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Velocity matching and Poiseuille pipe Sow of superfluid helium
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We show that in laminar pipe flow of helium II with the average normal-fluid and superfluid velocities
in the same direction, a single superfluid vortex filament can form a series of large vortex rings oriented
with the flow. These rings interact to form an array of vortex rings that gives the superfluid a parabolic
velocity profile matching the normal-fluid velocity profile. We conclude with some generalizations of
this behavior to other flow geometries.

I. INTRODUCTION

Helium below the A, transition (2.17 K at vapor pres-
sure), called helium II, is most successfully described as a
superposition of two fluids: a normal fluid with a small
but nonzero viscosity g and a superfluid with zero viscos-
ity. Each fiuid has its own density (p„and p, ) and its
own velocity field (V„and V, ). At low velocities the two
Quids are independent. At high velocities the two Quids
appear to be coupled together, with the coupling begin-
ning sharply at some critical values of V„and V, .' Ex-
periments on flows with V„and V, parallel have given re-
sults that indicate that the coupled state may behave as a
single Navier-Stokes fluid with density p =p„+p, and the
viscosity of the normal fluid. ' One interpretation of
these results is that the superfluid velocity field is
somehow driven to match the normal-fluid velocity field.
The coupling between the two fluids is universally be-
lieved to be due to the presence of quantized vortex fila-
ments in the superfluid, which scatter the excitations that
make up the normal fluid. The behavior of superfluid
vortex filaments in counterflow (where V„and V, are an-

tiparallel) and in pure superflow (V„=O) has been exten-
sively investigated, but little is known about the
coflowing case (V„and V, parallel). In recent years there
has been renewed interest in employing coflo wing
superfluid helium to study classical Quid turbulence. In
this paper we examine by numerical simulation a simple
coflowing case: that of pipe Qow with a laminar normal-
fluid velocity profile.

II. SIMULATION METHODS

The equation of motion for a superfluid vortex fila-
ment is

ds =V, +V„+aS'X(V„—V, —V, )
dt

—a'S'x [S'x(V„—V, —V„)],
where S is the position of a point on the superfluid vortex
filament, V, is a potential flow imposed from some out-
side source, V„ is the velocity field due to all superfluid
vortices in the fluid, and S'=dS/dg, where g is the arc
length. a and a' are temperature-dependent coeScients

of the mutual friction. Since a is significantly smaller
than a in the temperature range of interest, we drop the
u' term for simplicity. The vortex velocity field V, is

defined by the Biot-Savart law

(g—S)xdg
4~ ~g

—S3

where ~ is the quantized circulation of the superfluid vor-
tex filament, This integral is taken over a11 superfluid
vortex filaments in the fluid.

We consider only the evolution of the superfluid vortex
filaments. The normal-Quid velocity field is treated as an
input to the simulations and, in the work reported in this
paper, is modeled as an unchanging velocity field. The
response of the normal Quid to the superfluid vortex fila-
ments is an interesting subject that should be pursued in
future studies.

In our simulations each superfluid vortex filament is
represented numerically by a series of nodes connecting
straight vortex segments. The singularity in the Biot-
Savart law is handled by a method due to Schwarz. The
equation of motion [Eq. (1)] is solved by the Runge-
Kutta-Fehlberg method. In order to allow for growth
and shrinkage of the vortex filament during the simula-
tion, mesh nodes are added or removed at each time step
so that the ratio of the local mesh size to the local radius
of curvature of the filament is kept approximately con-
stant. A typical value of this ratio is 2n. /64 over a range
of radius of curvature from R to 0.01R, where R is the
length scale of the computational volume.

When two vortex filaments cross, we assume that a
reconnection occurs, changing the topology of the fila-
ments. In this simulation a reconnection is made when-
ever the distance between a node n; and a nonadjacent
node nk is less than the distance between the node n, and
its neighbor n, +, along the filament in the direction of
the filament vorticity. The physical process behind the
reconnection of superfluid vortex filaments is unknown,
and this reconnection assumption is a possible difficulty
with all superfluid-vortex-filament simulations. It is a
surprising conclusion of this simulation that, in striking
contrast to the counterflow simulations where vortex
reconnection is necessary for stability of the vortex tan-
gle, reconnection plays a minor role, if any, in this lami-
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nar coflow. We allow reconnections to occur, but they

rarely happen, and the overall behavior of the system is

unaffected by their presence or absence.
We initiate each simulation with a small length of vor-

tex filament present in the superfluid. Typically, this ini-
tial vorticity takes the form of a small vortex loop at-
tached to a boundary. We are not dealing with the prob-
lem of the intrinsic nucleation of vorticity (i.e., the spon-
taneous generation of vortex filaments in a vortex-free
flow). We are instead dealing with the much simpler
problem of extrinsic nucleation, which is defined as the
growth of a large length of vortex filament from an exist-
ing small amount of vortex filament. This initial vorticity
has been detected experimentally' and is most likely to
be present as vortex filaments pinned to roughness on the
boundaries. This pinning is not modeled in our simula-
tion since the flow velocities used are greater than the
small velocity needed for depinning.

III. VELOCITY MATCHING

A normal-Quid velocity field with a nonzero gradient
allows a more interesting behavior of individual
superfluid vortex filaments than does a uniform velocity
field. Specifically, if there is a region of the fluid flow
where V„=V, initially and there are also regions of the
flow where V„AV„ then superfluid vortex growth by
mutual friction may occur in the latter region and fila-
ments with circulation parallel to the normal-fiuid circu-
lation of the region of equal velocity will be transported
toward that region by the mutual friction force. In
response to the mutual friction force, these vortex fila-
ments will accumulate near the surface of the equal-
velocity region with such a density as to match the local
V„ field with the combined superfluid velocity fields of
the quantized vortex filaments, thus increasing the size of
the region where the velocities are matched. This behav-
ior is not dependent on the exact form of the mutual fric-
tion force. It requires only that the mutual friction force
be a function of the local relative velocity V„—V, with a
positive component in the V„—V, direction.

A familiar example of this velocity matching is the
classic rotating-bucket experiment. " In this situation the
centerline of the bucket acts as the accumulation point
where V„=V, . Superfluid vortices are presumably
formed at the outer boundary of the bucket and move in
toward the centerline. ' As the superfluid vortex fila-
ments accumulate with the appropriate density, the
sup erflui and normal-field velocity fields become
matched and the final flow throughout the bucket is that
of a classical fluid over distances greater than the average
vortex filament spacing.

Another example of this behavior is laminar pipe flow.
At sufficiently low Reynolds numbers and in the absence
of quantized vortices, the flow of helium II through a
pipe should be described by a superfluid flow with a flat
velocity profile V,o that slips at the walls and by a
normal-fluid flow with a parabolic velocity profile
(Poiseuille flow)

V„(r)=2V„0[1—(r/R) ],

where V„o is the average normal-fluid flow and R is the

pipe radius (Fig. 1). The relative velocity of the two
fluids is zero at a radius ro given by

V,oro=R 1—
2V„O

' 1/2

(4)

For the simple case of V,o
= V„o, this radius is

ro=R/&2. We will refer to the cylindrical surface de-
scribed by ro as the "nodal" surface.

IV. REPEATED VORTEX GENERATION
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FIG. l. Superfluid and normal-fluid velocity profiles in lami-
nar pipe flow with no superfluid vortex filaments.

Because of the no-slip boundary condition on the nor-
mal fluid, the normal-fluid velocity near the wall is much
smaller than the superfluid velocity. Thus the relative ve-
locity V„,=V„—V, near the wall points in the direction
opposite to the average flow. A small vortex half ring
connected to the pipe wall and oriented against the aver-
age flow direction (with the local V„, ) will grow in

response to the mutual friction force. Rings with self-
induced velocity larger than V„, will not grow, but these
rings are very small [r ~ O(0.01R ) ] for the range of flow
velocities considered in this paper. Typically, we begin
our simulations with a vortex half ring of radius r =0.1R.
This choice is made for clarity of the evolution of the vor-
tex filament. The process that we describe below will also
occur for a large initial vortex loop, but it will then have
a more complicated initial transient behavior.

Since the relative vorticity V„, changes sign at ro, the
half ring will not grow through the nodal surface into the
center region of the pipe, but will continue to grow in the
outer region until the two ends of the vortex meet on the
opposite side of the pipe (Fig. 2). The relative axial veloc-
ity inside the nodal surface acts as a barrier through the
mutual friction term aS'X (V„—V, ) in the equation of
motion [Eq. (1)]. Unless the initial half ring is exactly in
the plane perpendicular to the flow, the ends of the vor-
tex at the pipe boundary will pass each other before the
vortex cores touch. By the reconnection assumption, the
vortex filament will then reconnect, forming a large vor-
tex ring oriented with the flow and leaving another small
half ring connected to the pipe wall to continue the pro-



11 716 DAVID C. SAMUELS

proaching each other slowly, since their velocities are
very similar, and the time of reconnection is not expected
to be simulated accurately by the model employed here.
Because these reconnections make little change in the
filament's motion, we do not expect this inaccuracy in the
timing to have any effect on the overall behavior of the
filaments. If reconnections were to be ignored, or greatly
delayed, the two legs of the vortex generator would in-

dependently produce a pair of helical vortex filaments
near the cylindrical nodal surface. The average
superfluid velocity field of a large number of these helical
filaments would be the same as the average velocity field
of a large number of vortex rings.

Since the reconnections are unimportant to the vortex

1.0 I I I f
]

I I I t
(

1 I I I

FIG. 2. Time lapse growth of a superfluid vortex filament in
the spanwise plane of the pipe. The initial state is the half ring
at the bottom of the figure. The filament does not grow through
the nodel surface into the center of the pipe.

0.5—

cess repeatedly. Thus the parabolic profile of the
normal-fluid velocity allows a vortex generator to operate
in pipe flow. The results of this process are shown in Fig.
3. Here the vortex generator has produced three rings
and is beginning to generate a fourth as it moves
upstream. The flow is in the negative- Y direction, and all
coordinates are in the rest frame of the superfluid average
velocity. The simulation was initiated with a small half
ring attached to the pipe boundary at Y=O, X =0, and
Z = —R and oriented against the average flow. The rings
generated lie nearly on the nodal surface, are oriented
with the average flow, and are tilted in the streamwise
direction by the movement of the generator during their
formation.

It is important to note that this vortex generator does
not involve any pinning of the vortex to the boundary
and does continue to operate at high flow velocities where
pinning is negligible. ' Other proposed vortex genera-
tions depend on pinning in some way for their opera-
tion. ' '

In this description of the action of the vortex genera-
tor, we have employed the reconnection assumption.
While this simplifies the numerical simulation by limiting
the amount of filament in close proximity, it is not a
necessary part of the physical behavior in this case. In a
vortex tangle ' produced by a counterfIow, reconnections
mainly occur between filaments at random orientations
and with noncorrelated velocities. These reconnections
lead to large changes in the vortex topology and create
regions of locally high curvature, which greatly affect the
motion of the vortex filament. Reconnections are a criti-
cal limitation on the line density in vortex tangles. The
reconnections for the vortex generator described above
are of a much less dynamic nature in comparison to the
tangle reconnections. Primarily, the reconnections are
always occurring between nearly parallel filaments (Fig.
4) and thus make little change in the filament's curvature
or motion. Second, the filaments that reconnect are ap-
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FIG. 3. (a) Streamwise view of three vortex rings produced
by the generator. Simulation variables are a =0.2 and
V„=—160 along the Y axis. The initial angle of the generator
was 0. 1m/2. from the spanwise plane. The dotted lines denote
the nodal surface. This vortex generator is in the upper right
corner. All disconnected filament ends are attached to the pipe
wall. (b) Spanwise view of the vortex rings. The dashed line
denotes the pipe boundary. The vortex generator is at the top
of the figure, attached to the pipe wall.
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vortex half ring grows to a stable configuration. This
stable configuration will be considered in the future.

The velocities and frequencies in Fig. 6 are given in di-
mensionless form. For the velocity scale, we have chosen
the value

8R
V, ),= ln
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where a is the superfluid-vortex-filament core parameter
(ao = 1 A). For the frequency scale, we have
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FIG. 4. Sample reconnection of the generator legs: (a) before
reconnection and (b) five time steps after reconnection.
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motion, the vortex generator is very robust. Each leg of
the generator moves independently, and any change in
the motion of one leg, caused by some surface irregulari-
ty, for example, will only shift the time of reconnection to
form the ring. Similarly, the independence of the legs al-
lows many generators to operate simultaneously in very
close proximity. The legs of separate generators interact
in the same manner as the two legs of a single generator,
producing a more distorted ring. This is demonstrated in
Fig. 5, which shows the results of a simulation initiated
with three coplanar vortex generators. Each of the three
initial vortex half rings was identical to the initial half
ring in the simulation of Fig. 3, but separated in the span-
wise plane by an angle of 120'. The flow conditions were
identical to the simulation of Fig. 3. Figure 5 shows the
vortex filaments after two complete rings have been gen-
erated. Each of the rings was made partially by each of
the three generators. The resulting vortex rings are more
closely spaced and lie more in the spanwise plane than
the rings produced by single generators. In general, we
expect the interactions of a larger number of vortex gen-
erators to produce closely spaced rings which are reason-
ably flat in the spanwise plane.

In Fig. 6 we give the frequency of ring production from
the single vortex generator for a few values of a and with
a constant ratio V,o/V„&=1. Of course, for rings pro-
duced by multiple vortex generators, the frequency is
multiplied by the number of generators involved. These
frequencies were taken from the simulations by measur-
ing the angular velocity of one leg of the vortex generator
along the pipe wall. For low-frequency generators, this
angular velocity was not constant over distances on the
order of ~R and so these values were not measured.
Despite this, it is clear from Fig. 6 that there is an a-
dependent minimum velocity for the operation of the vor-
tex generator. Below this minimum velocity, the initial
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FIG. 5. (a) Streamwise view of two vortex rings produced by
three interacting generators. Simulation variables are the same
as in Fig. 3. (b) Spanwise view of the vortex rings and genera-
tors. The dashed line denotes the pipe boundary.
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necessity of including the full nonlocal interactions, a
simulation of the detailed vortex core motion is not prac-
tical at this time. Instead, we use a simple concentric-
ring model, where each ring produced by the vortex gen-
erator is modeled as a flat circular ring in the spanwise
plane, concentric about the pipe axis. The circular rings
interact through the Biot-Savart law, and the superAuid
boundary conditions (impenetrable walls with slip) are
satisfied approximately by image vortex rings with radius
and circulation

FIG. 6. Frequency of ring generation by a single vortex gen-
erator over a range of a. See text for the velocity and frequency
scales. Lines are drawn to guide the eye.

We will denote nondimensionalized variables with a tilde.
Simulations conducted with different values of R confirm
the validity of this choice of scales. The Reynolds num-

ber, written in terms of the nondimensionalized velocity,
is

pR V pVK 8RRe= = lnn4-' =10V .

V. VORTEX-RING INTERACTIONS

When initially created by the vortex generator, the
rings lie on or near the nodal surface and are elongated in
the direction of the fiow (Fig. 3). This elongation is lower
at high Aow velocities, as the vortex generator forms
rings more rapidly, and is also reduced if the ring is pro-
duced by multiple generators. Through mutual friction
these elliptica1 rings eventually relax to circular rings in
the plane perpendicular to the flow. Since the vortex gen-
erators produce a large number of rings with the same
orientation, the interactions between the rings will be
non-negligible. With the large number of rings and the

To remain in the laminar Aow regime, we limit V p to 200
and less. For wide pipes this maximum velocity is very
small (0.3 cm/sec for R =1 cm), but for the small capil-
laries commonly used in experiment" the maximum ve-

locity is reasonably high (25 cm/sec for 8 =0.01 cm).
Since we will show that a parabolic velocity profile forms
for the superfluid as well as the normal Quid, we define
the Reynolds number with the total density p.

The presence of a surface with V„=V, in the fluid al-

lows the generator to operate, and so this vortex genera-
tion occurs only in the range 0 & V,o/V„0&2 (see Fig. 1).
These limits are only outer limits since, for V,o/V„o near

2, the local velocity difference V„—V, in the inner sec-
tion of the pipe may be too small to prevent the vortex
filament from crossing the pipe axis by its own self-
induced velocity and for V,o/V„o near 0 the velocity
difference at the pipe boundary may be too small to cause
the generator to grow. For this paper we will mainly
consider the case V,p= V„p.

This choice for the form of the image vortex rings was
made in order to satisfy most closely the boundary condi-
tions near the streamwise position of the vortex ring.
The presence of a number of randomly spaced vortex
generators is simulated by adding rings periodically at
random streamwise positions along the pipe, with a ring
radius equal to the radius where V„=V, locally. Period-
ic boundary conditions are used in the direction of the
Aow to simulate an infinite pipe. The velocity fields of the
superfluid vortex rings were precalculated and used in the
simulation as a set of lookup tables. The axial (or stream-
wise) position (y) and radius (r) of each ring were calculat-
ed by the Runge-Kutta-Fehlberg method with the equa-
tions of motion,

= V„,„s+V, , + Vv + VI +a( V~„+ VI„) (9a)

and

(9b)

where V„;„ is the velocity of a superfluid vortex ring of
radius r in an unbounded fluid, V, , is an applied
superfluid velocity field which is constant across the di-
ameter of the pipe, Vv and Vz, are the components of
the superfluid velocity field summed over all other vortex
rings in the Quid, and VI and Vz„are the components of
the superfluid velocity field summed over all image vortex
rings. For this example, a was chosen to be 0.15, corre-
sponding to a temperature of approximately 1.8 K.

The applied superfluid velocity field V, pp
is an impor-

tant boundary condition of this simulation. It must be
stressed that V

pp
is not the average superAuid flow

through the pipe. The combined velocity fields of the im-

age vortex rings produce a net Aow against the applied
Aow V, , This backflow is analogous to the uniform
magnetic field inside a selonoid, with the image vortex
rings representing the current loops. In order to keep a
constant average superfiuid fiow (which is our chosen
boundary condition for this simulation), the average ve-

locity field of the vortex rings and their images must be
calculated and V, , increased to compensate. To calcu-
late the required change in V, pp

a simple model for the
total superfiuid velocity profile V, (r) was used. We ob-
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1= V„o—
( V„=o—V„=g ) .

n0
(10)

The velocities V„o and V, z were calculated from the
average of ten equally spaced positions along the pipe.
These average velocities were used in Eq. (10) to update
the applied superfluid velocity at every time step by the
formula

V, „„(t+hr)=V, +[V, .„(r) V, ,„(t—)],
where Vo is the desired constant average superfluid flow
rate.

When the vortex density is small, the vortex rings actu-
ally repel each other through the mutual friction force.
Consider a pair of vortex rings with equal radius ro
(where V„=V, ) and oriented along the pipe axis in the
direction of the flow. Initially, the lead ring will grow in
radius and the lagging ring will shrink, as is expected for
a pair of vortex rings with a common axis of symmetry. '

If the rings are far enough apart, this process will be halt-
ed by the increasing mutual friction force due to the in-
creasing relative axial velocity (V„—V, ) as the rings
move away from ro. In addition, the mutual friction
force on each ring due to the radial superfluid velocity
field of the other ring (a Vz„) will cause a repulsive veloci-
ty between the rings. Thus, in this case, the "leapfrog"
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served from simulations with constant V, ,~~ that V, (r}
always had a simple form, which is illustrated schemati-
cally in Fig. 7. Qualitatively, V, (r) could be described by
a continuous function across three sections of the pipe ra-
dius. For small radii, where no vortex rings existed,
V, (r} is constant. For a range of median radii, where a
vortex-ring array existed (see discussion below), V, (r) ap-
proximately matched the normal-fluid velocity profile.
And for large radii, where again no vortex rings existed,
V, (r) was also constant. With this simple model, the
average superfluid velocity V, ,„can be calculated from
measurements of the average superfluid velocity along
the pipe axis, V„o, and along the pipe wall, V„z, by

v, ,„= J f rvdr d8
~R2

behavior' expected of the vortex rings does not always
occur. This repulsive motion becomes attractive within
some distance (where the repulsive motion due to mutual
friction is overcome by the attractive motion due to the
ring's change of radius), and the vortex rings stabilize at a
separation

5 1

R R co(r)

1/2
K

4V„or

1/2

(12)

where ~„(r) is the normal-fluid vorticity at the radius r.
At this separation the local V„, at each ring is approxi-
mately zero, the mutual friction force is negligible, and
the two rings leapfrog each other. Therefore, if the
vortex-generator frequency is low enough to form widely
spaced rings, these rings will separate [Fig. 8(a)] until a
generator produces a ring within the attractive distance
of a ring produced by another generator. Because of the
combined velocity fields of the two image rings, this pair
of rings will move along the pipe axis with a different ve-
locity than any single ring and will thus gather more
rings, forming a toroidal vortex array [Fig. 8(b)). Alter-
natively, if the vortex-generator frequency is high enough
to produce the rings initially within the attractive dis-
tance, a single generator will form a vortex array. The
relative velocity V„, (averaged over length scales greater
than 5} is zero within the vortex-ring array.

The toroidal vortex array which results from this pro-
cess grows in size until it approaches the pipe wall [Fig.
8(c)]. The influence of the image vortices fiattens the vor-
tex array, and the array subsequently grows mainly in
length with slow change in radial size [Fig. 8(d)]. Eventu-
ally, these arrays merge and grow to extend completely
across the periodic computational domain in the direc-
tion of the fiow [Fig. 8(e)]. Though we use the term "ar-
ray" to describe the grouping of superfluid vortex fila-
ments, we do not mean to imply that the filaments form a
stationary lattice, as they do in a rotating bucket. ' After
the vortex array grows large enough to approach the pipe
wall and flatten, we detect no indication of any regular
lattice formation.

As this array grows radially, the relative velocity V„,
at the boundary will eventually decrease below a
minimum value for the operation of the vortex generator.
Associated with this minimum relative velocity is a dis-
tance r„defined as the distance from the pipe wall to the
outer edge of the matched velocity region ( V„,=0)
formed by the vortex-ring array. The relative velocity at
the wa11 is

(R r,)—
I v„,(R)~ =Io—v, (R)I=2v„o 1—

0 I I I I I I I « I I I I I I

0 0.2 0.4 0.6

radius / R

I I I I I
']

1.00.8

FIG. 7. Mode1 of V, ( r) used to calculate the average
superfluid flow rate.

since the superfluid velocity profile is approximately con-
stant from the outer edge of the matched velocity region
to the wall. The self-induced axial velocity of the genera-
tor leg may be approximated by the velocity of a vortex
ring with radius r, . When the relative velocity at the
boundary is less than this self-induced velocity, the vor-
tex generator will not grow. Therefore this distance r, is
approximately determined by equating the velocity of a
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ring of size r, with the relative velocity at the boundary
and solving for r, :

the velocity range 50& V„o&200, the ratio r, /R varies
from 7%to 4%. It is instructive to compare this distance
with the average spacing 5z of the vortex array at the
pipe wall. From Eq. (12) this spacing is

5 1/2

(R r—, )

R

8r, =2V 1—n0
K

ln
4~r,

(14)
aO

1 K

2 RV„o
(16)

Assuming r, «R, we have
1/2

1 1

2

1/28r,~c 1
ln

R 2 4+R V„o

and so

aO 1/2
ln(8r, lao)

4m
(17)

The width r, is calculated from the How properties near
the wall and is the same for any value of V,o/V„o. Over
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FIG. 8. Radius vs streamwise position of concentric rings in the pipe. Rings are added periodically at random streamwise posi-

tions to simulate the vortex generators. The dashed line denotes the nodal surface. The pipe is periodic in the streamwise direction

with a length 2R. The flow velocity is V =80 in the positive- Y direction with equal average V„and V, . All positions are shown in the

rest frame of the average superfluid velocity. (a) At low ring densities, the rings are separated with a small amount of clustering. (b)

One cluster of vortex rings begins to dominate. As the clusters become large they come almost to rest in the superfluid rest frame. (c)

The vortex cluster grows predominately in the streamwise direction and slowly in the radial direction. (d) The cluster continues to

grow, with the fastest growth in the downstream direction (in the average superfluid rest frame). (e) Eventually, the cluster fills the

length of the periodic pipe and continues to grow in the radial direction.
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Since the logarithmic term in Eq. (17) is on the order of
10 for a wide range of practical r„ the distance r, is very
nearly equal to one array spacing. The effect of this coin-
cidence is that the final vortex array will appear to have
one layer of vortices missing near the boundary. The ar-
ray of vortices in a rotating bucket also has a vortex-free
strip at the boundary. In this case the size of the vortex-
free strip is'

' 1/2
ln(b/ap)

2m
(18)
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FIG. 9. Normal-fluid and superfluid velocity profiles in the
pipe with 225 superfluid vortex rings present. The pro61es are
taken at Y= 1R in Fig. 8(e).

where b is the mean vortex spacing. The minor
differences between Eqs. (17) and (18) are easily under-
stood to be due to the different geometries.

The velocity profiles (Fig. 9) of the normal fiuid and
superfluid show that by the end of the simulation the ve-
locities in the outer part of the pipe are matched fairly
well, though there will always be some slip of the
superfluid at the wall due to the cutoff condition for the
vortex generator. One should keep in mind that a rela-
tively low flow rate (Vp =80) was chosen for this simula-
tion example in order to minimize the number of neces-
sary vortex rings. Also, this simulation was not run far
enough for the superfluid vortex array to extend to r, be-
cause of time constraints on the computation. From Eqs.
(13) and (15), the completely developed vortex array for
this flow rate would extend to a distance of 0.06R from
the pipe wall and would have a relative velocity at the
wall of 0.22Vp ~ For higher flow rates, the vortex array
spacing will be smaller, giving a smoother match of the
two velocity fields and a smaller velocity difference at the
boundary.

As a consequence of the slip velocity at the boundary,
the vortex array does not extend completely to the center
of the pipe. There is a clearly defined "vortex front"
bounding the inner surface of the array [Fig. 8(e)]. The
position r; of this stationary vortex front may be calculat-
ed by applying the simple three-segment model for V, (r),
with the outer radius of the vortex array defined by
R —r„and solving for the inner radius of the array. This
radius is

r; 1—Vp r,+4
V„p R

2 3
re

R
e

' 4 1/4

(19)

where V,p is the average superfluid flow rate. In this for-
mula we have allowed V,p& V„p. The width of this inner
vortex-free region is comparatively large for V,p& V„p.
Using Eq. (15) in Eq. (19), the ratio r; /R varies from 36%
to 26%%uo over the velocity range 50& V„&200 and with
V p V p. Since the ratio r, /R is small, the inner
vortex-free region disappears quickly for V,p only slightly
greater than V„p. This may restrict any practical obser-
vation of this region to flows with V,p & V p. The lack of
the inner vortex-free region will allow the vortex rings to
shrink to zero radius and disappear. This destruction of
vortex rings should prevent the vortex array from grow-
ing to a radius large enough to suppress the vortex-
generator operation, and so we expect flows with
V p + V p to have continuously operating vortex genera-
tors.

VI. COMPARISON TO SOLUTIONS OF THE
HALL-VINEN-BEKAREVICH-KHALTNIKOV

EQUATIONS

In the Hall-Vinen-Bekarevich-Khalatnikov (HVBK)
equations, vorticity is allowed in the superfluid. This vor-
ticity is interpreted as an average over the coarse struc-
ture of superfluid vortex filaments. Geurst' has shown
that solutions of the HVBK equations yield nonuniform
superfluid velocity profiles in pipe flow with a parabolic
normal-fluid velocity profile. Geurst interprets this V,
profile as the result of the continuous creation of
superfluid vortex rings at the outer wall of the pipe and
their continuous destruction at the pipe axis, with a con-
stant mutual friction dissipation driving the motion of
the rings. Though his paper concentrates on the solu-
tions for nonzero mutual friction dissipation, it is clear
that for the special case of zero mutual friction, which is
the case for the rings produced by this vortex generator,
the resulting superfluid velocity profile consists of con-
tinuous segments of uniform velocity and segments of
parabolic velocity matching the normal-fluid velocity
profile, just as we observe (Fig. 9). Especially interesting
in the context of the present work is the range of V,p/V„p
for which his theory allows a zero value for the chemical
potential gradient p', which is due to mutual friction.
This range is 0 & V p/ V p & 2, in complete agreement with
the maximum range of operation of the vortex generator.
Remember that the vortex rings produced by the genera-
tor are at rest with respect to the local normal-fluid ve-
locity and therefore do not themselves contribute to dissi-
pation by mutual friction, while the operation of the gen-
erator does cause dissipation during the formation of
each ring. Geurst also gives an analysis of some experi-
mental results by de Haas and van Beelen, which shows
the measured p' is zero in the range 0& V,p/V„p&1. 2
with p' comparatively small in the range
1.2 & V p/V p & 2. These results are consistent with the
formation of stable vortex-ring arrays (with zero dissipa-
tion) for 0 & V,p & V„p and the continuous operation of
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vortex generators (with some dissipation) caused by the
lack of an inner vortex front for V,o) V„o.

VII. FINITE-LENGTH EFFECTS

We have only considered the idealized case of infinite-
length pipes. However, it is well known that the finite
length of real pipes has a strong effect on the flow of clas-
sical fluids, both from the entry length at the pipe inflow
and the flushing of flow disturbances through the pipe
outflow. The same is true for helium II. Schwarz' has
pointed out that since vortex filaments will be convected
downstream at approximately the superfluid flow rate,
these filaments will be continuously flushed out of a real
pipe of finite length. Thus a continuous injection of vor-
tex filaments, presumably at or near the pipe entrance, is
necessary to sustain the filament population in any finite
pipe. In simulations of a streamwise vortex filament (Fig.
10) in pure superfiow (V„=O) with the pipe infiow simu-
lated by pinning the upstream end of the filament to a
fixed position on the cross section of the channel,
Schwarz' has shown that the streamwise filament is un-
stable to the growth of a helical wave. The repeated col-
lisions of the growing helical wave with the pipe wall re-
sult in the injection into the flow of a succession of vortex
loops attached to the pipe wall. We distinguish this type
of vortex generator from our unpinned vortex generator
described in Sec. IV by calling the former an inflow vor-
tex generator. Though the details of this behavior may
be different for pipe flows with nonzero V„, a similar pro-
cess occurs in these flows. The vortex loops injected into
the pipe by the inflow vortex generators are similar to the
vortex loops used to initiate our simulations, and these
loops do also evolve in unpinned vortex generators, form-
ing vortex rings, until they are flushed through the pipe
outflow.

The presence of a nodal surface does alter the behavior
of the Schwarz inflow vortex generators in one obvious
way. The upstream end of the vortex filament extends
through the pipe inflow at some arbitrary position on the
pipe cross section. If this position lies between the nodal
surface and the pipe wall [Fig. 11(a)], then the streamwise
vortex filament behaves as described by Schwarz. The

growing helical wave intersects the pipe wall, injecting a
series of unpinned vortex generators into the flow. If,
however, this position lies within the nodal surface [Fig.
11(b)], then the growth of the helical wave will stop at the
nodal surface (since the instability is driven by the local
relative velocity) and will never reach the pipe wall. In
this case the downstream end of the filament, which is at-
tached to the pipe wall, acts as a single independent leg of
an unpinned vortex generator.

In laminar flow through any finite-length pipe, it is im-
portant to consider the entry-length problem. For a clas-
sical fluid, an often non-negligible downstream distance Y
is necessary for the establishment of the Poiseuille veloci-

FIG. 10. Geometry of a superfluid vortex filament pulled into
a pipe intake by the superfluid flow.

FIG. 11. (a) Spanwise view of an inflow vortex generator pro-
ducing unpinned vortex generators in the outer section of the
pipe (r =0.8 R). In this picture the inflow vortex generator has
produced nine unpinned vortex generators. The dotted line
denotes the nodal surface. All the simulation parameters are
the same as in Fig. 3. (b) Spanwise view of an inflow vortex gen-
erator in the inner section of the pipe (r =0.5R). No unpinned
generators are produced.
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ty profile. This distance is approximately '

Y 2 Re
R 15

This equation will hold for the normal fluid. We will ig-
nore the entry length of the normal fluid for two reasons.
First, the normal-fluid density (and therefore the
normal-fluid Reynolds number Re„and the entry length
Y„) decreases rapidly with decreasing temperature.
Second, the inflow vortex generator typically forms the
unpinned vortex generator far downstream. Since we are
only concerned in this paper with the behavior of the un-
pinned vortex generators, we consider the normal-Quid
velocity profile to be parabolic everywhere. However, a
more complete understanding of the inflow vortex gen-
erator may require that the normal-Quid entry length be
taken into account.

Since the unpinned vortex generators require some
time to form the arrays of vortex rings that give the
superfluid a parabolic velocity profile, there is an
equivalent to the classical entry length for the superfluid.
To find an approximate value for this superfluid entry
length, we begin with the number of vortex rings per unit
length formed by the unpinned vortex generators:

.(t) ="vvofr =nUvofy /~& (21)

nvvo =&rva ~~ (22)

where N»G is the number of inflow vortex generators in
the pipe and A, is the wavelength of the growing helical
wave on the inflow vortex generator. For X&vG we
should only count the inflow vortex generators in the
outer section of the pipe cross section, between the nodal
surface and the pipe wall, since these are the only inflow
vortex generators which will generate unpinned vortex
generators (Fig. 11). We will take A, to be the most unsta-
ble wavelength of the helical instability of a streamwise
vortex filament in a flow with relative velocity V„„' '

A, =4mP/V„, , (23)

where P= (a /4m)ln( A/2vra 0 ). . Sinc, e the logarithmic
dependence is very weak, we will take p to be a constant.

where n vvG is the number of unpinned vortex generators
per unit length, f is the frequency of ring production per
unpinned vortex generator, t is time, y is the downstream
distance, and V, is the average superfluid velocity over
the position of the unpinned vortex generator. As the
vortex-ring array forms and the superfluid velocity near
the wall drops (Fig. 9), V, will decrease. Though we have
not measured f as the superfluid wall velocity drops, it is
reasonable to expect that it also decreases, since the
unpinned-vortex-generator growth is driven by the rela-
tive velocity at the wall. For this rough approximation,
we will consider the ratio f /V, to be constant through
the formation of the vortex-ring array. Also, for simplici-
ty, we will only consider the case of equal superfluid and
normal-Quid average velocities V, = V„=Vo.

The number density of unpinned vortex generators
may be approximated by

It should be noted that here V„, is the relative velocity at
the position of the inflow vortex generator. Combining
Eqs. (22) and (23) with Eq. (21) gives

Nivofy V
„„„(y)= (24)

The number density of vortex rings required for the
superfluid velocity profile to match the normal-fiuid ve-
locity profile is

n„„,= f co„dr/a=2V. O/a, (25)
0

where co„ is the normal-fluid vorticity. Using Eq. (25) in
Eq. (24) and solving for y gives us the superfluid entry
length Y, :

8npVO
Y, =

~Ntvof Vns
(26)

In order to compare Y, to the classical value [Eq. (20)],
we rewrite it in terms of the Reynolds number [Eq. (7)],

Vo
=8m

R Pa fV Nivo
Re,

where we have also nondimensionalized the variables us-
ing the scaling given in Eqs. (5) and (6). Assuming that
the inflow vortex generators are randomly distributed
across the cross section of the intake, the average V„, at
the inflow vortex generator is Vo/2. Using the ratio of
the kinematic viscosity to the quantum of circulation,
il lpir =0.1, we can write the superfluid entry length as

Y,

R
Re.5

fNivo
(28)

J

The nondimensionalized frequency f is of order 5—10.
The value of N&vG is unknown, but Schwarz' states that
in his simulations of pure superflow turbulence a
minimum of three inflow vortex generators is needed in
order to form a self-sustaining vortex tangle. If we com-
pare our estimate of the superfluid entry length with the
classical value [Eq. (20)], we find that an Nivo on the or-
der of 5 would make Y, similar to the classical value.
Any similarity that does exist between these values is
purely coincidence due to the value of the ratio ri/p~ and
should not be confused with any active process such as
the motion of the vortex rings, which gives the superfluid
a classical velocity profile.

VIII. CONCLUSIONS

We have shown that for helium II flows with V„and
V, parallel, a single vortex filament attached to the
boundary of a pipe with circular cross section can form a
large number of superfluid vortex rings oriented with the
flow. These rings are formed in an ordered manner and
easily combine into large arrays of organized superfluid
vortex filaments which give the superfluid velocity a par-
abolic profile matching the normal-fluid velocity profile
at length scales larger than the filament spacing.

The operation of this vortex generator is due to the
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presence of a surface in the fluid where V„=V, (a nodal
surface). The circular cross section of the pipe facilitates
the generator operation by allowing the legs of a single
vortex generator to interact and produce a vortex ring,
but this special geometry is not essential to this behavior.
As we have shown (Fig. 5), multiple generators can in-
teract to form the vortex rings, and so the self-interaction
of a single generator is not necessary. The necessary
characteristic of the flow is the presence of the nodal sur-
face which serves as a collection area for ordered
superfluid vortex filaments. Analogs of the vortex gen-
erator described here for pipe flow should exist in many
other Aow geometries which contain such nodal surfaces.
Some likely examples are channel Aow, plane and cylin-
drical Couette flows, and the flow between the plates of a
rotating Andronikashvili pendulum.

Since the function of the nodal surface is to hold and
orient a superfluid vortex filament, the dimension of the
surface may be as small as one dimensional. With this in
mind, we propose two necessary conditions for the for-
mation of a velocity matched Aow of helium II. These
conditions are the following.

(i) A region of locally matched velocity V„=V, of di-
mension 1 or greater must initially exist in the Aow.

(ii) A source of superfluid vortex filament must be
present.

In the example of pipe Aow treated in this paper, con-
dition (ii) was provided for by the velocity difference
V„—V, at the boundary of the pipe. Solid boundaries
are very convenient for this purpose for two reasons.
First, even in quiescent helium, superAuid vortex fila-

ments are likely to be found at solid boundaries in the
form of remnant vortices pinned to surface roughness.
Second, the solid boundary forms a convenient sink for
any superAuid vortex filaments with the wrong sign of
circulation (opposite to the normal-fluid circulation). It
is not inconceivable, however, that the superfluid vortex
filament may grow in the free fluid without boundaries.
If that is so, the same general process described in this

paper for laminar pipe flow may also explain velocity
matching in turbulent helium II flows away from boun-
daries.
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