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Minor hysteresis loops and harmonic generation calculations in a generalized critical-state model
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We present analytic calculations of minor hysteresis loops obtained when a sample is subjected to a
time-varying field B(t) =Bdc+B„coscot. We enumerate eight classes of minor hysteresis loops, and cal-

culations are done within the critical-state model but for an arbitrary field dependence of the critical
current density J,(B). The sample shapes considered are the zero-demagnetization factor cases of a cir-

cular cylinder, and of a slab, in a longitudinal field. Harmonic components of the magnetization (M„)
are numerically obtained for various forms of J,(B). Our results bring out the importance of the sample

shape used in the calculation and also point out the features in M„vs Bd, that clearly reflect the details

of the field dependence in J,(B).

I. INTRODUCTION

The critical-state model has been extensively used to
calculate the magnetization hysteresis curves of high-T,
superconductors (HTSC). While Bean's initial calcula-
tion assumed that the critical current density (J, ) is in-

dependent of field, many special forms of J,(8) have been
used in the last few years to explain the magnetization
data on the HTSC. Recent work, measuring the har-
monic generation in HTSC pellets subjected to a time-
varying field 8 (t) =Bd, +B„coscot, has focused attention
on minor hysteresis loops. While the minor hysteresis
loop can also be measured with any magnetization mea-
surernent setup, the harmonics of the magnetization are
more commonly measured. As was emphasized by Ji
et al. , the finite magnitude of even harmonics for
Bd,%0 is a clear qualitative signature that J,(8) has a
field dependence. There has thus been a reasonable ex-
pectation that the dependence of the harmonic rnagni-
tude (M„) on Be, and B„could provide a detailed check
on the form of J,(B). A prerequisite to calculating M„ is
the calculation of the minor hysteresis loop, and we shall
do this here for arbitrary J,(8). The complex harmonics,
and thus their magnitude M„, are then obtained easily by
a numerical Fourier transform.

LeBlanc, Fillion, and Lorrain had calculated minor
hysteresis loops for various specific forms of J,(B), and
had used these to calculate hysteresis losses in the pres-
ence of dc fields. They had considered the sample
geometries of a slab and of a circular cylinder in longitu-
dinal fields. Subsequent to the measurements of harmon-
ic generation in the HTSC, calculations of the minor hys-
teresis loops and harmonic generation have been per-
formed for the sample geometry of a slab in a longitudi-
nal field with J,(B) assumed to vary as [a/~8~ ], ' ' or as
[J,(0)/ (i+IBI/Bo)], ' «as [J,(0)/(l+IBI/80)'] '
Recently, Wahid and Jaggi' have calculated the minor
hysteresis loops for the last form of J,(8) but for the

sample geometry of a circular cylinder in a longitudinal
field. It is to be noted that a comparison between calcula-
tions of harmonic generation for the two sample
geometries will bring out geometrical artifacts, especially
since neither shape is a realistic shape for typical HTSC
samples. Further, calculations have not been performed
for some commonly used forms of J,(B) such as the ex-
ponential form" [J,(0) exp( —~B~/Bo], or the power-law
form' [a/~B~e]. Not only does this leave gaps for piece-
meal calculations using a particular form of J,(B), it also
requires detailed calculations before a new form of J,(B)
can be tested.

Recently Bhagwat and Chaddah' solved analytically
the magnetization hysteresis curve for a cylinder of ellip-
tic cross section in a longitudinal field. The formalism of
their analytic calculation was developed for an arbitrary
form of J,(B). We shall follow their scheme and obtain
analytic results for the minor hysteresis loops for arbi-
trary J,(8). This formalism requires defining a canonical
field variable' '

h= d8 p, 8

and the integral can be analytically evaluated for all
forms of J,(B) known to the present authors. We must
mention here that the present calculation, like those cited
earlier, ' is for a homogeneous hard superconductor
with 8, &

=0, and its relevance to harmonic generation in
sintered HTSC pellets will be justified only in Sec. V.

In Sec. II, we present our formalism, and in Sec. III the
details of calculation of minor hysteresis loops. Both slab
and circular cylinder geometries are considered. In Sec.
IV, we present the calculation of harmonics. The effect
of sample geometry and the change of features in M„vs
Bd, as one changes the form of J,(B) are brought out. In
Sec. V, we discuss the relevance of our calculations to
harmonic generation measurements in HTSC pellets.
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II. FORMALISM OF THE CALCULATION

A. The Beld profile

The first step towards calculating the magnetization is
to calculate the flux profile 8 (r) within the sample. Mag-
netization is then obtained as po(M) = 8,—
+(1/V) JB(r)dr, where 8, (=p~, ) is the externally

applied field, (M ) is the spatial average of M(r) over the
sample volume, and the integral is over the sample
volume. The profile 8 (r) depends on B„on the magnet-
ic history before 8, was applied, and also on the form of
J,(8). The method of calculating the flux profile (for iso-
thermal changes in 8, ) within the critical-state model is
well documented in recent literature (see, e.g. , Ref. 13,
and references therein). As noted by Wahid and Jaggi, '

the algebraic manipulations required for calculating the
minor hysteresis loops become quite clumsy. In the for-
malisrn presented below we use the canonical field vari-
able h (8)= Id~8~/poJ, ( ~B~ ) and the "clumsiness of the
algebra"' is reduced to a minirnurn because we consider
the dependence of (M ) on 8, and on magnetic history in
one step, and the relation between h and 8 [which in-
volves J,(B)j is treated separately. Further, before con-
sidering any new form of J,(8), only the relation between
h and B has to be worked out afresh. We note here that h

depends only on ~B~ and decreases to h (8 =0)=—ho as 8
decreases to zero. As 8 becomes negative and decreases
further, h again starts increasing above ho. We also note
that h has the dimensions of length.

We consider a circular cylinder of radius R subjected
to a large negative field, which is then raised isothermally

Bg

Bdc

FIG. 1. (a) A schematic showing minor hys-
teresis loops for Bd, & B„.The sample is field

cooled in Bd„and then the field is raised to
Bd, +B„.The minor loops are obtained when
the field is now lowered to Bd, —B„, and
raised back to Bd, +B„.The thick curves are
the envelope hysteresis curves corresponding
to Bd, =0 and B„=~. Three classes of minor
hysteresis loops shown differ qualitatively in

their contact and overlap with the envelope
curves. (b) Same as (a) except that Bd, (B„.
Here five classes of minor hysteresis loops are
obtained. (c) Minor loop of class 1 of (a) is
shown for different sample histories. See text
for details.
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Bg
FIG. 1. (Continued).

to some positive 8, . B(r) then decreases monotonically
from r =R to 0, and is dictated by dB(r)/dr
=pg, [8 (r)]. If 8(r) does not become negative for any
r, then h (r) also decreases inwards monotonically as dic-
tated by dh(r)/dr =1, with the boundary conditions
h (R)=h (8, ) and h (0)=h (8, )

—R. [If, however,
h (8, ) & hii+R, then 8(r) changes sign at'
rii=R —h(B, )+hei and dh(r)/dr = —1 for r &rs.] If
the applied field is now lowered from 8, to 8, 8 (r) in-

creases inwards for r ) r, satisfying 2(R r, )=h (8, )—
—h(B ) and decreases inwards for r &ri When 8 . is
lowered below Bi such that h(Bi)=h(8, )

—2R, 8(r)
increases monotonically from r =R to r =0. At that
stage we have dB(r)/dr = —pg, [8(r)] and
dh (r)/dr = —l. [If, however, h (8, ) & ha+2R, then
B(r) will become monotonic only for 8 lower than a
negative field Bi satisfying h(Bi)+h(8, )

—2ho&2R. ]
The evolution of B(r) and h(r) as the applied field is
varied is discussed in more detail in Ref. 13.

B. Classifying minor loops

When the applied field is cycled between B&,+B„and
B~, 8„(we assume B—~, )0 without any loss of generali-
ty), the minor hysteresis loop falls into one of eight possi-
ble classes. To illustrate these experimentally distin-
guishable classes, we show in Fig. 1 schematic hysteresis
loops with the assumption that J,(8) decreases as ~B ~

in-
creases. The thick envelope curves are the hysteresis
curves obtained when the applied field is cycled between
B,„with B,„~~. The magnetization lies on this

envelope curve only when 8(r) varies monotonically
from r =0 to R. The field increasing and decreasing
cases have positive and negative dB /dr, respectively.

Out of these eight classes, three are obtained when

Bs, )B„and these are shown in Fig. 1(a). We assuine
that the sample was initially prepared by Geld cooling
(where M=0 since H„=O) in Bs, and the field is iso-

thermally raised to Bz,+B„,and then cycled between

B~,+B„and B&,—B„. For fixed B~, the minor loop
changes from form 1 to 3 as B„is raised. In form 1 the
loop does not touch either envelope curve, and such a
loop is observed when h(B&, +8„)—h(8&, ) &R. In
form 2 the minor loop has a contact point with only one
(in this case the field-increasing) envelope curve, but does
not touch the field-decreasing envelope curve. This loop
is seen when h (8&,+8„)—h (8~, ) )R, but
h (Bz,+8„)—h (8&, —8„)& 2R. In form 3 the minor
loop has a finite overlap with both envelope curves, and
this is seen when h(B&, +8„) h(B~, B„))—2R. It—is

easy to see that a loop of form 1 will change successively
to forms 2 and 3 if B&, is raised with B„held fixed.

If B~, &B„then the minor hysteresis loop can belong
to one of the five classes indicated in Fig. 1(b). Form 1,
which does not touch either envelope hysteresis curve, is
obtained when h (Bz,+8„)—h (Bz, ) & R. Form 2,
which touches only one (in this case the field-increasing)
envelope, is obtained when h(B~, +8„)—h(8~, )&R,
but h (Bz,+8„)+h (Bz, 8„) 2hz &2R.—Fo—rms 3, 4,
and 5 are obtained when h (8&,+8„)
+h(8~, 8„)—2h~i)2R, —and have finite overlap with
both envelope curves. In form 3 the overlap occurs only
after the minor loop crosses B,=0 in either direction,
and this is seen when h (Bz,+8„)—hei & 2R. For form 4
we have h (Bz,+8„)—hei )2R, but h (Bz, 8„)—
—h~ &2R. In this case the minor loop merges with the
field-decreasing envelope curve before crossing B,=O.
Form 5 is obtained when h (B~,—8„)—hei &2R, and the
minor loop merges with either envelope curve before
crossing B,=0. This completes the enumeration of the
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FIG. 2. %e show schematic flux profiles for
B&,)8„, and (a), (b), and (c) correspond to

Bdc minor loops 1, 2, and 3, of Fig. 1{a). The solid
lines give the flux profiles at the two limiting

Brh(Bd, +B,) 2R] values of applied field. The dashed line in (c)
indicates 8 (r) when (M{8,) ) starts overlap-

ping with the envelope curve, and the arrow
— ( Bdc —Bac) indicates a field-increasing or -decreasing case.

eight classes of minor hysteresis loops.
We wish to point out here that the initial state in

which the sample is prepared affects the minor hysteresis
loop only if the loop is of form 1 or 2 [for both signs of
(Bd, —8„)j. It is easy to show that even in these cases,
changing the initial state only displaces the loop but does
not affect its shape. For form 1 and Bd, )B„,we show
this schematically in Fig. 1(c). We consider samples ini-
tially prepared in three different states: (i) subject to Bd,
in the field-cooled (FC) state and then brought iso-
thermally to Bd, +8„; (ii) to lie on the field-increasing
envelope curve at Bd, +8„;and (iii) to lie on the field-
decreasing envelope curve at B&,—B„.Since the shapes
of the three loops are identical, so are the harmonics. In
view of the simplicity of analyzing HTSC pellets' when

Bd, is applied before cooling, we shall calculate minor
loops only for the FC case.

III. CALCULATION OF MAGNETIZATION

po(M(B, ) ) = 8, +—( I/V) 18 (r)dr, (2)

and the fiux profile 8 (r) depends on B„on Bd, and 8„,
and on whether the field was being raised or lowered to
reach 8, . The dependence of B(r) on J,(8) will become
implicit and will get decoupled when we change the field
parameter from 8 to h (8). In Figs. 2 and 3 we show the
schematic field profiles for B,=B„,+B„and
B,=Bz,—B„for the eight classes of minor loops indi-

For obtaining the minor hysteresis loops we have to
calculate the magnetization (M(t)) for values of 8„
given by B,(t) =Bd„.+B„cosset. For a sample of volume
V, the magnetization is given by

(Bdc Boc) !(Bdc+Bac) (Bdc+ BM)

Bd

(Bdc+Boc)
8[h(Bdc-Pc c)

+2R]

(Bdc Bc(c)

t-Bdc
Rr

—Nc
R

S(h(adc BGc)
+2R]

(Bd;B„)

!p
-( Bdc+ Bac) g c
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!
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FIG. 3. Same as Fig. 2 except that Bz, (B„and (a)—(e) correspond to forms 1 —5 of Fig. 1{b). In {b) we also show B(r) for an in-

termediate applied field for the field-increasing case. h (B) changes its slope at the four points indicated.
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cated in Fig. 1. For the four classes with finite overlap
with the envelope curves, we also indicate the flux
profiles for the applied field values where the overlap be-
gins. For 8, values where (M(B, )) is not on an en-
velope curve, 8 (r) is not a monotonic function of r F.ur-
ther, since h (8) is a function of ~B~, dh/dr also changes
sign where B(r) changes sign. In Fig. 3(b) we indicate a
B(r) profile for which dh/dr has the largest number of
changes in sign for any field-cooled sample subjected to

Bd, +B„coscot .h (r) is increasing between 0 and a, de-
creasing to hp between a and b, increasing above hp be-
tween b and c, decreasing to hp between c and d, and in-

creasing above h p between d and R.
Since we wish to evaluate (M ) in terms of h, we note

that both 8 and h are constant on a constant r surface.
To change the integration variable from r to h in Eq. (2),
we split the integral into n regions such that h varies
monotonically in each region:

1
' r) r2 r =R

po(M ) = 8, +——f 8 (r)dr+ f 8 (r)dr+ + f 8 (r)dr
ro =p r) r

m h(r, . )

8, +——g f B(h)g(h)dh,
i —1

(3)

where h (r; ) =h [8 (r; ) ], and the largest value of m neces-
sary is 5 as depicted in Fig. 3(b). We note that for a cir-
cular cylinder geometry g (h) contains a term linear in h

and a constant, while for a slab geometry g (h ) is indepen-
dent of h. The integrals in Eq. (3) can then be written' in
terms of

f, (u, v)= f B(h)dh,
(4)

fz(u, v)= f B(h)hdh .

We thus find that [po(M(B, ))+8, ] is written entirely
in terms of f, and f2. The only algebra left is to specify
h (r; )=h [B(r,)]. This is done, following elementary but
tedious algebra, in terms of the four quantities h (Bd, ),
h (Bd, +8„), h (Bd, —8„), and h (8, ) for each of the
eight types of minor hysteresis loops. (M(t)) is then
known analytically for both circular cylinder and slab
geometries for arbitrary Bd, and 8„. The analytic ex-
pression for (po(M(B, ))+8, ) in terms of f„ f2,
h(Bd, ), h(Bd, +8„), h(Bd, 8„), and —h(B, ) are not
listed here to save space. The expressions for both these
geometries are, however, available from the authors.

IV. RESULTS ON HARMONIC GENERATION

Once the minor hysteresis loops are known analytically
it is a simple task to evaluate these at a large number of
temporally equispaced applied fields B,(t) =Bd,
+B„cosset, and use a standard fast Fourier transform
(FFT) routine to obtain the harmonics numerically. Both
the real (M„' ) and imaginary (M„")parts of the harmonics
are obtained. Since the magnitude M„=+M„' +M„" is
more commonly (and easily) measured, we shall concen-
trate on how M„reflects the sample geometry and the de-
tails of J,(B) The calcula. tion of M„presented here shall
be in units of (8 /po), and Bd, and B„shall be in units
of 8 *=poJ, (0)R.

A. Sample-geometry erat'ects

In zero dc field, M3 is the first signature of nonlinearity
and it has been studied in some detail. It has been ar-

gued that M3-8„ for J, independent of 8, and that a
deviation from this implies that the field dependence of J,
is significant.

In Fig. 4(a), we plot M3 vs B„with Bean's' field in-

dependent J, and Bd, =0. We note that the belief ' that
M3 -8„ for 8„&poJ, R is valid only for the slab
geometry. The dependence is slower for the cylinder
geometry. In Fig. 4(b), we plot the same function but for
an exponential J,(B). In this case M3 vs B„shows a
peak, and we note that even the position of the peak de-
pends on the sample geometry used. In Fig. 4(c) we plot
M~ vs Bd„ for B„held fixed, for an exponential J, (B).
We observe a clear difference between the results for the
two geometries. The results presented in Fig. 4 bring out
the importance of using an appropriate sample geometry
in the calculation.

Using the fact that a sharp field dependence in J,(8)
gives a peak in the hysteresis curve close to 8, =0, Ji
et al. have argued that M5 is expected to show two
minima between Bd, =0 and Bd, =8„.Our calculations
predict that the extent of the minima, as measured by the
peak-to-valley ratio, rises as 8„ is raised above 8*.
These predictions will be compared with experimental
observations in a separate paper. ' We shall now discuss
calculations for 8„))8 * when M„vs Bd, shows strong
minima.

B. Manifestation of details of J,(B)

Amongst the various forms of J,(B) being used in
literature we consider the exponential form
J,(8)/J, (0)=exp( —~8(/80 ), and also the two-
parameter form J,(8)/J, (0)=(1+~8~/Bo) ~. As noted
by Xu et al. ,

' the latter goes over into the exponential
form with Bo =Bo/p as one takes the limit Bo~ ~ with

80/P held fixed. We accordingly present in Fig. 5 calcu-
lations of M5 and M6 for a cylinder for the two-
parameter form of J,(B) with (i) BO=2 and P= 1; (ii)

80 =3 and P= l. 5; (iii) Bo= g and P=4. We also present
results for the exponential form of J,(B) with 80=2.
While the detailed shape of M„vs Bd, does depend on
the form of J, (B) used, the strongest effect is seen in the
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peak-to-valley ratio of the maximum near Bd, =0.7B„.
Since the field dependence increases for fixed Bo/P as Bo
is raised, we make the general statement that the sharp-
ness of the structure in M„vs Bd„close to Bd, =8„,
correlates directly with the sharpness of the field depen-
dence of J,(8). This inference provides a guideline for
harmonic measurements aimed at checking J,(B).

U. RELEVANCE TO MEASUREMENTS
ON HTSC PELLETS

As mentioned in the Introduction, the calculation as-
surnes that the hard superconductor is homogeneous and

that its H, &=0. For sintered HTSC pellets in low ac
fields, the hysteresis and harmonic generation are from
the intergrain region, and a vanishing H„ is a reasonable

approximation. The pellets are, however, highly inhomo-
geneous and the existence of contributions from both in-
tergrain and intragrain regions to magnetization are well
documented. ' It has been brought out recently' that
the dominant effect of the grains is to modify the effective
field in the intergrain region. Since the magnetization of
the grain depends on the history of the application of
Bd, , so does the effective intergrain field and one sees a
history effect in the harmonic generation from the inter-
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FIG. &. (a) %'e plot M3 vs B„for Bd, =0 and field independent J, . M3 rises slower than 8„for the cylindrical ease. %'e assume

B*=p+(0)R =1 in all calculations of harmonics. B and @0M„are in units of B . (b) M3 vs B„with J(B)=j(0)exp( —lBl l2).
(c) W'e plot M& vs Bd, for the slab and cylinder geometries.
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FIG. 5. (a) We plot M5 vs Bd,
for two forms of J,(B)
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grain region. This is contrary to what is expected from a
homogeneous material where, as argued in Sec. II B, the
harmonics are history independent. Since fine-filament
NbTi/Cu wire shows evidence of being a two-component
system in its hysteresis curves, ' it is also expected to
show history effects in harmonic generation. It was ar-
gued in Ref. 15 that such complicating effects of a two-
component system would be minimized if all measure-
ments are made with Bd, applied in the field-cooled
mode. It is with such data on HTSC pellets that our cal-
culations should be compared.

VI. CONCLUSION
In summary we have provided enumeration of experi-

mentally distinguishable classes of minor hysteresis loops.
Although the calculations are limited to shapes with zero
demagnetization factor, the formalism is capable of han-
dling an arbitrary field dependence of J,(B). A realistic
calculation encompassing samples with nonzero demag-
netization factors would be extremely tedious and we
conjecture that the classification of minor hysteresis loops
presented is independent of the sample demagnetization
factor.

C. P. Bean, Rev. Mod. Phys. 36, 31 (1964).
L. Ji, H. Sohn, G. C. Spalding, C. J. Lobb, and M. Tinkham,

Phys. Rev. 8 40, 10936 (1989).
K. H. Muller, J. C. Macfarlane, and R. Driver, Physica C 158,

366 (1989).
4R. Novarro, F. Lera, C. Rillo, and J. Bartolome, Physica C

167, 549 (1990).
5Q. H. Lam, Y. Kim, and C. D. Jeffries, Phys. Rev. B 42, 4846

(1990).
S. F. Wahid and N. K. Jaggi, Physica C 170, 395 (1990).

7T. Ishida and R. B.Goldfarb, Phys. Rev. B 41, 8937 (1990).
A minor hysteresis loop is distinguished from the more com-

monly calculated magnetization hysteresis curve in that the
latter has Bd, =0.

M. A. R. LeBlanc, G. Fillion, and J. P. Lorrain, J. Appl. Phys.
59, 3208 (1986).



11 744 CHADDAH, ROY, KUMAR, AND BHAG%AT

S. F. %ahid and N. K. Jaggi, Physica C 184, 88 (1991}.
G. Ravi Kurnar and P. Chaddah, Phys. Rev. B 39, 4704
{1989).

' Y. Yeshurun, M. W. McElfresh, A. P. Malozemoff, J.
Hagerhorst-Trewhella, J. Mannhart, F. Holtzberg, and G. V.
Chandrashekhar, Phys. Rev. B 42, 6322 {1990).

' K. V. Bhagwat and P. Chaddah, Phys. Rev. B 44, 6950 (1991).
' Such a generalized field variable was also earlier used to calcu-

late ac losses. See J. R. Clem, J. Appl. Phys. 50, 3518 (1979).
' Shailendra Kumar, S. B. Roy, P. Chaddah, Ram Prasad, and

N. C. Soni, Physica C 191,450 (1992).

'~Shailendra Kumar, S. B. Roy, P. Chaddah, Ram Prasad, and
N. C. Soni (unpublished).

7M. Xu, D. Shi, and R. F. Fox, Phys. Rev. B 42, 10773 (1990}.
'SR. B. Goldfarb, A. F. Clark, A. I. Braginski, and A. J. Panson,

Cryogenics 27, 475 (1987).
' P. Chaddah, G. Ravikumar, A. K. Grover, C. Radhakrish-

namurty, and G. V. Subba Rao, Cryogenics 29, 907 (1989).
S. Senoussi, M. Oussena, M. Ribault, and G. Collin, Phys.
Rev. B 36, 4003 (1987).

'P. Chaddah, Pramana 36, 353 (1991).


