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Normal-state Hall-effect measurements on Yt Pr„Ba2Cu3Q7 z single crystals

Y. X. Jia, J. Z. Liu, A. Matsushita, * M. D. Lan, P. Klavins, and R. N. Shelton
Physics Department, University of California, Davis, California 95616-8677

(Received 20 May 1992)

The temperature dependence of the Hall effect was studied on single crystals of Y l „Pr„Ba2Cu307
with the magnetic field perpendicular to the ab plane and the current flowing in the ab plane. The anom-

aly in the Hall coefficient at around 120 K found in some of the 1:2:3compounds is not observed in Pr-

doped Y-Ba-Cu-0 crystals. We observed that an increase in Pr concentration reduces the mobile carrier
density and its strong temperature dependence. The reduction of the total conduction carriers can be at-

tributed to hole filling or hole localization. Our results suggest that it is more likely that hole filling is re-

sponsible for the suppression of T, in the system.

I. INTRODUCTION

Although intensive studies have been performed on the
system of Y, Pr Ba2Cu307 & during the last five

years, ' the answers to a number of questions regarding
the system remain unclear and open for discussion. Even
the basic issue of the fundamental mechanisms causing
the depression of T, as the Pr concentration increases
remains a subject for debate. The other questions in-
clude: (1) What is the formal valence of Pr in the sys-
tem?, (2) Why does the mobile hole density reduce as the
Pr doping increases?, (3) How could hole localization be
distinguished from hole filling?, and (4) If hole localiza-
tion causes the reduction of T, what is the physical
mechanism behind the localization? Since a proper un-
derstanding of the transport properties of the high-T, su-
perconductors is essential toward the understanding of
the superconductivity of these oxides, Hall-effect mea-
surements are of central importance in providing addi-
tional experimental evidence toward resolving some of
these questions. To date, the only Hall-effect measure-
ment performed on Y& Pr Ba2Cu307 & was done on
polycrystalline samples by Matusuda et al. Hall-effect
measurements on single crystals of the system remain un-
touched in spite of the importance of these experiments.
Single-crystal experiments lead more readily to the intrin-
sic transport properties of the system, particularly those
influenced by the pronounced anisotropy of these oxides
systems.

In this paper, we report a systematic study of the longi-
tudinal resistivity p, the Hall coefficient RH, and the
charge-carrier density nH in the single crystals of
Y, Pr Ba2Cu307

II. EXPERIMENTAL DETAILS

The single crystals of Y, Pr Ba2Cu307 investigated
in the study were produced in gold crucibles by a self-flux
method. For pure Y-Ba-Cu-0 crystals grown by other
researchers using a similar method, chemical analysis re-
vealed that approximately 10%%uo of the copper atoms in
the Cu-0 chains are replaced by gold. Similar results
could occur for our Pr-doped Y-Ba-Cu-0 samples. The

crystals were cleaved into bar shapes suitable for Hall-
effect measurements. Typical dimensions of the single
crystals are 1 X0.8 Xh mm, where the sample thickness
h changes from 0.04 to 0.8 mm depending on the Pr con-
centration. All single crystals were annealed in flowing

oxygen at about 400'C for a week just prior to any mea-
surements. Zero-field-cooled dc magnetization experi-
ments as a function of temperature have been performed
on these crystals before the transport measurements to
confirm the quality of the crystals. A five-probe contact
arrangement was used for the longitudinal-resistivity and
Hall-effect measurements. Electrical leads were attached
to the crystal face with silver epoxy, and then oxygen an-
nealed to 400'C for 1 h to reduce contact resistance. The
typical contact resistance after this procedure was on the
order of 1 Q. More experimental details can be found in
our previous paper.

All of the measurements were carried out in a commer-
cial superconducting quantum interference device magne-
tometer in magnetic fields up to 5.5 T. Voltage was mea-
sured using a Keithley nanovoltmeter (model 181). A
current of 5 mA, which corresponds to a current density
of about 10 A/cm was used throughout the experiment.
It was observed that current-voltage relations showed an
ohmic behavior at the current value for all of the samples
in the temperature region reported here. As shown in the
inset of Fig. 1, a potentiometer, which has much larger
resistance than the specimen resistance plus contact resis-
tances was used to yield zero or close to zero potential
difference between the probes 1 and 2 in the absence of a
magnetic field. At a fixed temperature, four measure-
ments of voltage V&2, with reversals of I and 8, are need-
ed to cancel out thermoelectric voltages that do not re-
verse sign with the current reversal and a small com-
ponent of contact misalignment voltage that was not pre-
cisely nulled by the potentiometer. All data were ac-
quired using magnetic-field sweeps at fixed temperature.
The temperature dependence of the longitudinal resistivi-
ty was measured in a separate run.

III. RESULTS AND DISCUSSION

The Hall resistance, which is equal to the Hall voltage
divided by the current passing through the sample, is a
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FIG. 1. Magnetic-field dependence of ththe Hall resistance at
various represen a ivet t' temperatures for Yo 8Pro &Ba2Cu307 —$.
The inset shows the configuration for the measurements.
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second-order term of the Taylor expansion

r,.(i=h, e)=a/T+b, /T.

This model suggests that, as the doping increases, the
hole contribution term could become smaller than the
electron contribution term, and, therefore, cause a sign
change of RH. This predication is contradicted by the
positive R~ for all Pr-doped Y-Ba-Cu-O. The necessity
of having equal number of electrons and holes in the sys-
tem, and nearly complete cancellation between electron
and hole contributions to RH in pure and Pr-doped Y-
Ba-Cu-0 and other high-T, superconductors, plus the
fact that RH is pressure independent raises serious doubt
about validity of the model. A temperature-dependent
Hall coefficient could also arise from an anomalous Hall
component that dominates the conventional Lorentz
force term. Fiory and Grader' explained this anomalous
Hall component in the framework of conventional mag-
netic skew scattering. According to this model, the
anomalous Hall coefficient R, is linearly proportional to
the magnetic susceptibility y. The strong temperature
dependence of R, leads to a strong temperature depen-
dence of y. The fact that the Hall coefficient RH has 1/T
dependence, while y is almost temperature independent
in Y-Ba-Cu-0 is inconsistent with this predication. In
Pr-doped Y-Ba-Cu-O, the magnetic susceptibility g fol-
lows a Curie-Weiss law, while the temperature depen-
dence of RH becomes weaker than 1/T as the Pr concen-
tration increases, also contradicting the R, ~y predic-
tion. Although Matsuda et al. attribute the anomalous
Hall coefficient to magnetic skew scattering in their very
recent paper, ' their arguments that skew scattering plays
a dominant role in o„are not convincing. Very recent-
ly, Anderson' proposed a model to account for the 1/T
dependence of RH by distinguishing the transport relaxa-
tion time ~„ from the cyclotron relaxation time vH. Al-
though this model predicates the temperature depen-
dence of o„„~1/T, o„~1/T, and cotS=A+BT in

agreement with experiments, it does not solve the prob-
lems associated with a temperature-dependent charge-
carrier density or how one could derive the charge-
carrier density from the measurements of RH and p
Obviously much more work has to be done in order to re-
trieve a meaningful charge-carrier density from the Hall-
effect measurements.

Since the crystal structure does not change with Pr
substitution, and at a fixed temperature 1/RH changes
monotonically with the Pr concentration, the value of
V/RHe at a fixed temperature can be used as a measure
of the charge-carrier density. Shown in Fig. 3 is the tem-
perature dependence of the carrier density derived from
nH= V/RHe. Based on this relationship, we found that
the carrier density has a linear dependence on tempera-
ture and the slopes of nH(T) remain essentially constant
for samples with x &0.4. When x )0.4, nH(T) becomes
less temperature dependent as the Pr concentration in-
creases. The variability of the locations of the leads in
the samples, the finite size of the contacts compared with
the size of the samples, and nonuniformity of the sample
thickness introduce an uncertainty of less than 50%%uo in
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Since coefficient 0.92 is very close to 1, one tempting in-
terpretation of Eq. (4) is that the Pr ion stays in a 4+ or
very close to a 4+ valence state, differing from 3+
valence states of most of other rare earth in

RBa2Cu307 &. The extra electrons from Pr fill holes in
the Cu02 planes, hence reducing the mobile hole concen-
tration and suppressing the superconductivity. Neverthe-
less this experiment alone cannot exclude hole localiza-
tion resulting in the same reduction of conduction carrier
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density [Eq. (4)]. Although absolute values of nH are
different from the assumption we made in a previous pa-
per, when our current data are incorporated into the re-
lationship between the normalized upper critical-field
slope and the normalized mobile hole density

[dH, &/dT] [dH, z/dT], o=(n /n&)

one derives the same Pr concentration dependence of the
normalized upper critical field as obtained in Ref. 7. This
study shows that the substitution of Pr for Y in the sys-
tem results in a decrease in the number of mobile charge
carriers. The reduction of mobile holes could come ei-
ther from hole filling or hole localization. If hole locali-
zation is the mechanism responsible for the reduction of
mobile carrier number, one might expect the following:
(I) Semiconducting behavior shows up in superconduc-
tive Y, Pr, Ba2Cu307 &

in the low-temperature region
(right above T, ); however, for single crystals with x &0.5

we observed a metalliclike behavior down to their T,
[Fig. 2(a)]. (2) Since variable-range hopping is a sign of lo-
calization, one might expect to observe a stronger tem-
perature dependence of nH in the variable-range hopping
region; however, we observed a weak temperature depen-
dence of nH in the low-temperature region when x )0.4
(Fig. 3). (3) Negative magnetoresistance in the low Pr-
doping region is another sign of localization; however,
our normal-state magnetoresistance measurements at low
temperatures for the x=0.38, 0.44, and 0.54 samples
show a positive magnetoresistance. Although Fisher and
co-workers' claimed variable-range hopping might be
the dominant conduction mechanism in fully oxygenated
PrBa2Cu307 &

in the low-temperature region, it does not
mean localization plays the dominant role in the suppres-

sion of superconductivity of the system. In short, even if
localization exists in the system, it may only play a weak
role in the reduction of T, in Y, Pr BazCu307 Q

OIle
of the experiments that could possibly resolve the valence
of Pr is inelastic neutron scattering. These experiments
were carried out by Soderholm on a series of
Y, ,Pr Ba2Cu307 & polycrystalline samples with
x =0.0, 0.1, 0.4, and 1.0, ' but the peaks were broad and
weak, and difficult to interpret. It seems necessary to
perform this experiment on high-quality large-sized sin-
gle crystals in order to resolve the valence of the Pr ion in
the system.

IV. CONCLUSION

Hall-effect measurements in Pr-doped Y-Ba-Cu-0 have
revealed that the increase in Pr concentration increases
the magnitude of the Hall coefficient at a fixed tempera-
ture and reduces its strong temperature dependence, re-
sulting in the reduction of the total number of conduction
holes. The transport anomaly found in some of the 123
compounds" is not observed in Y, ,Pr„Ba2Cu307
Therefore, the anomaly is not a universal behavior in 123
compounds. Further experimental work is required to
determine precisely the valence of the Pr ion in the

Y, „Pr„Ba2Cu307 g system.
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