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A self-consistent approach to vortex dynamics, including the effects of nonlocal vortex interaction,
pinning, and creep, is further clarified and unified by its restatement in terms of an initial-boundary value
problem. We derive and solve a single vector partial differential equation describing the linear response
of a type-II superconductor in the mixed state at frequencies well below the gap frequency. The solution
of this equation, presented here for several sample geometries, provides the phenomenological supercon-
ductor dispersion relation, accompanying complex penetration depths, and complex response functions.
The theory is expected to have applicability to a wide range of experiments involving vortex dynamics.

INTRODUCTION

In this paper we present a general theoretical descrip-
tion of the high-frequency linear response of isotropic
type-II superconductors in the mixed state. The ap-
proach used here unifies several of the elements of our
theory of rf vortex dynamics' wherein the alteration of
electromagnetic fields produced by vortex motion is in-
cluded self-consistently with the rest of the dynamics. By
using a complex-valued dynamic vortex mobility, our
theory is able simultaneously to take into account effects
of vortex pinning, flux flow, and flux creep. The phenom-
enological formulation of the theory allows for the ready
refinement of portions of it. For instance, the results of a
microscopic treatment of pinning could be incorporated
in the vortex-lattice dynamics.

The present approach leads to the formulation of an
initial-boundary-value problem for one of the total (or
net) rf fields or densities a, b, j, E, or u. Here a is the
vector potential, b the magnetic field, j the current densi-
ty, E the electric field, and u the vortex-displacement
field. Once one of these quantities has been found, the
others follow from various electrodynamic relations such
as Maxwell's equations. The boundary-value problem to
be solved in the superconductor geometry is usually of
combined elliptic and parabolic type. In general, a cou-
pled elliptic boundary-value problem outside the super-
conductor also needs to be solved for any rf fields. In the
following section, we derive a single vector partial
differential equation which governs the total type-II su-
perconductor response in the linear regime, showing the
generalization of many previous treatments. Example
geometries and solutions of this equation are then con-
sidered.

We are concerned with calculating electrodynarnic-
response functions for a type-II superconductor subjected
to a combination of large dc field and small rf field.
When vortex pinning is significant, we assume that the
vortex displacements are small in comparison with the in-
tervortex spacing. (The pinning forces produce a net
linear restoring force on a typical vortex, as in a parabol-
ic pinning-potential well. ) Since the amplitude of the rf
field is much less than that of the dc field, linear-response

theory can be applied. The calculated response functions
will then be independent of the rf-field amplitude.

On the other hand, if vortex pinning is significant and
the displacements large, the critical state is fully built up
near the sample's surface. Theory then requires a model
of the critical state, such as the Bean model. The
response functions will depend strongly on the rf-field
amplitude, reflecting hysteretic effects.

Our theory is expected to be applicable to a wide range
of phenomena involving vortex dynamics. Correspond-
ing experiments include surface impedance, rf permeabili-
ty, vibrating reed, torque, and (torsional) oscillators. s

Measurements of ultrasonic attenuation and dispersion
also involve vortex dynamics.

" In the first class of experi-
ments, the interaction of vortices with either a perturbing
applied field or current occurs, while in the second class
vortices interact with the acoustic waves of the crystal
lattice. The present form of our theory should be irn-
mediately applicable to experiments of both classes when
small vortex amplitudes are involved. With appropriate
extensions, such as use of a critical-state model, modeling
of hysteretic effects should also be possible in the theory.

The present theory is applicable over a wide range of
frequencies, including the radio- and microwave-
frequency range (below superconducting-gap frequen-
cies), subject to certain provisions on the effective period-
ic pinning-potential height U, as we now discuss. We as-
sume a single height U(B, T) currently lacking depen-
dence on angular frequency co and current density J. It is
likely that a more detailed treatment should include some
type of statistical distribution of pinning heights which
has these additional parameter dependences. At higher
frequencies it is likely that only the pinning wells with
lower heights are involved in the vortex dynamics. The
pinning-potential height is an average or effective one not
particularly tied to any one microscopic creep model un-
less the averaging method is spelled out. Note that in the
case of dislocation-mediated creep, the relevant activa-
tion barrier is not the pinning potential itself, but its vari-
ance. '

At this stage of the theory as regards pinning and Aux
creep, we are content to in effect make the approximation
that the average over pinning-potential barriers of a given
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linear-response function is close to that same linear-
response function evaluated with an effective pinning-
potential barrier. Symbolically, using the surface im-

pedance as an example, this is the statement
Z, ( ( U ) ) = (Z, ( U) ), where we suppress all the other pa-
rameter dependences of Z, .

We employ a Brownian-motion model for Aux creep in
which the vortices are assumed to be uncorrelated while
diffusing. This is a limitation in the current theory,
which would require modification in order to apply it in a
detailed study of phase transitions involving vortices.

Through the wide variety of experiments mentioned
above, we anticipate that our theory and its extensions
can provide detailed information on the anisotropic elec-
trodynamic response of type-II superconductors. Given
material constants, our theory does not contain adjust-
able parameters. Conversely, from experimental data one
could apply the theory to obtain, e.g. , an effective linear
pinning constant or effective pinning-potential height.
As an example, the latter approach has recently been ap-
plied' to obtain an effective vortex-activation energy.

For the very small driving fields considered here, the
vortex displacements have very small amplitude, usually
less than 1 A. ' Since the range of the pinning potential
is typically of the size of the coherence length, ' the oscil-
latory part of the vortex motion stays very close to the
bottom of the potential well. As mentioned above, we
take the form of the pinning potential to be independent
of the magnitude of the driving-current density.

Our approach self-consistently includes vortex interac-
tions by accounting for the coupling of current density
and vortex displacements. The results for the response
functions are given in terms of one or more complex
penetration depths which characterize the spatial varia-
tion of the electrodynamic fields and densities. In this pa-
per a single governing vector partial differential equation
(PDE) is derived from a generalized diffusion London
equation with vortex-density term and a vortex equation
of motion. (The latter includes a random or Langevin
force' when flux creep is modeled. ) The PDE represents
a linearization about zero vortex velocity and constant
vortex density. As before, nonlocal vortex interactions
are included in our theory. Note that in Refs. 2, 4, 5, and
16 numerical results for linear-response functions have
been given over a broad range of static field magnitude
and of frequency, for temperatures from absolute zero
through the transition temperature, and for different an-

gles of both the applied static field with respect to the su-

perconductor surface and microwave field. The emphasis
in this paper is on the unified derivation of analytical re-
sults for the complex linear-response functions from the
solution of certain boundary-value problems.

In obtaining the complex penetration depth(s), we are
in effect finding the dispersion relation for the supercon-
ductor. We show that the rf surface impedance
Z, =R, —iX„defined by

E, and h, are, respectively, the tangential components of
the rf electric and magnetic fields at the superconductor
surface, and they vary with time as e ""'. After present-
ing the coupled boundary-value problem, we next illus-
trate its solution for several sample geometries. We then
discuss more involved problems where large demagneti-
zation effects arise, emphasizing the vector nature of the
governing PDE. We compare our approach of determin-
ing complex penetration depths with other models, in-

cluding the theory of thermally assisted Aux Aow, and
note various complex diffusion constants which appear in

these theories.

THEORY OF LINEAR RESPONSE

We first recall some background on our theory'
necessary for the derivation of the generalized Aux-

diffusion partial differential equation. The electrodynam-
ics of the superconductor are described by Maxwell's curl
equations, the two-Quid equation J=J„+J„the constitu-
tive relation J„=o.N&E, and two equations which de-

scribe the source of the total-current density J. [Here J„
is the normal-current density, J, is the supercurrent den-

sity, and oN&(B, T)= 1 lpN&(B, T) is the local electrical
conductivity of the normal fluid. ] The supercurrent-
source equation is

1
V XJ, = — (B—/on Bo),

Po
(2)

where n(x, t) is a local area density of vortices and $0 is
the flux quantum. In Eq. (2) the local direction of the
vortices is given by the unit vector BO=BO/Bo and Bo is
the internal magnetic induction generated by the vortex
array, which is assumed to be uniform. For more gen-
erality an equilibrium magnetization curve or equivalent
relation may be included for the magnetic behavior.

Equation (2) accounts for nonlocal vortex interaction
by way of the continuum density n( tx). We recall that
the nonlocality of the elastic response of the vortex lattice
means that the elastic moduli depend on the length scale
of the elastic strain. ' In this paper we restrict attention
to isotropic, high-x superconductors for which A.(B,T) in

Eq. (2) is independent of the direction of current flow. In
this situation the wave-vector-dependent elastic modu-
li' ' satisfy the approximate relations c»(k) =c44(k) be-

tween the compressional and tilt moduli and c«=0 for
the shear modulus. These relations hold as long as the
field is not too high, B 0.2B,z, and k stays away from
the boundary kBz of the first Brillouin zone. ' ' Hence
we consider nonlocal effects, but do not include the addi-
tional geometric dispersion coming from the vortex lat-
tice itself when k =k&z. For greater generality the vor-
tex equation of motion below can be modified to include
higher-order elastic effects.

The vortex equation af motion we typically use in-

cludes a random (or Langevin) force' F(x, t) per unit

length on the right-hand side to represent thermally gen-
erated forces:

is given by the complex self-consistently determined
phase velocity of radiation in the superconductor. Here

re(x, t)+~ u(x, t)=J(x, t)XQ BOo+(Ftx) .

The Langevin force in Eq. I3) is assumed to be Gaussian
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white noise, with a 5-function autocorrelation function
and zero time and ensemble average. ' ' Equation (3)
represents the force balance between a rf Lorentz force
per unit length, f(x, t)=J(x, t)X((}pBO a viscous drag
force per unit length, and a restoring pinning force per
unit length in addition to the effect of flux creep as
modeled by the Langevin term. In Eq. (3), u is the
vortex-displacernent field, as measured from an equilibri-
um pinning site, rI is the viscous-drag coefficient (e.g. ,
Ref. 21}, ic is the restoring-force constant (Labusch pa-
rameter ) of a pinning-potential well, and we ignore a
possible vortex-mass term. The periodic pinning poten-
tial is taken to be sinusoidally varying. '

When higher-order elastic effects are included, the
left-hand side of Eq. (3) is modified. It is of note that for
short tilt wavelengths the effective range of the vortex in-
teraction is reduced to a length =1/k. Subsequently,
each vortex experiences interaction with fewer vortices;
for large values of k, the expression for c~ should be
modified as in Ref. 17.

The random force in Eq. (3) can be thought of as due to
the interaction of the flux lines (in particular their core
regions) with phonons of the crystal lattice, but need not
depend on this particular mechanism. The random force
per unit length makes the vortex equation of motion
analogous to that of a particle undergoing Brownian
motion in a periodic potential U(tt}. [The pinning-force
term in Eq. (3) is the linearization of aU/aa per unit
length of vortex about an equilibrium pinning site. ]

The equations apart from the vortex equation of
motion lead to a generalized diffusion London equation
for B(x,t):

VB= B+ (B—PnB).0 0 (4)

between the vortex velocity and driving (Lorentz) force,
we have

U(x, t) = Ir„ f(x,t)—
CO

for the vortex displacernent. For the vortex-density term
B„(x,t) =n(x, t)QOBO(x) in Eq. (4), we write

Equations similar to Eq. (4) without the vortex-density
term have appeared, e.g. , in Refs. 12 and 23.

By making use of the complex dynamic mobility p,„, '

the generalized diffusion London equation (4) may be
combined with a vortex equation of motion such as Eq.
(3) including flux creep. This allows all the equations
governing the linear response to be combined in a single
equation, which can then be solved subject to suitable ini-
tial and boundary conditions. Using the relation

v(x, t)=p„(co,Bo, T)f(x, t)

VB= B1 ~

DNF

+ B—Bo+—@05„,VX[BOX(JXBO)] . . (8)
A,

2 ' 2 '"'
This equation is of course first order in the vortex veloci-
ty and the deviation of the vortex density from its equilib-
rium value of no=Bo/Po. We recall that the complex
effective skin depth 8„,=(2p„/poco)'~ simultaneously in-
cludes the effects of pinning, flux flow, and flux creep.
Here the complex-valued effective resistivity p„(co,BO, T)
associated with the vortex motion is related to the dy-
namic mobility P„by p„(to,BO, T) =B0$012,(co, BO, T).

We can use Ampere's law to obtain a single partial
differential equation for the rf magnetic field b(x, t)
=B(x,t) —Bo,

V2b= b
DNF

+ b+ —5„,VX(BOX[(VXb)XBO])
A,

2 2
(9)

+
2

b+ —5„,[(BO V) —BOV ][BOX(VXb)]

which contains a fourfold vector cross product. Equation
(9) is the single vector PDE that our self-consistent ap-
proach, as presented in Refs. 1 —5, in effect solved. Solu-
tions in the linear regime obtained by some authors' '

are solutions of approximations to this equation. By
again making use of the dynamic vortex mobility, it is
possible to derive generalized diffusion London equations
similar to Eq. (9) for the other fields and densities. In the
Appendix it is shown how this can be done for the elec-
tric field.

In Ref. 25 a linear PDE similar to Eq. (9) has been ob-
tained in the pinning-dominated limit of vortex motion
and a similar nonlinear PDE has been obtained in the
flux-flow-dominated limit. However, corresponding ana-
lytic results in Ref. 25 were illustrated only with a simple
diffusion equation. In our theory an extension to non-
linear response has been made in Ref. 26, where bilinear
field nonlinearity has been retained in the vortex con-
tinuity equation. The possibility of nth-order harmonic
generation has been discussed there.

An important special case of Eq. (9) is when Bo is a
constant vector. The cross products in Eq. (9) can be ex-
panded using vector identities, using V B0=0 which al-
ways holds, and taking the gradients and curl of Bp to be
zero. We have

V2b= b
1

DNF

B„=BO+b„=BO—V X(BOXu) . (7)
(10)

Equation (7) follows from integrating the vortex continui-
ty equation with respect to time. Upon using Eqs. (4),
(6}, and (7) and setting the normal-fluid diffusion
coefficient DN„(B,T)=pN„/po, we have

where the PDE for b is written in operator form. In this
case we have reduced Eq. (9) to an equation containing
two twofold vector cross products. Recall that the last
factor on the right-hand side of Eq. (10) represents the
Lorentz force on the vortices. This factor shows that the
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CYLINDER IN PARALLEL APPLIED STATIC
MAGNETIC FIELD

We first illustrate the solution of Eq. (10) for the case
of an infinitely long right-circular cylinder of radius a in a
parallel applied static magnetic field. With this orienta-
tion of Bo, the more general Eq. (9) need not be solved.
We take the axis of the cylinder to be along the z direc-
tion and employ cylindrical coordinates (p, P, z) centered
on this axis. We assume that the rf field satisfies
b(p=a, t)=zboe ' ' at the surface. We require the gen-
eral conditions that V.b=0 and J n~&, =Jz ~z, =0 (n is
the unit outward normal vector). A suitable form for b is
therefore b(x, t) =b(x)e ' ', where b(x) =zf (p).

Substituting this form of b(p) into Eq. (10) gives

A, + —5„— p + 2i —1 f=O, (11)
i —

2 1 d df
2 "

p dp dp $&F

where the square of the normal-Quid skin depth is

6NF =2DN„/co. We write the complex quantity

A, (Bo,T)+(i/2)8'„(BO, T, co)
k (co, BO, T)=

1 —2ii, (Bo,T) lfiNF(BO, T, co)

Then Eq. (11)becomes

(12)

1 d df 1

p dp dp
(13)

We want the solution of Eq. (13) which is finite at the ori-
gin and satisfies the boundary condition f (p=a)=bo.
The form of Eq. (13) shows that the solution is a function
of the variable p/A, . Therefore the interpretation of A, as

components of the rf-current density transverse and
parallel to Bo separately enter the equation, with the
former providing a nonzero contribution.

With Bo constant, b is the single vector unknown in
Eq. (10). In general, b can only be found by solution in
both the superconductor and outside and matching com-
ponents at the surface. In some special instances, usually
involving a parallel applied rf field, the solution can be
found from boundary data only on the superconductor
surface. However, when demagnetization effects are
significant, b is not a constant vector outside the super-
conductor. The form of b is usually found there by solv-
ing the vector Laplace equation together with boundary
conditions at infinity. These topics are further discussed
after we solve Eq. (10) for two sample geometries.

We remark that it is possible to include the
displacement-current term in Ampere's law in the deriva-
tion of the generalized Qux-difFusion equation. The result
is to add the term poed b/Bt to Eq. (9) or (10), where e is
the dielectric constant of the superconductor. This term
is potentially important for propagation-dominated prob-
lems' at frequencies approaching the gap frequency.
This term is ignored in the determination of the complex
dispersion relations to be derived in the following sec-
tions. Its presence would introduce a new characteristic
length v/co, where v = I/Qpoe is the speed of light in
the superconductor.

a complex-valued penetration depth is obtained as before.
Note, however, that this fact can be seen directly from
the differential equation for the rf magnetic field and pri-
or to finding the explicit solution. This is expected to be
an important point when other geometries and boundary
conditions are considered. The solution of Eq. (13) can
be written in terms of a modified Bessel functionIo(ply�)

(p)=bo
Io(a /X)

(14)

As an example of finding the other fields and densities,
the rf electric field is found from Eq. (14) and the use of
Faraday's law. For a discussion of the dimensionless rf
magnetic permeability p, in this geometry, see Ref. 4.
When the radius of the cylinder is much larger than the
modulus of the complex penetration depth, we can con-
veniently define the surface impedance from Eq. (1), in
which case we have Z, =icopoi, . When the condition
a )) ~X~ holds, all the rf fields and densities, which decay
approximately exponentially with distance from the sur-
face, become negligible around the cylinder axis and we
have the simple relation Z, =ia pocop, /2

The quantity i~i, appearing in Z, is the complex-
valued phase velocity u h of the superconductor, as ob-
tained from Eq. (10), appropriate for a problem where at-
tenuation of the rf field dominates. Equation (12) is the
corresponding dispersion relation. The two-fluid model
is a special case of the above method. When the vortex
density term n =0 in Eq. (4), simple plane-wave solutions
immediately give the two-Quid model results for A. Uph,

and Z, . The implicit relation A, =A, (co) contains a great
deal of information. In principle, this dispersion relation
contains the group velocity U „from which a phenome-
nological density of states might be obtained.

The problem of an infinitely long type-II superconduct-
ing cylinder of elliptical cross section in a parallel static
applied magnetic field can be solved by means analogous
to this section. The explicit solution for the rf magnetic
field involves a product of an "angular" and "radial"
Mathieu function. The solution reduces to that of the
cylinder of circular cross section discussed above as the
ellipse's semimajor and semiminor axes become equal,
but the details are not presented here.

PLANAR GEOMETRY WITH
OBLIQUE APPLIED STATIC MAGNETIC FIELD

The problem considered here is that of planar
geometry with an applied static magnetic field arbitrarily
oriented with respect to both the superconductor surface
and microwave field. This geometry is expected to have
many applications. Our previous derivation by different
means was presented succinctly in Ref. 3. Figure 1 shows
the geometry wherein the rf field is chosen to lie along z
and x measures the distance into the superconductor. At
the surface x =0, we have J.x=O and b(x)=boz. Re-
quiring 1 to be divergenceless, a suitable form is
b( t) =xb( )e x'"', where

b(x)=yf, (x)+zf2(x) .
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der to solve the system (17) and (18). We use the nota-
tion

f(s)= I e '"f(x)dx,
0

(20)

FIG. 1. Geometry of the semi-infinite superconductor with

an oblique applied static magnetic field considered in the text.
The superconductor occupies the region x )Q, and the
magnetic-Aux density $0 and rf magnetic field h, f=zh, f are indi-

cated. Also shown are the angle a that 80 makes with the x axis
and the angle lt that its projection on the yz plane makes with

the z axis.
where

(ac' —a'c)s +pc'
(ad —c }s +P(a+d)s +P2

(21b)

where s is the transform variable. We know the magnetic
field components at the surface from Eq. (16a}, but we
must retain the current-density components there, pro-
portional to f (0), as unknowns which are determined at
the end by application of the other two boundary condi-
tions (16b).

The respective Laplace transforms of f, and fi are

(a'd —cc')s +a'P
(21a)

(ad —c )s +P(a +d)s +P
and

The functions f, and fz satisfy the four boundary condi-
tions

a'(s) =bocs+af i (0)+cf&(0)

and

f, (O) =0, f,(0)=b, ,

lim f, (x)=0, i =1,2 .
+~oo

(16a)

(16b)

Substitution of the form (15) into Eq. (10) gives coupled
second-order ordinary differential equations for the field
components f, and f2. We find

af", +Pf, +cf2' =0,
df,"+Pf,+.f", =0,

(17)

(18)

where a prime denotes differentiation with respect to x
and the (constant) parameter-dependent coefficients are
given below. Equation (17) results from the y component
of Eq. (10), Eq. (18) from the z component, and the x
component is void. Since these equations are linear, the
boundary conditions (16) provide a unique solution. The
four distinct coefficients appearing in Eqs. (17) and (18)
are given in terms of the components of Bo and charac-
teristic lengths as

lim [s f, (s) —sf, (0)]=f,'(0),
Isl

lim sf;(s) =f;(0), i =1,2,
(g(~ e)

(22)

as they should. The denominator of the transforms,
quartic in s, can be factored and the transforms inverted

by partial fraction decomposition. This leads to the fol-
1owing statement. The poles of an appropriate integral
transform of the field provide the complex penetration
depths. Since the governing PDE, i.e., Eq. (9) or (10), is
linear, an integral transform can be developed. (In the
previous section, the Hankel transform would be ap-
propriate. ) The reciprocals of the squares of the complex
penetration depths are given by

c'(s) =beds +cf ', (0)+dfz(0)

come from the inhomogeneous terms in the system for
the transforms. The Laplace transforms (21) satisfy the
general conditions

a =A2+ —5 „,(Bo„+80 ), P=2i A5NF 1, , (—19a)Uc Ox

c—:—5„,BD Bo„d:—A, +—5„,(80„+80,) . (19b)

and

+
—2

k +(i/2)5 8

A, +(i/2)5 „,

(23a)

(23b)

The components of Bo are (see Fig. 1) Bo =cosa,
80 =sina sing, and 80, =sina cositj. Here a corresponds
to the polar angle in spherical coordinates with the x axis
the polar axis and g corresponds to the azimuthal angle.
The coefficient c defined in Eq. (19b) represents the cou-
pling of Eqs. (17) and (18). The single complex penetra-
tion depth which appears in the solution for the rf field is
proportional to (a/p)' or (d/p)' when 80 or 80, is
zero, respectively.

Because of the semi-infinite geometry, it is convenient
to employ the Laplace transform with respect to x in or-

The solution is completed by imposing conditions
(16b). We omit the detailed arguments and inanipula-
tions involved and present the final results:

&O&oy&O,f, (x)= (e + —e
( 1 80„)—

and

f2(x)= (80 e ++80,e ) . (25)
(1 80„)—
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By using the expressions for the components of the unit
vector B0 in terms of the angles a and f, the results
given here are found to agree with those of Ref. 3. The
complex penetration depths k+, A, correspond, respec-
tively, to the penetration depths k~, k& developed from a
geometrical approach. %e stress that the complex
dispersion relations (23) can be found without first explic-
itly solving for the rf field. Having found b(x, t), the oth-
er fields and densities can be found straightforwardly,
yielding various linear-response functions. For a discus-
sion of the surface impedance in this geometry, see Ref.
3. For numerical results on the magnetic permeability
and their relevance to the irreversibility line, see Ref. 5.

GENERAL GEOMETRIES

We next discuss the procedure for solving Eq. (9) or
(10) for general geometries. The point that must be
stressed at the outset is that these PDE's are vector
valued. First, consider the meaning of the Laplacian act-
ing on b. This operation becomes well defined in general
coordinate systems through the expression

V'b= —VXVXb+V(V b) . (26)

In particular, the Laplacian acting on a vector field is not
the same as the Laplacian acting on each component, un-
less rectangular components are taken. Loosely stated,
the components "mix, " so that even the relatively simple
vector Laplace equation leads to a set of coupled PDE's.

In the present case, the vector Laplace equation is the
one suitable for b in the source-free region outside the su-
perconductor. This follows immediately from the vanish-
ing curl and divergence of b and Eq. (26). To avoid the
complication mentioned above, the usual method to solve
the vector Laplace equation is to introduce a suitable sca-
lar potential. If we take b,„,= —VP+bo, then b satisfies
the vector Laplace equation while the scalar potential P
satisfies the corresponding scalar equation. Assuming
that b takes the constant value bo at infinity, then the
boundary condition on P is that it vanish there. As a
specific example, for a right-circular cylinder in a field
perpendicular to its axis, the solution for P is appropri-
ately expressed in terms of cylindrical harmonics.

Now consider the solution of Eq. (10) within the super-
conductor for nonrectangular geometry. Direct solution
by taking the coupled components seems formidable, and
the question of suitable scalar potentials to reduce to sca-
lar PDE's is an open one. Recall how the vector London
equation [Eq. (10) without the vortex term] is solved. ~s

If V A=(1/A, ) A, then one possibility is
A =const V X (fBo), where the function f satisfies the
scalar equation V' f=(1/A, )f. Clearly, this prescription
must be extended in order to apply to Eq. (10) because of
the vector-valued vortex term there. Such an extension is
beyond the scope of the present discussion. In summary,
when large demagnetization effects are present, the
analytical solution of Eq. (10) is hindered by the coupling
of vector components due to the vortex response.

By using the well-developed techniques for solving the
vector London equation, we can present the complex

COMPLEX DIFFUSION COEFFICIENTS

In this section we briefly mention various diffusion
coefficients which arise in the dynamics of flux diffusion,
providing an opportunity to compare with some other
treatments. In particular, we stress that the various
diffusion coefficients and corresponding resistivities are in
general not simply additive. In our theory the complex
diffusion coefficient D, =p„/pa=(co/2)5„arises from
the vortex-response term. In particular, at high tempera-
ture, D„—+Df =pf/po, the flux-flow-diffusion coefficient,
where p&=80$o/rt is the flux-flow resistivity. At low
temperature we have D, ~(Df '+D ') ', where

Dp pp /po = —i cok~ is the diffusion coefficient associat-
ed with pinning and A, C =80/0/pote is the square of the
pinning (or Campbell ) penetration depth. The
coefficient D is imaginary, showing that it is associated
with the oscillatory part of the vortex motion. In gen-
eral, an imaginary diffusion coefficient may be interpreted
as saying the diffusion only takes place in imaginary time.
(Recall that the transformation t ~it links the time-
dependent Schrodinger equation to the diffusion or heat
equation. ) The other diffusion coefficients arising from
Eq. (10) are illustrated by the two-fluid model, wherein

D,tt =(DNF +D, ",where D, = icokis p—ure im, agi-
nary, coming from the Meissner response. Each of the
basic diffusion coefficients DN„, D, Df, and D, is direct-
ly related to the square of a characteristic length.

In the thermally assisted flux-flow (TAFF) theory, ' the
following diffusion equation in cylindrical geometry is
employed:

a , aB O aS
Br Br Br Br

{27)

where Do =p/po and p is the resistivity caused by TAFF.
Aside from some differences in the treatment of thermal
activation, Eq. (27) can be viewed as an approximation to
Eq. (10). Equation (27) can be rewritten in the form
B=D,&c) B/iver, where the effective diffusion constant is
D,ff =Dp+Do. Note that in this approximate theory the
diffusion constants add directly, in contrast to the behav-
ior in our theory. Such direct addition usually reflects an
approximate method, as in the addition of resistivities
or the use of an equivalent-circuit model. '

It is also possible to rewrite the complex ac penetration
depth obtained on the basis of the TAFF model in Ref.
12 in terms of characteristic lengths and to compare it in
detail with those derived here. However, this comparison
is omitted for the sake of brevity.

penetration depth k„ in the absence of vortices. It is sim-

ply A, =k —2i6NF, which is the dispersion relation of
the two-fluid model. Again, taking the example of a
cylinder in transverse field, the form of the solution
within the superconductor can be found explicitly in
terms of modified Bessel functions and continuity can be
enforced at the surface to provide the particular solution.
(The other fields and linear-response functions then fol-
low by standard means. )
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SUMMARY

Our self-consistent approach to vortex dynamics, in-
cluding the effect of nonlocal vortex interaction, has been
further clarified and unified by its restatement in terms of
an initial-boundary-value problem. We have derived and
solved a single vector partial differential equation [Eq.
(9)] describing the linear response of a type-II supercon-
ductor in the mixed state. The solution of this equation,
as presented here for several sample geometries, provides
the phenomenological dispersion relation for radiation
principally attenuating in the superconductor and accom-
panying complex penetration depths. Once the complex
penetration depths are known, the linear-response func-
tions describing dissipation and screening can be found.
An example is the rf surface impedance, which is deter-
mined by the phase velocity of radiation in the supercon-
ductor. The existence of more than one complex penetra-
tion depth in general has important physical implica-
tions, as discussed, for example, in Ref. 5 on the complex
rf magnetic permeability.

The emergence of a second complex, self-consistently
determined penetration depth was illustrated in this pa-
per with the solution of the partial differential equation
(9) governing the rf flux density b(x, t). This equation is a
vector-generalized diffusion London equation valid in the
linear-response regime. In mathematical terms the para-
bolic part of Eq. (9) or (A6) accounts for the diffusive na-
ture of both the normal-fluid response and vortex-creep
effects, while the elliptic part accounts for the finite-
penetration effect (or Meissner response) of the supercon-
ductor. Of course, these effects are linked as dictated by
the Maxwell and London equations for the electrodynam-
ics. The vortex equation of motion provides the neces-
sary ingredient to close the linearized equations. If the
displacement current term is retained in Eq. (9) or (A6),
these equations have an additional hyperbolic character
which may be suitable for the modeling of propagation
problems. The inclusion of all these features shows the
mathematical and physical richness of this equation. By
including the complex dynamic mobility for vortex
motion, Eq. (9) encompasses simultaneously the super-
conductor Meissner response, the vortex response, and
the response of the normal fluid. We expect our ap-
proach to find applications in many areas involving vor-
tex dynamics, including the modeling of vibrating reed
and oscillator ' experiments.

We compared our approach of determining self-
consistent complex penetration depths with other models,
including the theory of thermally assisted flux flow.
Aside from differences in the handling of thermal activa-
tion, our theory generalizes the TAFF and other ap-
proaches, including the self-consistent coupling of vortex
displacement and current density with nonlocal interac-
tion and a fuller accounting of the vector-valued vortex
response. We presented and discussed various complex
diffusion constants which arise in the description of the
coupled vortex-superconductor response. A typical com-
bination of diffusion constants is seen in the two-fluid
model, where they add by way of a harmonic sum. (The
diffusion constant D, intrinsic to the superconductor is

pure imaginary, being associated with the Meissner
response. )

We have presented the vector PDE's (9) and (A6) suit-
able for describing the response of isotropic superconduc-
tors. A more refined description may be expected to in-
volve tensor PDE's. Specifically, Eq. (2) for the super-
current density can be generalized in Ginzburg-Landau
theory with the introduction of an effective-mass tensor.
We expect that the vortex mobility JM„ in, e.g., Eqs. (5)
and (6), will need to be treated as a tensor. As an exam-
ple, at high temperature, the vortex mobility tensor can
be expected to go over to the inverse of the viscosity ten-
sor. The viscosity tensor in turn is related to the conduc-
tivity tensor (for the instance of a vortex oriented along a
principal axis see Ref. 21). Such a theory, which would
rely heavily on that for anisotropic superconductors, is
worthy of separate consideration.
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APPENDIX: GOVERNING PARTIAL DIFFERENTIAL
EQUATION FOR THE ELECTRIC FIELD

V X ( V X E ) +goo'NFE = poJ (A 1)

As usual, the overdot denotes time differentiation and
oNF=1/poDNF is the normal-fluid conductivity. From
Eqs. (2) and (7), we have

J, = —
( A+B0Xu),1

poA,
(A2)

where VX A —B—Bo=b, giving

1J, = — ( —E+V$+BOXv) .
poA,

(A3)

In Eq. (A3), P is a scalar potential. In linear response, as
we are considering, J, = —icoJ, and this equation be-
comes the generalization of the second London equation
in the presence of moving vortices. Using Eq. (5) for the
vortex velocity, we have

Here we show how a vector partial differential equa-
tion similar to Eq. (9) arises for the total electric field E.
Since the effects of vortex pinning, flux flow, and flux
creep are included in a unified manner by way of the dy-
namic mobility p„, this approach represents an improve-
ment over the treatment of, e.g., Ref. 24.

By taking the curl of Faraday's law V XE= —B, using
Ampere's law V X H =J and the two-fluid equation
J=J„+J„together with J„=O.NFE, we have
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(A4)
~ 1 PpCOJ= E—VP — 5„8oX(JXBo)

poA,

where the square of the complex effective skin depth due
to vortex motion is 5 „,=2B&P~, /poco. By using for the
current density

J= VxVx A
1

Po

and the relation for the vector potential
A= —(i /co)(E —VP), we can combine Eqs. (Al) and
(A4) to yield

VX(VXE)+ E= — E—VP+ —5„8oX[(VX(VXE))XBo]. .
NF

(A6)

Equation (A6) is the single vector PDE governing the behavior of the electric field E in linear response at frequencies
well below the gap frequency.
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