUMMARY

We have presented the ground-state energies and DOS
of the Hubbard model on a 4 x 4 lattice at various filling

factors and U/t = 0.5, 4, and 10 using exact diagonaliza-
tion. We have also compared them with results for the
DOS and the ground-state energies obtained by second-
order perturbation in U/t. We find agreement with the
results of perturbation theory for small U/p (U/t = 0.5)
and the agreement starts to become worse at U/t = 4.
At large values of U/t and low filling factors we find some
qualitative agreement with perturbation theory. The lat
ter conclusion was expected since the effective interaction
and the correlations between the electrons are density de-
pendent and in the dilute limit, the large U/g is renormal-
ized to a smaller value. We also find that the structure
of the density of states in the neighborhood of the chem-
ical potential (i.e. , the lowest energy state in N(+) or the
highest in N( 1) is similar for U/t = 4 and 10. At large
U/& (U/& = 10) there is clearly a pseudogap for all values
of the filling factors as shown in Fig. 5. However, the
chemical potential falls well below the gap except in the
case of half filling where it lies in the middle of the gap.
Thus in our calculation the Hubbard model behaves as a
Mott insulator only at half filling, while below half filling
it acts as a metal.

We have also compared our results for the DOS at
U/t = 10 with the DOS of the t-J model at the corre-
sponding J/t. We find that the t Jmodel can repr-oduce
the essential features of the DOS of the Hubbard model
(Fig. 6) at low filling factors where the chance of dou-
ble occupancy is low. Finally, we find that the spectral
functions are well described by a quasiparticle picture
even at large U/t, with a quasiparticle bandwidth which
increases upon doping.

We shall avoid direct comparison with the experiments
as there is fundamental disagreement between the results
found in exact diagonalization studies of the DOS and the
experimental photoemission and inverse photoemission
results as discussed in Ref. 10.

After this work was completed, we learned that
Dagotto, Ortolani, and Scalapino, io and Feng and
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White~~ have independently calculated the DOS of the
Hubbard model on a 4 x 4 lattice using exact diagonal-
ization.
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