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Onset of long-range order in superlattices: Mean-field theory
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We discuss the onset of long-range order in a model superlattice that consists of two materials, each of
which undergoes a phase transition, in bulk form. We suppose that each transition has Ising character,
and describe the onset of long-range order, along with the response to a uniform external field, by use of
Landau-Ginzburg theory. The issue explored is the circumstances under which the structure displays a
single maximum (singularity) in the susceptibility, and those in which two maxima (one maximum, one
singularity) appear, near the bulk transition temperature of each constitutent. The analysis is motivated

by experimental studies of a CoF2/FeF2 superlattice reported by Jaccarino and co-workers.

I. INTRODUCTION

Currently it is possible to synthesize superlatices from
a diverse array of materials, ranging from semiconduc-
tors to metals within which superconductivity or magnet-
ic order may appear. In this way, one may fabricate new
artificial materials with properties not shared by any sin-
gle constituent.

Quite clearly, the superlattice will behave as a coherent
structure, or a new material, if the films are sufficiently
thin. But if one envisions increasing the thickness of
each of the two films within a superlattice unit pell, even-
tually each material will acquire response characteristics
of its bulk form, and the superlattice will behave as a col-
lection of films of two bulk materials, rather than a single
new artificial material. The description of the transition
between these two regimes is, in our view, an interesting
theoretical issue.

This question is addressed in the experimental studies
of FeFz/CoF2 superlattices reported by Ramos, Leder-
man, King, and Jaccarino. Each material, in its bulk
form, is a uniaxial antiferromagnet. The bulk transition
temperature of FeFz is 78 K, and that of CoF2 is about 39
K. In one superlattice consisting of 19 atomic layers of
FeF2 and 6 of CoF2, these authors report a single magnet-
ic phase transition at a temperature slightly below that of
FeF2 in the bulk. There is no evidence of any structure in
the thermodynamic properties studied (the thermal ex-
pansion) in the vicinity of the bulk CoF2 transition tem-
perature. One may say that this sample is a new magnet-
ic material with a single coherent phase transition in
which long-range order extends throughout the structure
below a single transition temperature. Conversely, a
sample with 25 layers of FeF2 and 30 layers of CoF2
displays two anomalies in the thermal expansion, one
near (but below) the bulk FeF2 transition temperature,
and one near (but above) that of CoFz. Loosely speaking,
the data suggest that the second sample behaves magneti-
cally as a collection of FeF2 films and CoF2 films that are
only weakly coupled, and which display magnetic phase
transitions rather similar to each bulk material.

This paper is devoted to the study of a model superlat-
tice of films A and B; within the bulk form of A we have

a phase transition at temperature Tz"', and within the
bulk form of B we have a phase transition at Tz" ', where
T„'"') T~" '. We outline, within Landau-Ginzburg
theory, the behavior of the superlattice in the two re-
gimes illustrated in the experiments described above, and
we provide a description of the transition between the
two regimes. We calculate the temperature variation of
the order parameter for our model along with its linear
response to a spatially uniform external field. We regard
the issues examined here as of general interest; this is the
motivation for our use of Landau-Ginzburg theory rather
than an explicit microscopic model of the particular ma-
terials studied in Ref. 1. The issue explored here will
arise, for example, in layered superconductors. We note
the Carrico and Camley have recently developed a mi-
croscopic model of FeF2/CoFz superlattices and explored
its behavior in zero external magnetic field.

We note that as the temperature is lowered, the struc-
ture can exhibit only one true thermodynamic phase
transition, and below this temperature long-range order
exists everywhere in the superlattice. Suppose we are in
the regime where there are two distinct maxima in the
linear susceptibility y, one at T„near Tz"', and one at
Tz, near Tz" ", recall T~" ') T~" ', so we will have
T~ & T~. Above T„ there is no order anywhere, and
below T~ order sets in; the linear susceptibility y displays
a true singularity. Now just below T~, if the B films are
thick, the order parameter in the B films will be apprecia-
ble only near the interfaces. Its magnitude will decay ex-
ponentially as one moves away from the interface into
any given B film. But the order parameter gz in the B
film is nonzero everywhere throughout the film, even if it
may be very small near the center. Then the second
feature in y at the lower temperature Tz cannot be a
singularity, rather, it will be a feature with a finite max-
imum. There is a narrow region of temperature near Tz
where the structure exhibits a strongly enhanced
response to an external field, and there will be "near
singularities" in its thermodynamic properties. In this
narrow temperature region, the order parameter in film B
grows rapidly. We shall study here the development of
this feature with increasing film thickness. In Sec. II, we
discuss the Landau-Ginzburg equations that form the
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basis of this calculation, and the results are presented in
Sec. III.

II. THEORETICAL ANALYSIS

A. General Considerations I Ng =I= Ng =I= Ng ='= NH~

X

The model we are considering is illustrated in Fig. 1.
We have a superlattice that consists of two materials A
and B; the thickness (in atomic layers) of the films of ma-
terial A is Nz, and that of the films of material B is N~.
The number of films in each unit cell is then N„+N~.
Material A, in bulk form, undergoes a phase transition at
temperature T~"', and material B at temperature Tz"'.
Throughout this discussion, we assume T~" ' & T~" ', as
mentioned above. Each phase transition is described by
scalar order parameters g~ and gz, respectively. If we
wish to consider two ferromagnets, then q~ and gz are
the magnetizations of the respective materials. An exam-
ple of a particular system of this nature to which the
present theory would apply would be Fe/Ni superlattice.
Heinrich et al. have fabricated Fe/Ni bilayers on
Ag(001), and it should prove possible to synthesize a
complete superlattice. The bilayers have been studied
only well below their transition temperature. Whether or
not these materials could be studied at high tempera-
tures, near the Curie point, would depend on the
structure's ability to maintain its integrity well above
room temperature. If the theory is applied to the super-
lattices studied, fabricated from the uniaxial antifer-
romagnets CoF2 and FeFz, then g~ and g~ are the stag-
gered magnetizations of each material. Finally, we can
discuss superconducting structures, within which g „and
g~ are the pair amplitudes. The present theory ignores
phase fluctuations, and thus in this case can apply to
suSciently thick superconducting films.

Each material is described by a free-energy density we
write in the form, with H,„a spatially uniform external
field that couples to the order parameter,

'2

F; = —,'c; + —,'a;(T)rI; + ,'b;(T)rl; H,„—rj;, —
X

where i stands for A or B, and the measure of length x is
dimensionless, with the spacing between adjacent planes
chosen to be unity. In the spirit of Landau-Ginzburg
theory, b, and c, are independent of temperature, while

a, =a (T —T '). The spatial variation of the order pa-
rameter in each medium is then controlled by

FIG. 1. Model superlattice structure described in the text.

We may rewrite Eq. (2) in the form

g2 $2f
v, f, +f—; =h,„, (3)

where v; =sgn(T "'/T —1). Here h,„=H,„/b;(rl,'"') .
One may resort to specific models of particular systems

to generate estimates for the parameters that enter the
Landau-Ginzburg functional in Eq. (1). With ferromag-
netic superlattices in mind, consider BCC Heisenberg
films, with nearest-neighbor exchange couplings and in-
terfaces in the superlattice parallel to (100) planes. Ex-
panding the appropriate Brillouin functions in the spirit
of mean-field theory gives g'; '= 1, and

( ) 2 5 (S+1) T
3 S(S+1)+—,

' TI"' (4)

and

fs(0+)=fg(0 )+
~~ 4 Qx p—

(Sa)

Quite generally, in magnetic materials the low-
temperature coherence length g',

' is indeed the order of a
lattice constant, while in superconductors it may range
from a few lattice constants to 10 in clean conventional

super conductors.
So the spatial variations of the order parameter within

each film are described by Eq. (3). We then require a
boundary condition at each interface. The most general
boundary condition will be a linear combination of the
derivatives (Oil;/Bx ), and the order parameters r); them-
selves. To obtain explicit forms, we resort to the micro-
scopic model mentioned in the previous paragraph; the
general structure of our conclusions are not affected by
the details of the boundary condition. Consider an inter-
face at x =0, with a B film to the right, and an A film to
the left. If JI is the strength of the exchange coupling
across the interface, with J~ and Jz that in each materi-
al, we find

,
a'

~—
—,
' c; +a,'( T —T,'

"')q, + b, r), =H,„.
Bx

(2) JI a f„(0 )=fg(0+)—
B A 8x p+

(5b)

We rescale various quantities in Eq. (2). Below the
bulk ordering temperature, in the infinite medium, the
order parameter is qI

I = (a,'/b, )' ( T,'
"' —T)' . We

let il, =f, (x)g;'"', where above T "' we write
'=(a, '/b; )' (T —T,'"')' . We then encounter the

temperature-dependent coherence length g;( T)
=g', '(T,'"'/~T, '"'—T~)' where g,''=(c, /a, 'T,'"')'

Our task is to solve the above set of equations, subject
to the constraint that the order parameter displays the
periodicity of the superlattice. This is insured if both f„
and f~ have zero slopes at the midpoints of their respec-
tive films. We then proceed by guessing the value for f„
at the midpoint of an A film, integrating the equations
forward until we reach the midpoint of the neighboring 8
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film, then inquiring if the order parameter has a zero
slope there. By scanning a range of guesses for f„,one

may locate a solution. We turn next to a discussion of
our numerical procedures, since the calculations are chal-
lenging to carry through.

B. Numerical methods

The results presented below were calculated in two dis-
tinct steps. We begin by setting H,„=O, and then we find

the order parameters g, (x) by solving the Landau-
Ginsburg equations given above. Our means of doing
this is discussed below. Then we calculate the linear
response of the superlattice to H,„. This may be de-
scribed by introducing the position-dependent suscepti-
bility

a~, (x)
g;(x)=

ex

Notice one has also

homogeneous version of Eq. (8), and which obey the
boundary conditions

d~(&)

dX

and

~(2)(p —
)
—p

=0, y' "( '—N —) =const,
A

dX"'
=const,

dX p

(1Oa)

(lpb)

2 q'„"(x) dx q'„"(x )

where the two constants are chosen arbitrarily. The
Wronskian WA ——yA'(x)(dy'A'/dx ) —(dgA'/dx )y'„'(x)
=y'A"(0 )(dy'„'/dx~o ). One may then show the re-
duced susceptibility y'A"'(x) within film A is given by

(2)

X'"'(")= X'"'(0 )
d

X'"( )
A dX p

1 (S+1) 1 („)
(x )

3 k
~

( )
~

y [ (x ) (7a)
+y'„'(x)f, dx'y'„"(x') . (l l)

where the reduced susceptibility

af,.~(r)(x )
Bh,„

(7b)

obeys the linear differential equation

g2 d 2~(r)

2 +[v; —3f; (x)]yI"'+1=0, (8)

and f;(x) is now the order parameter when H,„=p. The
boundary conditions obeyed by the reduced susceptibility
are deduced easily from those obeyed by the order pa-
rameter by differentiating Eqs. (5). One can write these in
the form

(12a)

and

~(2)(p+ )
—p

dx(2)

dx p+
=const . (12b)

The constant y'A"'(0 ) is found by submitting Eq. (11) to
the boundary conditions once a similar formula for
g'B'(x) is generated. This may be done, noting film 8 ex-
tends from x =0 to x =NB, by introducing two linearly
independent solutions to the homogeneous version of Eq.
(8) in film B. These functions satisfy

(&)dXB =0, yB ( ,'NB)=const-,
dx

and

dX'"'

g2
+B XA(r)(p+ )

— (r)(p —)+ (9a)

We then have
(2)

~(r)(x) — ~(r)(p+) B ~(&)(x)
B dX p+

~r 4'A q'"'(0-) =y'"'(0+ )—
A B

dX"
dx

(9b)
+ yB"(x) dx'y' '(x')

Given the order parameters in zero field f;(x), we may
solve Eq. (8), a linear inhomogeneous differential equa-
tion, by means of a Green's-function method. Consider
y'A"'(x), the reduced susceptibility in film A, which ex-
tends from x= N„ to x =0. W—e introduce y'A"(x),
y'A'(x), which are linearly independent solutions to the

I

1/2N~
+gB'(x)f dx'yB'(x') . (13)

X

The Wronskian WB =yB'(0+)(dye ')/dx~ ~). Upon sub-

mitting these solutions to the boundary conditions, we
find that y'A"'(0 ) and yB'"'(0+) are found by solving two
linear algebraic equations. If M is the 2 X 2 matrix

(dy'„"/dx
~ )

1+
(&)(0—

)

A

J 4
B

(dyB'"/dx
~

+)
2

(1)(0+ )

(14)
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then

(~(r)(p —
)

'

+(r)(0+ )
M

2 dx'y„"(x')
y())(p )

~—)i2N4

2 1 /2NB

„, , j dx q)(x )~() )(0+ ) ()

Once the order parameters in zero field are found, the above scheme proves an efficient and accurate means of gen-
erating the response of the superlattice to the external field. Our next task is to discuss the means of obtaining the order
parameter in zero field.

We have, as noted earlier, T„'"')TB"'. Thus so long as the exchange coupling between spins across the interface is

equal to or less than that in film A itself, a circumstance we assume in the results presented below, we expect the transi-
tion temperature T~, at which long-range order sets in, to be less than T~" '. We may find an implicit equation for Tz
by examining the linearized Landau-Ginzburg equations, and inquiring when the homogeneous version of these admit a
nonzero solution. If k„=i/2/g„, and ks =i/2/gi), then the transition temperature is found by locating the zero of the
following expression:

[cos( —,'k„N„)—k„sin( —,'k„N„)I[cosh( —,'k~Ni))+ki)sinh( 2)ksNs) —j= cos( —,(k~N„)cosh( —,'ki)Ns) . (16)

2
gg(x ) —gA(0)cosh x

+ 1 —cosh x

2
X 2+cosh x + -. . (17)

Above T~, the only solution of the Landau-Ginzburg
equations with H,„=p is f„( x) =f~( x) = 0. For all tem-

peratures below T~, one may show that
0&fz( —

—,'N„) &1. Hence as we integrate the Landau-
Ginzburg equations numerically, we scan the range (0, 1)
in f„(—,'N„), sear—ching for solutions where (df„/
dx)l ) y2)v =(dfs/dx)+)&zz =0. While fz( —,'Nz )—
can never equal to unity precisely, as the temperature is
reduced below T~, it can be driven very close to unity in

value. Under these conditions, and when film A is rather
thick, then f„(x) is very close to unity, and varies ex-

tremely slowly with x throughout much of film A; direct
numerical integration of the Landau-Ginzburg equations
becomes very difficult.

Suppose we measure distance from the center of film A

by letting x =x+ —,'N„. Then when f„(x) is close to uni-

ty, we write f„(x) = 1 —g„(x ), and treat g„(X) as small.

One may expand that solution of the Landau-Ginzburg
equation with zero slope at x =0 in powers of g„(0). We
find

NB/2
+ J dx y~"'(x)

I

T(")—T 0
(18)

III. RESULTS AND DISCUSSION

We now present the results of our calculations, which
explore the temperature and spatial variation of the order
parameter in the structure, along with the susceptibility
defined in Eq. (18). We express results in terms of a re-
duced temperature, defined as ~=T/T~"'. We have

chosen TB"'/T'„'=0. 5, roughly correct for the actual
materials studied experimentally, and the interfacial cou-

pling constant JI has the value JI =(J„Js)'

In Fig. 2 we show various quantities calculated for the
case where N~ =NB =1, which is a superlattice consist-

ing of alternating single layers of A spins and B spins.
Clearly, we expect this to be a "new material, " with a

phase transition at a temperature intermediate between
that of A and B. The solid line is the susceptibility p
defined in Eq. (18). We indeed see a singularity centered
about the transition temperature determined from Eq.
(16). The two dashed lines are the integrated order pa-
rameters in the two films,

ture, along with the average susceptibility g of the struc-
ture, which is written in terms of the reduced susceptibili-
ties defined in Eqs. (7):

1(5+1) 1 0
d („)( )—)v„z2

We may select a value for g„(0), then use Eq. (17) to cal-
culate analytically fz (x ), (df„/dx ) at some point re-

moved far enough from the film center for the numerical
integration to proceed accurately from this point on. In
practice, this point may be several coherence lengths
from the film center.

In the next section, we will display results for the tem-
perature variation of the order parameter in the struc-

(TOT)
—1/2N

A

1/2NB

dx i}„(x),

and the dotted line is the sum

(TOT) (TOT) + (TOT)
I A IB

(19b}

(20)
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deduce the temperature at which the peak occurs in g
from the information in this figure.

It would be of great interest to see further experimental
studies of the response characteristics of superlattices
near the ordering temperatures of their constituent films.
Our calculations apply, for example, to a mean-field
description of superlattices made from Fe and Ni. Stud-
ies of the temperature variation of the magnetization and
of the susceptibility in the vicinity of the Ni Curie tem-
perature, and that of Fe, would be of great interest. For
this particular system, an important issue will be the in-
tegrity of the interfaces at these elevated temperatures.

In Sec. I, it was noted that Carriqo and Camley have

explored a microscopic model of CoF2/FeF2 superlattices
within mean-field theory. These authors compute the
specific heat (and order parameters) in zero applied field,
and inquire into the circumstances where a single struc-
ture is present and when two are found. Although our
calculation is carried out within a very different theoreti-
cal framework than theirs, broadly speaking, the results
of the two studies are quite similar.
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