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and algebraic order at antiferromagnetic phases

Fortunato S. de Menezes and Aglae C. N. de Magalhaes
Centro Brasileiro de Pesquisas I'I'sicas, Rua Dr. Xavier Sigaud 150, 22290 Rio de Janeiro, Brazil

(Received 12 November 1991;revised manuscript received 16 June 1992)

We propose families of infinitely ramified fractals, which we call the m-sheet Sierpinski gasket with
side b [{mSG)~], on which the q-state Potts model can be exactly solvable through a real-space
renormalization-group (RSRG) technique for which there are phase transitions atPnite temperatures for
m ) 1. We also propose, within a cell-to-cell RSRG scheme, a criterion for a suitable choice of cells in
the study of antiferromagnetic (AF) classical spin models defined on (or approximated by) multirooted
hierarchical lattices, and apply it for the AF Potts model on some (m SG)b fractals. Concerning the Is-
ing model on the (m SG)2 family, we obtain the exact para (P)—ferromagnetic {F)critical temperature as
a function of m and verify that, for m = 1 and 2, there is no AF order {not even at zero temperature). %'e
calculated the exact P-F and possibly exact P-AF critical frontiers and the corresponding correlation-
length critical exponents for q =2-, 3-, and 4-state Potts model on the (m SG)4. The AF q =2 and 4 cases
have highly degenerate ground states and each one presents, above a certain critical fractal dimension
Df(q, m), an unusual low-temperature phase whose attractor occurs at a non-null temperature. For
q =2 and Df (2, m ) 5. 1, we prove that the correlations have a power-law decay with distance along this
entire phase.

I. iNTRODUCTION

Gefen, Mandelbrot, and Aharony' presented the first
systematic study of critical phenomena on fractals. Since
then, much attention has been paid to the study of spin
models on fractals ' and, in particular, on hierarchical
lattices (HL). ' ' Many renormalization-group treat-
ments which are intended to approximate spin systems on
Bravais lattices become exact if the spins are, instead,
placed on an appropriate HL. Different spin models have
been exactly solved on bond hierarchical lattices such as,
for example, the Ising model, ' ' the Potts model, '
the complete Blurne-Emery-Griffths model, ' the
discrete cubic model, the symmetric Ashkin- Teller
model, the Z(6) model, and they present phase transi-
tions at finite temperature. But on other fractal lattices,
despite the fact that a number of different models have
been exactly solved (see, for example, Refs. 2, 3, and 10),
as far as we know, there are no exact solutions for the
case of finite and short-range interactions which exhibit
phase transition at a non-null temperature. The existence
of such examples would certainly contribute to a better
understanding of critical phenomena on these scale (but
not translationally) invariant lattices.

In this paper we propose families of deterministic frac-
tals (the m-sheet Sierpinski gaskets with side b) on which
the q-state Potts model (see Ref. 28) can be exactIy solu-
able and which presents phase transitions at finite tem-
peratures for m ) 1. These fractals constitute hierarchi-
cal lattices on which the aggregated objects are triangles
instead of bonds as in bond hierarchical lattices. Due to
their hierarchical character, the real-space
renormalization-group (RSRG) employed here provides

the exact para (P)—ferromagnetic (F) critical frontiers
and the corresponding correlation-length critical ex-
ponents vT(m).

For the antiferromagnetic (AF) Potts model, one has to
be very cautious when a negative coupling constant
changes sign under the first scaling leading, thus, to a re-
normalized ferromagnetic coupling in all subsequent
iterations. Our interpretation of this result is that the
symmetries of the AF ground state are not being
preserved under renormalization and that it is essential to
choose suKciently large cells (which appear in two subse-
quent steps of construction of the fractal) which conserve
these symmetries. This point has been neglected on
Migdal-Kadanoff-like HL with even chemical dis-
tance ' and, for q =2, on the Sierpinski gasket (b =2,
m = 1). "" Herein we discuss, within a cell-to-cell
RSRG scheme where the spin states on the roots of the
cells are fixed under renormalization, this point and pro-
pose a criterion for a suitable choice of cells in the study
of AF classical spin models defined on HL (or on Bravais
lattices which are approximated by these). Applying this
criterion, we obtained the P-AF phase boundaries and
their respective critical exponents vT"(m), which we ex-

pect to be exact, for Potts antiferromagnets on the m-

sheet Sierpinski-gasket families [which we shall refer
hereafter to as (m SG)~].

Another interesting feature of the AF Potts model on
the (mSG)& fractals is the appearance, above a certain
critical fractal dimension Df'(q, m), of an unusual low-

temperature phase in which the correlations have a
power-law decay with distance. Such systems have a
highly degenerate ground state which generates a
nonzero entropy per site at zero temperature, violating
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thus the third law of thermodynamics. This residual en-

tropy appears also, for example, in AF Potts models on
systems like bipartite lattices (for q 3), fcc lattice [for

q ~2 (Ref. 31)], a decorated square lattice, and some
fractals. "" If one applies to such systems an argu-
ment similar to that of Wannier, one ~ould expect no
long-range order of the usual type. But, after Berker and
Kadanoff suggested that such systems may present a
distinctive low-temperature phase with algebraic decay of
correlations, much work has been
done35, 3&,36, 37,28, 38,6, 39,m, 30 looking for this phase. For in-

stance, in the case of the (q =3)-state Potts model on the
bipartite cubic lattice, there are evidences that such a
phase exists. ' In Ref. 39, this model was examined by
Monte Carlo lattices of sizes up to 15X15X16 with

periodic boundary condition simulations. From an
analysis of the behavior of the probabilities of occurrence
of fixed states on each sublattice, and from the study of a
lattice-size dependence of the order-parameter fluctua-

tions, the author concluded that, below a certain critical
temperature T,AO, the order parameter might be zero
and that the correlations have a power-law decay. Wang,
Swendsen, and Kotecky, using a more efficient Monte
Carlo method, confirmed this algebraic decay (through
the divergence of the staggered susceptibility) although
disagreed with the vanishing of the order parameter. In
the case of fractals, there are also evidences of the ex-
istence of an unusual phase. ' Riera studied, through
the approximate bond-moving Migdal-Kadanoff scheme,
the phase diagrams of the AF Potts model on Sierpinski
carpet and pastry-shell families. She found, in some
cases, attractors of low-temperature phases at non-null
temperatures —a feature which also appears in Berker
and Kadanoff's RSRG picture. This characteristic was
also found, in an exact way, by gin and Yang in this
model laid on some Migdal-Kadanoff HL types. Al-
though, in some cases, there are evidences that an unusu-
al phase exists (as in the above-mentioned examples),
there is no proof, as far as we know, that the correlations
decay algebraically along this phase. Herein we prove
this for the Ising antiferromagnet on the (mSG)~ for
m ~ 116 (and hence for fractal dimensions D& ~ 5. 1). The
existence of an attractor at finite temperature (TAO) for
the q =4 AF Potts model with two- and three-spin in-
teractions on the (mSG)4 with m ~17 (D& ~3.7) indi-
cates that such a phase also appears in this case.

The outline of this paper is as follows. In Sec. II, we
define the fractal families (mSG)& and the q-state Potts
model with two- and three-spin interactions. In Sec. III,
we present the two-parameter RSRG formalism (valid for
q%2), as well as that with one parameter suitable for
treating the Ising model without three-spin interactions.
In Sec. IV, we propose a criterion for a convenient choice
of cells in the study of AF classical spin models defined
on (or approximated by) HL. This criterion is a generali-
zation of the one derived in this section from a
mathematical analysis at T =0 of the most general form
that the mentioned one-parameter RSRG can have. The
appearance of an unusual attractor at a finite temperature
emerges naturally from such analysis. The application of
this criterion led to the results reported in Sec. V for the

Ising model on the (mSG)z and for the q =2-, 3- and 4-

state Potts model on the (mSG)~. Finally, in Sec. VI, the
conclusions are given.

II. MODEL

The m-sheet Sierpinski gasket (mSG)& is a generaliza-

tion of the two-dimensional case of the Sierpinski-gasket
family proposed by Hilfer and Blumen. ' The spectral di-

mension, ' moments of a voltage distribution in resistor
networks, criticality of self-avoiding walks, residual

entropy, ' and other thermodynamical properties of
the Ising model have been studied for the (1SG)& family.
Each member of the m =1 family has a generator G(b)
(b is an integer) constituted by an equilateral triangle of
side length b which contains b (b + 1)l2 upward oriented
triangles of unit side. The (mSG)& fractal (where b and

m are fixed) has a generator G(b, m) (see Fig. 1) which

n*0 n*1 h*2

FIG. 1. (a) The first three stages (n) of construction of the
(2SG)2 fractal. The second sheet of the n =2 stage connected to
A, B, and C is represented by just a single dashed line for visual

purposes. (b) The generator (n =1) stage of the (2SG)3. (c) The
generator of the (2SG)&. The roots and internal sites are
represented by open and solid points, respectively.



11 644 FQRTUNATO S. de MENEZES AND AGLAE C. N. de MAGALHAES

consists of m structures topologically similar to G(b)
connected only at three external sites A, 8, and C (here-
after called roots). G(b, m) constitutes the n =1 stage of
construction of the (m SG)b fractal obtained in the
n~oo limit. Any stage is obtained from the previous
one by replacing each upward-oriented triangle of each
sheet by the respective generator, and leaving the down-
ward triangles empty [see, for m =2, Fig. 1(a)]. In each
step, mb (b + 1)/2 new units are generated, leading, thus,
to a fractal dimension Df given by

ln[b (b + 1)m /2]
f lnb

One can easily show that in each stage (n) the order of
ramification R„satisfies the recursive equation
R„(m)=mR„„whereR, (m)) 1 for all m. Therefore,
unlike the m =1 case which is finitely ramified, ' the
(mSG}b has an infinite order of ramification for m ) l.
The particular case (2SG)2 was introduced' as an exam-
ple of a HL in which the aggregated objects are more
complex than bonds.

At each site of the (m SG )b fractal with fixed b and m,
we associate a Potts spin variable 0.;=1,2, . . . , q and
consider the q-state Potts model with two-(J~) and three-
(J3) spin interactions described by the following dimen-
sionless Hamiltonian:

P= —K g 5(o;,o, ) K, g 5—(cr, , o, ,o, ), (2)
(i,j ) &i,j, I )

where P= 1/KbT, K, =J;P (i =2, 3), and
5(cr;, . . . , O))=1(0), if o;= =cr( (otherwise). The
first sum is over all nearest-neighbor (NN) pairs of spins
and the second one is over the spins on all the upward-
pointing triangles. We consider here either positive or
negative values for both coupling constants.

III. FORMALISM

Let us now define our renormalization group. For this,
we perform a scale transformation from one cell of side b
to another of smaller side b' together with a renormaliza-
tion of the parameters K2 and K3. The last step consists
in summing over the spin states of the b and b' cells, with
the restriction that the spins (cr„,o~, and oc) on the
roots are held in fixed states a, p and y, namely,

W (a,P, y)=DW'(a, P, y),
where

W (a, /3, y )—:g 5(o„,a )5(o e,p)5(o c,y )e

=Z {5( „,)5(,P)5(,y ) )„.„,
=ZP(o~ =a oe =P oc=y)

W'(a, P, y) =—g 5(o'„,a)5(ere, P}5(oc,y)e

=Z'(5(o''„,a)5(oui, /3)5(crc, y) )(,.„))
Z p (o'g =a, oe =P, o'c =y)

where { . ) represents the standard thermal average,
and D is a constant due to the renormalization of the zero
energy. Z and Z' are the respective partition functions of
the nonrenormalized (b cell) and the renormalized (b'}
one. p(cr„=a, cri) =p, crc=y) is the probability that
the rooted spins 0.~, oz, and o.

& of the b cell are in the
respective states a, p and y; a similar definition follows
for p'(o'z =a, oi) =P, o c=y) in the renormalized cell.
Due to the symmetry of the considered cell, it appears
only three different "constrained" partition functions
W (a,P, y): W(F ' ——W (a, a, a), W', '—= W (a, a, y),
and W(&z) —W (a,P, y); where (a,P, y = 1,2, . . . , q) and
aW/3@y, any. A similar notation W(' (/ =F, I, and AF)
is used for the b' cell, where the superscript has been
suppressed since m =1 for this cell. Eliminating D from
Eq. (3), we obtain that

W(m)
F F

8'A™F' WAf

W'
I I

WAF WAF

W(m)
F

W{m)
I

(q =2) .

In this case, the K2 parameter space is closed by renor-
malization (i.e., if K3=0 then K3 =0 for the triangular
cell types considered here).

Notice that Eq. (9) is equivalent to the preservation of
the correlation function between any pair of the rooted
spins of the (m SG)b, namely,

(m) I
WF O' F r(1)(G(1) K )

—r(0)(G(0) Ki& )(m) & ij ~ 2 ij 2

I I

(i j =A, B,C), (10)

where I';,"(O'",K2) and I',, '(G' ), Kz) denote the correla-
tion functions between any two rooted spins at the
respective stages n = 1 and 0 [see Fig. 1(a)] with NN cou-

pling constants K2 and Ez respectively.
Equation (10) follows from the isotropic case

(I „z=I zc =I ec) of the following relations [which are
easily derivable from Eqs. (4) and (5)]:

W' ' = W (1,1, 1)=—[I „+I„+I+1],=z

W(,-) =W (1,1, —1)= [r„,—r„,—r„+1],(12)Z

Therefore, our RG preserves the ratios pF/OAF and

pi/p~F of the above probabilities. Since the m sheets are
connected only at the roots, the "constrained" partition
functions factorize trivially as

W (a,P, y ) = [ W, (a, /3, y)]

For the Ising case (q =2) obviously o»y W'„and
Wi ' are defined, and the RG equation (with K3=0) is

given by
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where

r„—:&a, a, ) (a;,aj=+1; i,j = A, B,C) . (13)

IV. A CRITERION FOR THE CHOICE
OF CELLS IN AN AF SPIN MODEL

It is well known that the choice of cells in a cell-to-cell
RSRG is an important factor for the reliability of its re-
sults. One should choose cells that reproduce the geome-
trical properties of the whole lattices as well as the sym-
metries of the ground-state configurations of the ordered
phases. Although this condition has been taken into ac-
count in most RSRG calculations of spin models on Bra-
vais lattices (see, for example, Ref. 49 and references
therein), this has been neglected "' ' in the case of
antiferromagnetic models defined on HL. As we will see
below, when the symmetries of the ground state are not
preserved under renormalization, the RG generates un-
physical disconnected basins of attraction. In this sec-
tion, we propose a criterion for a suitable choice of cells
which prevents this kind of problem. First we shall con-
sider the one-parameter RG described by Eq. (9) and
derive such a criterion for either Ising antiferromagnets
defined on (or approximated by) three-rooted HL or AF
Potts model on two-rooted ones. Afterwards we formu-
late a general criterion which we expect to be valid for
AF classical spin models defined on (or approximated by)
HL with an arbitrary number of roots.

Although Eq. (9) was mentioned in the context of the
AF Ising model on the (m SG)b, this equation is valid for
systems described by a one-parameter Hamiltonian
defined on cells which have only two different constrained
partition functions. Let us, thus, consider the q-state
Potts model on two-rooted graphs (or the Ising model on
three-rooted ones) with only two-spin interactions, i.e.,
K3 0. The constrained partition functions can be writ-
ten, for the nonrenormalized cell, as

cell and, therefore, the smaller of the two is the ground-
state energy for the cell. When e„&e,(E„)ei), we shall

say that the ground state of the cell is of type F (type I).
When cF=c,, the type of the ground state is given by the
one with higher degeneracy.

Notice that W~(x)/W, (X) satisfies the following prop-
erties:

and

W„(1)
Wi(1)

Wi;(X)
lim

x .W(x)

(15)

So we can rewrite Eq. (9) as

g„e "[1+f„(X)]= A (X')
gie '[1+fi(X)]

with

(17)

Nb (i)

fI(x)= g (. )
X ' (I =F,I)(»)'«» gI

(19)

is a monotonously increasing function with the following
properties:

g,'e "[1+f,'(X'}]

where the prime refers to the renormalized b' cell. We
have suppressed the superscript (I) since we are now
considering systems which, in general, differ from the
(m SG)i, fractal.

The function f&(X) (1=F,I) [and similarly fI'(X')]
defined by

Nb

W, (X)= g g,"X' (I =F,I) (X=—
i=0 and

fi(0)=0 (20)

where Nb is the number of bonds of the cell and gI" is the
degeneracy of the state with energy Pe; = ICzi. —

Obviously, the first nonzero term (gI 'X') of the
lowest order in X' of Eq. (14) represents the dominant
term of WI for the antiferromagnetic case (J2&0) at
T =0. We shall denote each such term simply by

(Jp) Jp Pcp
gF X =gF8

(J(] J 13

g X =g

where e„(e,) is the lowest-energy configuration of the AF
Potts model on the nonrenormalized cell with the restric-
tion that the spins on the roots are all (are not all) in the
same state. Therefore, ez (ei) refers to the configuration
F (I) where neighbor spins are in different states and (i) ei-
ther o'„=oe(cr &Woe} in the case of two-rooted cells,
or (ii) o.~ =oe=oc (o „=creAoc)in the case of three-
rooted ones. cF and c, constitute the two lowest energies
of the energy spectrum associated with the considered

lim fI(X)= ~ .
g —+ oo

(21)

Let us now analyze Eq. (17) in the X =0 limit [i.e.,
T—+0 in the antiferromagnetic (J2 &0) case] Using th. e
general properties of fi(x) (l=F, I) [Eqs. (20) and (21)]
and relations (15) and (16), we obtain (see Table I) the
possible solutions of Eq. (17) in this limit for different re-
lationships between cF, c., and cF, c.,'. Three main situa-
tions arise from an analysis of this table.

(1) e„&e,and E'„)E,
' (case Bl). In this case the point

X =0 (E2~ —~) is renormalized into X'~ ~ (Kz ~~ ).
Since Ez ~00 is the attractor of the ferromagnetic
phase, we conclude that the RG transformation leads to a
ferromagnetic solution for the AF ease at T =0. This sit-
uation arises, for example, in the Ising model on bond
HL with even chemical distance b [such as the linear
chain, diamond HL (see Fig. 1 of Ref. 13), Wheatstone-
bridge HL (see Fig. 2 of 13)] where we renormalize a b
cell into a single bond (b'=1). Their typical flow and
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TABLE I. Real solutions of Eq. (17) in the X =0 limit for
different relations among cF, c„cF',and ci. Whenever there is
the possibility of having two solutions, we indicate them by Xl
and X2.

F

Possible cases
Solutions of Eq. (17) in the X=O limit

CF& EI EF+ ~I ~F ~I
0.5-

Case {A) c.F&ci Case (A1)
A (X')=0 X' 0

Case (8) cF &cl Case (B1)

g (X')~ oo

Case (C) cF= ei Case (C1)

X'%0

and

finite

Case (A2)
No real
solution

Case (B2)
X', ~0

and

X2 —+ oo

Case (C2)

X'%0

and

finite

Case (A3)
No real
solution

Case (83)

Case (C3)
XI@0

and
finite

X,' 0 if
gF gF

gI gI

1

-05 0.5

V

(F)

F

phase diagrams in the transmissivity variable
t—=tanh(Kz/2) are shown in Fig. 2. Notice that, when

the basin of attraction of the ferromagnetic phase con-
tains more than one point [Fig. 2(b)], this choice of cells
generates an unphysical disconnected ferromagnetic
phase.

(2) The inequality between EF and e& is preserved under
renormalization (cases Al and B2). For these cases,
X'=0 is a solution of Eq. (17) for X =0, which means
that the RG transformation presents an antiferromagnet-
ic solution, at least, for T=O. This situation can be
found, for example, in the Ising model on bond HL with
odd chemical distance such as the linear chain, Migdal-
Kadanoff-type HL [see Figs. 1(a)-1(f)of Ref. 30] and also
on bond HL with even chemical distances where we re-
nortnalize a b cell into a b' one with b'=bl2%1 In Fig. .
3, we plotted the two branches t'+ (t) and t' (t) of the re-
normalized transmissivity [t'+ (t}+0 and t' (t) &0)
which appear in the latter case for b =4 and b' =2 in the
Ising model on the linear chain [Fig. 3(a)), and on the dia-
mond HL [Fig. 3(b)). The union of t '+ (t) (which is equal
to the solution obtained for the renormalization of the
b =2 cell into a bond) for 0&t &1 with t' (t) for
—1 & t & 0 provides a solution [which we denote by
t~h(t)] which is physically meaningful. On the linear
chain this solution leads to the exact known phase dia-
gram, while on the diamond HL it yields to the expected
antiferromagnetic order at zero temperature for the Ising
model with Jz & 0 (notice that in this case there is no frus-
tration in the thermodynamic limit). Concerning the Is-
ing model on HL with odd chemical distances, the solu-
tions t'(t) obtained for b'=1 are qualitatively similar to
t~h(t}, not requiring, therefore, the use of bigger cells.
Differently from situation (1), we note that points with

Kz & 0 ( —1 & t & 0) are renormalized into Kz & 0, causing

-0.5 0.5

V
(F)

P &c"

0

j&
V

)4

(P)
V
(F)

FIG. 2. The RG transformation on the t variable and the

respective flow diagram for (a) the linear chain, renormalization

b =2~b' = 1; (b) the diamond HL, renormalization

b =2—+b'=1. and 8 represent, respectively, the unstable

and the fully stable fixed points. The dotted line denotes the
t'= t curve and the arrows indicate the RG flow directions. By
successive iterations, an initial value t%1 (P phase) in {a) will

converge to the paramagnetic (P) attractor t p =0. In (b), an ini-

tial value t (to or t ) t,F will converge to the ferromagnetic at-

tractor tF =1. Another initial value to(t (t," (P phase) will

converge to the tp 0.

no disconnectedness in the basins of attraction of the

phases.
(3) E„=e,(cases Cl, C2, and C3). In this situation the

RG transformation provides a finite and non-null solu-

tion for X'. Furthermore, a solution X'&1 can appear
when the type of the ground state is preserved under re-

normalization. On the other hand, when there is no such

preservation we do not know any example in which
X' & 1 is a solution. When X') 1, the behavior is qualita-
tively similar to situation (1): any K2 &0 renormalizes

after one RG step to Ez &0. One example of this situa-
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tion will be given in Sec. VA (AF Ising model on the
(mSG)z for b =2 and b'=1]. When X'& 1 two possibili-
ties can happen:

(3a) Successive iterations of any E2 & 0 converge to the

paramagnetic attractor t p =0 through negative values of

K2 IFig. 4(a)]. Such behavior occurs, for instance, in the
AF Ising model on the (2SG)~ for b =4 and b'=2 (see
Sec. V A).

(3b) If ~Kz ~
is large enough, it can lead to an antiferro-

(a} 0
(aj

0.5-

-0.5-

/

AF&
-1

/
/

/
/

/

I-0.5

-0.5—

0 0.5
I

-0.5 0

AF P

0

V
(P)

F

1 t
V
(P)

P

0

0 .'4 ~

-0.5-

-0.5

-0.5-

0 0.5

(
IL

AF

I

-0.5

AF
4F tc

0

F
&c

P

0

Jg

(AF)
V
(8

V
(Fl

FIG. 3. The RG transformation t'(t) and the respective
phase diagram for (a) the linear chain, renormalization
b =4~b'=2; (b) diamond HL, renormalization b =4~b'=2.
The solid and dash-dotted lines represent, respectively, the posi-
tive [r'+ (t) ] and negative [t' (t) ] solutions.

V
(AF)

FIG. 4. Typical plot of a RG transformation t'(t) for nega-
tive values of t and the respective phase diagram for situation (3)
(eF= c,&). (a) The finite solution, I( z (0, at T =0 converges after
successive iterations to the paramagnetic attractor (tp), (b)
when ~Ez ~

is large enough it leads to a finite-temperature anti-
ferromagnetic (AF) attractor.
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magnetic attractor at a finite temperature, i.e., t A„W—1

as illustrated in Fig. 4(b). We will see one example of this
situation in the AF Ising model on the (mSG)4 for
m +116 (see Sec. VB1). Using a rescaling argument,
Berker and Kadanoff showed how this behavior can
arise, in the RSRG scheme, on systems whose residual
entropy per particle is nonzero, such as the antiferromag-
netic q-state Potts model on hypercubic lattices, on
Migdal-Kadanoff-type HL, on Sierpinski carpet, ' and
on Sierpinski pastry shell; they also suggested that this
unusual phase is characterized by a power-law decay of
correlations.

We conclude from the above analysis that, when c,„Ae,
and E'„WEI, one should choose cells whose ground states
are from the same type, otherwise unphysical disconnect-
ed phases can appear. When s„=s, [which is the case of
the Ising model on all the fractal families (mSG)b], we
showed that E2~ —~ is not a fixed point, or, in other
words, the zero-temperature character of the antifer-
romagnet is not preserved under RG, since the rooted
spins after renormalization become nearest neighbors and
have a nonzero probability of being all in the same state.
In the latter case, if there is preservation of the type of
the cellular ground state, then an unusual phase charac-
terized by an attractor at a non-null temperature can ap-
pear.

We also verified in some examples of a two-parameter
RG (see, for example, Secs. V B 2 and V B 3) that a neces-
sary (but not sufficient) condition for obtaining reliable
results is to choose cells which preserve the type of the
ground state under renormalization. In fact, we believe
that this criterion can be generalized to an n-parameter
RG(n & 1) for AF classical spin models defined on (or ap-
proximated by) HL with many roots and such that there
are (n+1) diff'erent restricted partitions functions. The
RG recursive relations are, then, constructed by preserv-
ing n different ratios of these restricted partition func-
tions. In this case there will be (n+1) configurations
(with respective energies s„s2,. . . , E„+,and degenera-
cies g „g2,. . . , g„+,) where the rooted spins are at frozen
states and the remaining spins are such that two nearest
neighbors are at different states. If c; is the smallest ener-

gy (or in the case of equalities among the energies, if g; is
the biggest degeneracy), then we say that the ground state
of the cell is of type i. The generalization of the above
criterion would then be the following: A necessary but not

sufhcient condition for the above n parameter RG t-o de
scribe well AF classical spin models dined on (or approxi
mated by) multirooted HL is to use cells that preserve the

type of the ground state under renormalization

1(a), n =0], Eq. (17) becomes

4X [1+fp(X)]
3X [1+ft(X)]

X' =X'
X'

with

f (X)=—'X +—'X (23)

and

F, (X)=T4X + —,'X (24)

F

1

-0$
P.
0 0.5

p it
C

V
{p)

V

(F)

% ~

-0.5 0.5

which agrees, for m = 1, with Eq. (1) of Ref. 1.
Rewriting Eq. (22) in terms of the finite-valued

t =tanh(E2/2) variable, we obtained t'(t) and the corre-
sponding phase diagram shown in Fig. 5. The exact fer-
romagnetic critical temperature Ett T,"/J2 is plotted as a
function of m in Fig. 6. It should be noted that, for
m =2, points with —1 ~ t & 0 converge to the paramag-

V. RESULTS

In this section we consider the Ising model on the
(m SG)z and the q =2-, 3-, and 4-state Potts model on the
(m SG)4 family.

—
p yFir

0

V
(F) (P)

V
(F)

A. Ising model on the (m SG )2

In this case, renormalizing the 6 =2 cell with m sheets
[Fig. 1(a), n =1] into the b'=1 cell with one sheet [Fig.

FIG. 5. The RG transformation [Eq. (22)] and the respective
phase diagram for the Ising model on the (m SG)2, renormaliza-
tion b =2~b'=1. (a) rn =2, (b) m =3; the flow diagrams for
m ) 3 are qualitatively similar.
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10-

F
bbrc~a

0.5-

0
01 10 20

FIG. 6. The exact P-F critical temperature as a function of m

for the Ising model on the (m SG)2. renormalization
b =2~b'=1.

-0.5-

netic attractor through positive (instead of negative)
values of E2. Moreover, for m ~ 3, points with
—1 & t & t, [t'(t, ) =t,"] converge to the ferromagnetic at-
tractor, generating, thus, a disconnected unphysical fer-
romagnetic phase. This behavior can be understood in
terms of the analysis of the energies (az, et) and degenera-
cies (gz, gt) introduced in the previous section given by

op= —3J2m, gp =4, up= —3J~, g„'=1,
I 3J2m gI 3 ~I J2 g$

So, the ground state for the antiferromagnetic case of
this model on the nonrenormalized cell (b =2, m sheets)
is of type F (because, in spite of ez = et, gz & gt) while it is
of type I on the renormalized one (b' = 1) (because s& & e„').
In order to avoid the unphysical behavior above caused
by the lack of preservation of the type of the ground
state, we should choose other cells that reproduce exactly
the same fractal, for instance, b =4 with m sheets [see
Fig. 1(a), n =2] and the renormalized cell b'=2 with m
sheets [see Fig. 1(a), n =1].

The RG transformation [Eq. (17)] becomes, with this
new choice of cells,

gp(m)X [1+f„''(X)]

g, (m)X [1+f', '(X)]

4X' [1+fp(X')]
(25)

3X' [1+ft(X')]

where the dependence on m of the gz(m) and gt(m) are
not powers any more of gz(1) and gt(1), for example,
gp(1)=280, g, (1)=273, g„(2)=10900, gt(2)=9675,
g~(3) =480 844, gt(3) =356 265. fP~' and f ~t

~ are
smooth polynomials of respective degrees 18m and 16m,
f'F(X') and f,'(X') have the same functional forms as
those of Eqs. (23) and (24), respectively. It should be not-
ed that, for any value of m, the ground state for the AF
case of this model is of type F for both cells since, in spite
of a&=et= —9Jzm and Ez=st= —3Jzm, gz(m) &gt(m)
for all m and g„' &g,'. On the other hand, one can easily
show that Eq. (25) presents solutions with X' & 1 at X =0
only for g„(m)/g,.(m) & —', . As we can see from the above
degeneracies, this condition holds exclusively for m = 1

and 2. In Fig. 7, it is plotted, for m =2, the real solutions
on the t variable which can have any physical meaning.
The positive solution t'+ (t) is exactly the one obtained in
the previous renormalization (b =2~b'=I}. Similar to

-OS 05

FIG. 7. Solutions of the RG transformation [Eq. (25)] for the

Ising model on the (2SG)&. renormalization b =4~b'=2. The
solid and dash-dotted lines denote, respectively, the positive and

negative branches.

B. Potts model on the (m SG)4

Let us consider now the q =2-, 3-, and 4-state Potts
model on a different fractal family, namely, on the
(m SG)4. In this case, we renormalize the b =4 cell with
m sheets [see Fig. 1(c}]into the b'=1 cell with one sheet
[see Fig. 1(a), n =0].

I q=2 case (Isin. g model)

as
In this case the RG transformation [Eq. (17)] is written

(168) X' [1+f„(q=2,X)]
(175) X' [1+f,(q =2,X)]

(26)

where

the examples of case (2) of Sec. IV, the physical solution
is obtained by the union of t'+ (t) for 0& t & 1 with the
negative one t' for —1 t &0. Similar to the Ising anti-
ferromagnet on the triangular lattice which, due to its
full frustration, is paramagnetic even at T=0, there is
no AF order (not even at T =0) for this model on the ful-

ly frustrated fractal (2SG)z. For m &3 the negative
branch becomes complex near t = —1 and, therefore,
t'(t) is given by the positive branch t'+(t) which gen-
erates a disconnected ferromagnetic phase. Despite the
preservation, for m )3, of the type of cellular ground
state, the considered RG leads to unphysical results—
this example illustrates the insufficiency of the criterion
stated in Sec. IV. We believe that, for a given m ~ 3, the
convenient choice of cells which leads to the exact results
for the AF Ising model on the (m SG)2 should have sides
b =2" and b'=2" ', where n (m) is such that each basin
of attraction of a phase is connected.
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and

f„(q=2,X)=—„',[847X +1200X +975X6+595X 8

+»3X"+75X "+&3+"

+9X"+X"]

fi(e =»=2,X)= ' [812X2+1243X +991X +545X

+223X' +81X' +21X'

+4X "+X"] .

Notice that the above expressions lead, for m =1 and

Ba
4 ~

0.5 0.5-

P
BS

F
tc

-0.5- 0.5—

0 -0.5 0 0.5 1

F
P tc

0

V
(F)

F' tc

0

V
(F)

F

(c)

0.5—
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c &c

F

-0.5-

-0.5 0 0.5

AF
4F tc

Jk

(AF)

F
c

0

V
(F)

F

1

for =2 on the (m SG)4 for different values of m: (a)(26)g and the respective phase diagram for q
=2 on t e m 4

=m =—115.57, (c) m = 140 (typical of m )m, . ism =50 (typical of m &m,.), (b) m =m, =—
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KbT /I J~Ibc
X'=T (X) . (30)

T (X) is given explicitly by the square root of the left-
hand side of Eq. (26). G'"' is the nth stage of the (m SG)4
and X'"' is the coupling constant obtained after n itera-
tions of the recursive equation (30).

Through linerization of T around the AF attractor
fixed point, XA„,we obtain

X"'—X~F=A, (X —X~F)+0(X ),
where

(31)

5
Df(e)

I 1

5.08 6

K&&1, to

FIG. 9. Critical temperatures of the para-ferromagnetic (T,")
and para-antiferromagnetic (T,"")transitions of the Ising model
on the im SG)4. Notice the jump discontinuity of Ks Tp /I Ji l

at Df =5.08.

=(BT /BX) e &1 .
AF

Iterating Eq. (31) n times leads to

X'"'—X~F ———(A, )"(X—X~F ) .

(32)

(33)

X +1I (0) (G(0) X) X'+ 3)

we finally arrive, in the fractal limit (n ~ ~), at

(34)

Combining Eqs. (29) and (33) with the expression of
I'„2)(G' ', X) given by

e
—2K e

—'2K+ 4e
—4K+ 0 (e

—6K)
-=B (X)rAg ' ' (rett~~) (35)

which agrees with Eq. (9) of Ref. 9 valid for all b and
m =1. In Fig. 8 is shown the plot of Eq. (26) on the t
variable and the respective phase diagrams for different
values of m.

It should be noted that this is an example of the case
(Cl) of Table I where the ground state for the AF case of
this model is of type I on both b =4 and 5'=1 cells and
where the suitable negative solution for negative values of
1(.2 ( —1 &t &0) appears. We want to stress that a new
negative solution for —1 & t & 0 does not appear when we
increase the sizes of the cells to b =16 and b'=4 since,
for any fixed value of WF /Wi ~6 4 there corresponds a
unique value of t' where —1~ t'&0. This is an indica-
tion that our solution might be the exact one.

From Fig. 8 we see that an unusual AF phase appears
only for m &m, —= 115.57 (Df'= 5. 1). This occurs —only
when, for T=O, the probability pt(m) of the
configuration (I) of the nonrenormalized cell becomes
much bigger than the probability pF(m) of the
configuration (F) [pt(m, )/pF(m, ) -=112]. We obtained,
for J2 &0, the same RG behavior with increasing Df as
the one proposed by Her ker and Kadanoff for d-
dimensional systems with residual entropy per site with
increasing d. In Fig. 9 the para-ferromagnetic and para-
antiferromagnetie eritieal temperatures for this ease are
shown.

Let us now calculate the correlation function I zz on
the (m SG)4 for a fixed m & m, along the unusual phase
with attractor X&FAO. Using the X variable (X:—e ')
and iterating n times Eq. (10), we obtain that

where

(X~F + 1)
B (X}=4(X' +3)

1

(1+XAF )

1

(3+XAAM )

X(X—X~F) . (36)

rAB =4

and a (m) is defined as

ink,a(m)=-
ln4

(37)

(38)

-0.5

-5 08 —------

-3.5
IOO I I5.57

I

I60 200

r„zis the chemical distance between the roots A and B
at the nth stage of the (m SG)4 given by

I ( ) (G(n) X) I (0) [G(0) X(n) (T )n]

where

(29}
FIG. 10. Critical exponent q vs m along the whole unusual

phase of the Ising model on the {mSG)4 for m )m, -=115.57.
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Equation (35) confirms, thus, the power-law decay of
correlations along this whole unusual phase as suggested
by Berker and KadanoK

Assuming that, similar to the asymptotic behavior of
I (r ~ m ) in d-dimensional Bravais lattices,

—[D~( m) —2+ &AF(m) ]I q~(G, X)=rq—~ "" (r„~~ ~ ), (39)

we obtained the critical exponent g~F as a function of m
shown in Fig. 10.

t2

0.5

2. 3-state Potts model

For q =3, the RG transformation [Eqs. (6) and (7)] can
be written as

(24) X [1+fF(q =3,X, Y)] X'3Y'

[1+fA„(q=3,X, Y)] 1

(4) X [1+f,(q =3,X, Y)]

[1+f~„(q=3,X, Y))

(40)

(41)

-O.S
-0.5

10 II

t2

0.5

where ft(q =3,X, Y) (I =F, I, AF) are polynomials in X
and Y with many terms whose first and last ones are
given by

0.5—

and

f„(q=3,X, Y)= —,', [2Q4X+ +X Y' ]

ft(q =3,X, Y)= —,'[28X+ +X Y ],
(42)

(43)

fAF(q =3,X, Y)=[48X + +3X Y ] . (44)

Using the finite value transmissivity variable t2
[ —1/(q —1) ~ t2 ~ 1],defined by

—0.5
-0.5

ah
8 ~

I0

K2
e —1

K
e '+(q —1)

and a similar variable associated with three-spin interac-
tions:

e —1
K3

K
e '+(q —1)

we obtained the Qow and phase diagrams for m =2
shown in Fig. 11(a) as well as the critical frontiers for
difFerent values of m [see Fig. 11(b)]. Table II contains
the scmistable fixed points t," and t, " which govern the
respective critical behaviors of the P-F and P-AF transi-
tions.

It should be noted that the critical frontier P-F (P-AF)
is tangent to the axis t3= —

—,
' (t3 =1) and finishes at the

respective attractor F (Ez ~~, E3~—0O )

[AF(Ez~ —~, E3~ ~)]. This unusual behavior, where
the attractor is localized on a critical line, was also ob-
tained for the pair of attractors (E2~ —0D, ENN ~—bo)
and (E2~~, ENN~ —~) in the Ising model with
nearest-neighbor (E2) and next-nearest-neighbor (ENN)
interactions on the square lattice. In both cases the at-
tractors are characterized by infinite coupling constants
and asymptotic behaviors which depend on the angle of
approach.

FIG. 11. The 3-state Potts model on the (mSG)4. (a) Flow
diagram for m =2. ~ and ~ denote, respectively, the semi-
stable and fully stable fixed points; the dashed and solid lines in-

dicate the flows and the critical frontiers, respectively. (b) P-F
and P-AF critical frontiers for different values of m.

TABLE II. Values of the semistable fixed points t," and t, ",
for q = 3 on the (m SG)4 for different values of m.

1

2
3
4
5

10
30
50
70

100

t,"=(t„t,)
(
—

—,', 1)
(0.07007, 0.294 70)
(0.09403, 0.243 17)
(0.093 06, 0.223 28)
(0.087 80, 0.212 34)
(0.062 97, 0.189 52)
(0.028 23, 0.161 99)
(0.017 94, 0.148 94)
(0.01301, 0.140 16)
{0.00909, 0.13081)

t, "=(t3 t2)

(1, ——,')
(0.93461, —0.47241)
{0.86671, —0.450 39)
(0.81011, —0.436 84)
(0.76041, —0.426 83)
(0.58791, —0.39595)
(0.371 36, —0.343 69)
(0.31109, —0.31909)
(0.281 10, —0.303 43)
(0.255 66, —0.287 59)

For increasing values of m, the connectivity increases
strengthening the correlations; consequently, the regions
of the ordered phases become larger as shown in Fig.
11(b). On the other hand, in the m ~1 limit, where the
order of ramification (R) becomes finite, the critical fron-
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tier P-AF (P-F) reduces to the t2= —
—,
' (tz=1Ut3=1)

axis bringing the critical temperature down to T, =0 in
both cases, and the semistable fixed point t, " (t,") coin-
cides with its respective attractor AF (F). This is in
agreement with the observed fact (see, for example, Ref.
3) that short-range spin models on structures with finite
order of ramification do not present phase transition at
finite temperatures. It should be noted that, different
from the fully frustrated Ising model on the (mSG)~ for
m & m„the 3-state Potts model presents, for all values of
m, an antiferromagnetic ordering at T =0 with a non-
frustrated ground state. Notice also that, in the AF case,
the ground states of the used cells are both of type AF
(considering J2 &0 and J3 & —3Jz) and are nondegenerat-
ed. This case is a generalization to two parameters of
case (Al) of Table I, where T=O (X—+0, Y—+Do) is a
fixed point.

0.5

0.5

3. 4-state Potts model

For q =4, the RG transformation [Eqs. (6) and (7)] is
given by f2

(b)

and

(360) [1+fp(q =4,X, Y)]

(616) [1+f/, p(q =4,X, Y)]

X' Y'

1
(45)

O.S

(456) [1+fi(q =4,X, Y)]

(616) [1+f/, p(q =4,X, Y)]

where the first and last terms of fi(q =4,X, Y) are

fp(q =4,X, Y)=—„',[8064X+ +X Y' ],
f, (q =4,X, Y) =—„',[8928X+ +X2s Y9],

and

(46)

(47)

(48) 0.5

f~i;(q =4,X, Y)= —,'„[9168X+ +3X Y ] . (49)

The AF ground state of this model is of type AF on the
nonrenorinalized cell (since, in spite of a~i;=Et=st;=0,
g~i; )g, )gi;) and also on the renormalized one (since
s~„&Ei and a~i; & si;, considering Jz & 0 and J3 & —3Jz).
This is a generalization to two parameters of case (Cl) of
Table I where, due to the degeneracies g& and gz, T =0 is
not a fixed point for any value of m.

The phase diagram on the (t2, t3) variables for m =2
and 20 are shown in Fig. 12. Similar to the q =2 case, it
appears an unusual AF phase with attractor at TAO only
for Df(m) 3.7 (m m, —=17.63), when the probability
pA„(m) of the configuration (AF) of the nonrenormalized
cell at T=O becomes much bigger than those of the
configurations (I) and (F) [p/, „(m,)/p, (m, )—= 199 and
p~„(m,)/p„(m, )=—12775]. Table III contains the sem-
istable fixed points t," and t, " governing the P-F and P-
AF phase transitions, respectively, as well as the attrac-
tor tA& of the unusual AF phase. Similar to the Ising
case, as m tends to m„the fixed points t, " and t Az ap-
proach each other until they merge, for m =m„into a
single marginal one where vr"~ ca. Notice also that, for
m &&m„the AF attractor converges to T=O since p&

~ ~
7~
I

/

/
I

/
/

/
/

/
/

/
/

/
/

/

I

L

(c)

0.5

FIG. 12. Flow diagrams for the 4-state Potts model on the
(mSG)4. (a) The m =2 case, which exhibits only the P and F
phases. (b) The m =20 case, where the AF phase with attractor
at a finite temperature appears, shown on the inset (c). The Aow

diagrams for other values of m with m )m, —= 17.63 are qualita-
tively similar to that of m =20.
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TABLE III. Values of the semistable fixed points t,", t,"", and the unusual AF attractor (t„*F)for
q =4 on the (m SG)4 for different values of m.

t,"=(t» t2 )

1

2
3
4
5

10
12
14
16
18
20

( ——,', 1)
(0.073 06, 0.252 62)
(0.099 57, 0.207 71)
(0.100 37, 0.19144)
{0.095 98, 0.183 03)
(0.071 43, 0.167 25)
(0.064 29, 0.164 20)
(0.058 41, 0.161 72)
(0.053 49, 0.159 58)
(0.049 32, 0.157 69)
{0.045 74, 0.155 97)

m, =17.63436
18
20
25
30
35
40
45

2)

(0.97021, —0.32647)
(0.946 70, —0.322 70)
(0.89129, —0.315 22)
(0.795 87, —0.303 94)
(0.72491, —0.295 80)
(0.66927, —0.28925)
(0.62444, —0.283 74)
(0.58755, —0.27898)

tAF {t3 t2)

(0.97021, —0.32647)
(0.985 01, —0.329 27)
(0.995 90, —0.331 86)
(0.999 52, —0.333 07)
(0.999 92, —0.333 27)
(0.99998, —0.333 32)
(0.99999, —0.333 33)
(0.99999, —0.333 33)

and pz become neglectable in comparison with

p~„[p,(m =45)/p~„(m =45)=10 and p„(m=45)/
p~z(m =45)—= 10 "]. Although the above behavior
confirms the one suggested by Berker and Kadanoff, it
remains to be proved that the correlations decay algebrai-
cally along this entire distinctive phase.

The problem of making out the ordering type (if any)
at T =0 of the (q =qo+ 1)-state AF Potts model on a qo-
partite lattice (i.e., which can be split into qo sublattices
in such a manner that any two sites of one sublattice are
not nearest neighbors on the original lattice) is an open
and nontrivial question. It would be very interesting to
investigate the ordering type which occurs in the low-
temperature regime encountered above. Similar to the
3-state AF Potts model with residual entropy on bipartite
lattices for which some Monte Carlo simulations
indicate the existence of a broken sublattice symmetry
(BSS) phase (where one spin state is favored on a sublat-
tice and the remaining two states are favored on the other
sublattice), one could expect such a type of ordering in
the 4-state AF Potts model on the above tripartite fractal
for m ~ m, . In this case the BSS phase could be charac-
terized, for example, by the predominance of one spin
state in one sublattice, of another spin state in a second
sublattice, and of the remaining two states in the third
sublattice. Another possibility of ordering could be, as
found by Adler et al. ' for models governed by Hamil-
tonians with the same symmetries as those of the q =3
Potts antiferromagnet on a triangular lattice but with ad-
ditional interactions, a phase with a partial order in
which only the helicity symmetry is broken. This "heli-
cal" phase was also observed in an AF classical XY
model submitted to an external field on a tripartite lat-
tice, but was not found on a bipartite lattice. A third

possibility would be a phase with a null order parameter
(where each site of a given sublattice would have equal
probabilities of being occupied by any of the four-spin
states). This was the case suggested by Ono's analysis
of his Monte Carlo simulations for the 3-state AF Potts
model on the cubic lattice. The vanishing of the order
parameter was also obtained recently, by an exact pro-
cedure, for this model on a bipartite Migdal-Kadanoff-
type HL. If one examines the probabilities, at T =0, of
all the sites of the Sierpinski-gasket generator G(4, 1) to
be occupied by a given state cr (o =1,2, 3,4), one can ob-
serve the tendency towards the equiprobability. We,
therefore, consider this third possibility the most prob-
able one.

4. Critical exponents vr and vr" for q =2, 3, and 4

The correlation-length critical exponents vT and vT"
for the respective P-F and P-AF transitions are given by

vrl (bn/b')/1 A,n'& (s =F,AF), (50)

vT(q) —1/[Df(m) Df(1)], m ~1, —

which is similar to the result

(51)

where A.'& is the greatest eigenvalue (X'» 1) of the Jaco-
bian matrix obtained through the derivation of the RG
transformation with respect to the parameters evaluated
at the semistable fixed point t,' (s =F,AF).

The dependences of vT and vz" with Df(m) for the

q =2-, 3-, and 4-state Potts model on the (mSG)4 are
shown in Figs. 13(a) and 13(b). It should be noted that vT
diverges for m ~1 as expected. Its asymptotic behavior
is given by
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1.4- F
~z' (q) D(q)[m m ( )], q, m m (q), (52)

where 8(2)-=0.494, 8(3)=1, 8(4)=0.511 D
D ( 3 ) = ln4, and D (4 )

-=2.20.
Notice that the exact behavior of v "(3) has

fo li of E . (51).

VI. CONCLUSION
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