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Direct measurements of several exchange constants J;, for several neighbors located at different dis-

tances r;, are possible via the magnetization-steps method. Predictions for the distance dependence of
the exchange constant can then be tested. The theory of the magnetization steps (MS's) caused by dis-

tant neighbors is presented. This theory is based on a sequence of cluster models. The problem of iden-

tifying the particular exchange constant J; that is responsible for an observed series of MS s is also dis-

cussed. The magnetization of Zn& „Co Te, with x =0.007, was measured at 0.6 K in magnetic fields up

to 27 T, and at 0.08 K in fields up to 20 T. Two series of MS's were observed. These series were

identified as being due to pairs of next-nearest neighbors (J& pairs), and pairs of third neighbors (J3

pairs). The exchange constants deduced from the data are J2/k& = —(5.7+0.6) K and

J3/k& = —(2.7+0.3) K. These values, and the earlier result J&/kz = —38 K for the nearest-neighbor

exchange constant, are compared with several proposed dependences of J; on distance.

I. INTRODUCTION

Exchange interactions between magnetic ions in dilute
magnetic semiconductors (DMS's) have been the focus of
many recent works. The present theoretical understand-
ing of these interactions is largely based on the works of
Larson, Hass, Ehrenreich, and Carlsson. ' They
showed that superexchange is the dominant exchange
mechanism, and that in II-VI DMS's the nearest-
neighbor (NN) exchange constant J& is the largest con-
stant by far. The main techniques for measuring J& are
the susceptibility method, inelastic neutron scattering,
and magnetization steps. These techniques have been
reviewed recently. In the Mn-based II-VI DMS's, a typ-
ical value of J, is J, /k~ ——10 K. For Co-based II-VI
DMS's, J, is typically higher, J, /k~ ——40 K. For
Zn, Co Te, which is the material studied in the present
work, J, /kz = —38 K.

In a given DMS there are many exchange constants:
J, for NN's, J2 for next-nearest neighbors (2nd neigh-
bors), J3 for 3rd neighbors, etc. Qualitatively, the ex-
change constants J; are expected to decrease with the dis-
tance r, of the ith neighbor. However, the precise
manner in which J; decreases with r,. is not well estab-
lished. The dependence of J; on r; may be expressed as
a continuous function J=J(r ), which is to be evaluated
only at the discrete set of distances r =r, . Examples of
problems that require knowledge of J(r) are the depen-
dence of the spin-glass transition temperature on the con-
centration x of magnetic ions, and calculations of the
specific heat, ' and of the magnetization.

Various predictions, or suggestions, for the dependence

of J on r have been made. In the theory of Larson et al. '

the r dependence for J
&

through J4 is approximately

J ~exp[ —4. 89(r/a) ],

J2=2J3=4J4 . (2)

This suggestion is based on the notion that the exchange
paths for distant neighbors consist of consecutive links,
each being the same as the link for nearest neighbors
(which is through the intervening anion). For a given dis-
tant neighbor there may be several alternative exchange
paths, which are all equivalent. The exchange paths re-
sponsible for Jz, J3, and J4 are all similar, but the num-
ber of equivalent exchange paths is different for each of
these three J,.'s. The ratios 1:2:4in Eq. (2) are simply the
ratios of the numbers of equivalent exchange paths for
the three J s. The ratio J2/J& was not predicted by
Bruno and Lascaray.

An algebraic dependence of J on r has been proposed
in some papers, ' namely, J~ r ". This proposal was

where a is the lattice constant. This result is independent
of the cation or anion in the parent (nonmagnetic) semi-
conductor. However, because Eq. (1) was obtained
specifically for exchange interactions between Mn + ions,
it may not apply to the Co + ions studied in the present
work. For the zinc-blende structure Eq. (1) gives

J~/Jt =J3/J2 J$/J3——-0. 1 .

A much weaker r dependence for the exchange con-
stants J2 through J4 was suggested by Bruno and Las-
caray. " According to them,
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put forward on empirical grounds, i.e., it gave good fits to
several sets of data. The reported values for n in II-VI
DMS's are between 5 and 8 (Ref. 8). The ratio J3/J2 cal-
culated from this algebraic dependence is then between
0.20 and 0.36, which is intermediate between the values
predicted by Larson et al. and by Bruno and Lascaray.
The ratio J2/J& -0. l is similar to that of Larson et al.

Early determinations of distant-neighbor exchange
constants (i.e., J, other than the NN exchange constant
J, ) were based on indirect methods. They involved fits in
which J2, or both J2 and J3, were treated as adjustable
parameters. ' Recently, however, direct measurements
of distant-neighbor exchange constants became possible,
using the magnetization steps (MS's). ' In the present
work this method was employed to determine both Jz
and J3 in Zn, Co Te.

II. THEORY

Previous works on the MS's were largely devoted to
MS's that arise from pairs of nearest-neighbor magnetic
ions. ' In what follows, we focus primarily on the
theory for MS's that arise from pairs of distant neighbors.
One problem that is addressed is how to identify the par-
ticular J; that gives rise to an observed series of MS's.
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A. Isolated pairs of spins

We start with a brief summary of some basic results
that will be needed later. Consider an isolated pair of
identical spins, S, and S2, coupled to each other by an an-
tiferromagnetic exchange interaction

gf,„,h= —2JS, S2 . (3)

Here, J can be any one of the J s, which are all assumed
to be antiferromagnetic. In zero magnetic field, 0=0,
the energy levels of such a pair depend only on the mag-
nitude ST of the total spin of the pair, i.e.,

E = —J[ST(ST+1)—2S(S+1)], (4)

where S=S,=S2 is the magnitude of the individual
spins. The value of ST in the ground state is zero, corre-
sponding to an antiparallel alignment of the two spins.
The excited states are higher by 2~J~, 6~J~, 12~J~, . . . ,

corresponding to ST=1,2, 3, . . . , 2S. For Co + ions in
the zinc-blende structure the value of S is 3/2 (Refs.
14,15). Figure 1(a) shows the zero-field energies for a pair
of such Co + ions.

When a uniform magnetic field H is applied, the energy
levels undergo a Zeeman splitting, as shown in Fig. 1(b).
The energy levels are now governed by both ST and the
component m of ST along H. The crucial point in Fig.
l(b) is that the ground state changes at the fields H& H2,
and H3. Each change increases the value of ~m ~

for the
ground state by one unit. These jumps of

~
m

~
correspond

to jumps in the component of the magnetic moment of
the ground state along H.

Consider now an ensemble of identical pairs. At low
temperatures, kz T «2~ J ~, the magnetization of such a
system will exhibit a series of MS's at the fields H„.
These MS's are shown in Fig. 1(c). The fields K„at the

FIG. 1. (a) Energy level diagram for an isolated pair of Co'+
ions at K=0. E is the energy in units of

~
J ~, where J is the ex-

change constant. ST is the magnitude of the total spin of the
pair. (b) Zeeman splitting of these energy levels in a magnetic
field H. Note the level crossings at H„, which change the
ground state. (c) The magnetization Mp ', of an ensemble of
identical pairs at low temperatures.

centers of the MS's are given by

(5)

where n = 1,2, 3 for Co "pairs. Equation (5) applies only
to the idealized case of isolated pairs. It will be modified
slightly later.

B. Cluster models

In this section a sequence of cluster models is con-
sidered. It is assumed that all exchange interactions are
antiferromagnetic (J; &0), and that the magnitude of
J;(r, ) decreases with the distance r, .

I. The J& model

In the J, model (or nearest-neighbor cluster model' ),
only the largest exchange constant, J&, is included. All
other exchange constants are set equal to zero. The spins
in the sample are then viewed as belonging to clusters of
various sizes. The smallest cluster is a "single, " with no
magnetic nearest neighbors to which it can couple. The
next cluster in size is a J& pair, consisting of two spins
coupled by J, . Next in size are two types of J& triplets
(open and closed), followed by various types of J

&
quar-

tets, J& quintets, etc.
For the samples used in the present work the cobalt
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concentration is x =0.007. Assuming a random distribu-
tion of the cobalt ions over the cation sites, 91.9% of the
spins are then singles, 7.4% are in J, pairs, and only
0.7% are in larger clusters. ' The magnetization for such
a low value of x is therefore well approximated by the
sum of the magnetizations of the singles and of the J,
pairs.

A schematic of the magnetization curve at tempera-
tures k&T «2~J& ~

is shown in Fig. 2(a). The initial rise
of the magnetization M is due to the singles, which align
readily parallel to H. The three magnetization steps at
higher fields (marked by arrows) are due to the J, pairs.
We shall refer to these MS's as "J, steps. " In the J&
model the magnetic fields at the centers of the J& steps
are still given by Eq. (5), with J=J&.

Magnetization steps may also arise from J, clusters
larger than J, pairs, e.g. , J& triplets. ' ' However, for
the low value of x in the present samples the MS's due to
these larger J, clusters should be too small to be of any
significance.

2. J&-Jz model

M

(a)

J& Model

- H

PJ)

r~
J,+

J& -J2 Model

- H

FIG. 2. (a) The magnetization curve, M vs H, in the J, mod-
el. Note the three J, steps. These results are for k~ T &&2~J, ~.

(b) The magnetization curve in the JI-J& model. Note the three
J2 steps, and the fine structure in the J& steps. The fine struc-
ture is due to pure J, pairs (PJI ) and J&-J2 open triplets (Ji+).
The results in part (h) are for k~ T && 2~ J2 ~.

In the J&-J2 model the largest two exchange constants,
J& and J2, are both included. All other J s are set equal
to zero.

There are four categories of clusters in this model: (1}
singles, with no magnetic NN's or next-nearest neighbors
(NNN's), (2) pure J& clusters, in which the spins are con-
nected only by J, "bonds, " (3) pure J2 clusters, and (4)
mixed J&-J2 clusters, with both J, and J2 bonds. Each of
the last three categories of clusters contains clusters of
different types. For example, among the pure J& clusters
are pure J& pairs and pure J, open triplets. Similarly,
there are pure J2 pairs, pure J2 open triplets, and still

gps0„=2~J, ~n+e„. (6)

The correction e„, which does not appear in Eq. (5), is
positive and is due to the antiferromagnetic J2 bond in

other types of pure J2 clusters. The simplest mixed J,-Jz
cluster is the J,-J2 open triplet, consisting of a chain of
three spins connected by a single J, bond and a single J2
bond. The probabilities of finding various types of clus-
ters in the J&-J2 model were first given by Kreitman and
Barnett. '

The inclusion of J2 in the J&-J2 model leads to new

features in the magnetization curve, i.e., features that
were not present in the J& model. The most important
new feature is an additional series of MS s, which arise
from the J2 pairs. These "J2 steps" are indicated in Fig.
2(b) by the upward-pointing arrows. The magnetic fields
at the Jz steps are given by Eq. (5) with J=J~. These
fields are much lower than those at the J, steps. To ob-
serve the J2 steps, ks T must be small compared to 2~ Jz ~.

Even for Co + ions, which have relatively strong ex-
change interactions, this temperature requirement is met
only below 1 K. It is largely because of this temperature
requirement that the J2 steps were observed only recent-

13

The inclusion of J2 also leads to a fine structure in the
Jt steps. The J~ steps in Fig. 2(a) are due to J& pairs in
the J& model. Once J2 also is included, only a fraction of
these "original" J& pairs will remain pure J& pairs. The
other original J, pairs will be coupled to other spins by
J2 bonds, so that they will find themselves in mixed J&-J2
clusters. Those original J, pairs that remain pure J,
pairs in the J&-J2 model will give rise to MS s at exactly
the same fields as in the J, model [i.e., Eq. (5) with
J=J, j. In Fig. 2(b) these "pure" J, MS's are indicated
by the downward-pointing arrows marked as PJ, . The
other original J, pairs, which find themselves in mixed
J&-J2 clusters, will give rise to MS's at higher fields. For
low x, the J,-J2 open triplet is the most probable mixed
J&-J2 cluster. The MS's due to the J&-J2 open triplets are
indicated in Fig. 2(b) by the slanted arrows, marked as

J, +. Other mixed J&-J2 clusters will give rise to still
other MS's, but these should be smaller in size than the
J& + MS's if x is low. For the concentration x =0.007 in
the present samples, 94.5% of the original J, pairs
remain pure J& pairs, 4.9% find themselves in J,-J2 open
triplets, and only 0.6% are in other mixed J, -J2 clusters.

In our terminology the name J, steps refers to all MS's
that involve the original J& pairs in the J, model. The
PJ, and J, +MS's (in the J, -J2 model) are special types
of J, steps. At temperatures ksT«~J2~, both the PJ,
and J&+ MS's may be resolved, as in Fig. 2(b}. Each of
the original J, steps in Fig. 2(a) has then developed a fine
structure consisting of a PJ, step and the adjacent J, +
step. Additional fine structure may appear due to other
types of J&-J2 clusters in which the original J& pairs find
themselves.

The J, + MS's are due to J, -Jz open triplets. The
fields at which they occur may be expressed as
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gp~(H„+, H„)=2~J,
~

—. (8)

The determination of J, from the fields at the J& steps is
usually based on Eq. (8). As pointed out earlier, in con-
nection with the correction e„ in Eq. (6), the eFective-
field method may be somewhat inaccurate for realistic
values of J2/J& ~ Nevertheless, we expect that the error

S=S/2

the open triplet. This correction was calculated by solv-
ing the triplet problem numerically. The results for
S=3/2 (appropriate for Co + ions) are shown in Fig. 3.
Clearly, e„ is of order

~ Jz ~, but the ratio e„ /~ J2 ~
depends

both on J2/J& and on n. In the limit J2/J& «1, the ra-
tio e„/~J2~ is independent of n and is equal to 1.5. This
result agrees with that obtained earlier for 5=3/2 on
the basis of the efFective-field method of Larson et al. '

Okada's approximate solution of the triplet problem in
the small Jz limit' also leads to the same result. Note,
however, that for J2/J& -0.1, which is a realistic value,
the ratio e„/~ Jz ~

in Fig. 3 depends somewhat on n, and is
greater than 1.5. For J& =J2, Fig. 3 gives e„=3~Jz ~, in-

dependent of n. This result agrees with that obtained ear-
lier for J, open triplets, which are equivalent to J, -J2
open triplets when Jz =J&.

Often the fine structure in the J, steps is not resolved
because the temperature is too high, or because the
Dzyaloshinki-Moriya interaction produces an additional
broadening. In that case, J2 (and also the other
distant-neighbor exchange constants, J3, J4, etc. )

inhuence the J, steps in two ways. First, the unresolved
fine structure due to the distant neighbors produces an
additional broadening. Second, the centers of the J,
steps are at somewhat higher fields than those given by
Eq. (5), i.e.,

gp&H. =2IJi l~+ ~. ,

where 6„&0. In the effective-field treatment of Larson
eI; al. ' the shift 5„ is independent of n. In that case the
field separation between adjacent J, steps is independent
of n and is given by

in J, resulting from the use of Eq. (8) will be typically less
than 2%.

3. J&-J2-J3 model and other cluster models

In the J&-J2-J3 model, the largest three exchange con-
stants are included, but no others. The various clusters
(up to triplets) which appear in this model, and their
probabilities, were given by Pohl and Busse. ' Among
the new clusters that did not exist in the J, -Jz model are
the J3 pairs. These J3 pairs lead to a new series of MS's,
i.e., J3 steps.

The inclusion of J3 also leads to a fine structure in the
J2 steps, and to an additional fine structure in the J,
steps. We focus on the fine structure in the J2 steps. By
definition, J2 steps consist of all MS's that arise from the
original Jz pairs in the J&-J2 model. In that model, all J2
pairs are pure so that there is only one type of J2 steps.
However, when J3 too is included the J2 steps develop a
fine structure, corresponding to several types of J2 steps.
One type (PJz) are MS's arising from pure J2 pairs in the

J,-J,-J3 model. Another type (J, +) are MS's arising
from Jz-J3 open triplets, and there are still other types.
[For the concentration x =0.007 in the present samples,
80% of the original Jz pairs (in the J, -J2 model) remain
pure J2 pairs when J, too is included. ] If the fine struc-
ture caused by J3 is not resolved then the fields at the J2
steps are given by Eq. (7) with J& replaced by J2. The ex-

change constant Jz is then obtained from the difference

(H„+& H„) by usi—ng Eq. (8) with J& replaced by J2. The
same equation can also be used to determine J2 when ex-
change constants beyond J3 (e.g. , J4) produce additional
unresolved fine structure in the Jz steps.

The next cluster model in the sequence is the
J] J2 J3 J4 model. The inclusion of J4 in the model
leads to J4 steps, to a fine structure in the J3 steps, and
also to additional fine structure in the Jz steps and in the

J, steps. When the fine structure in the J3 steps is not
resolved, the exchange constant J3 is obtained from the
field separations between adjacent J3 steps, i.e., Eq. (8)
with J, replaced by J3. The sequence of cluster models
can be continued, leading to J~ steps, etc.

C. Identifying the relevant exchange constant

1
10 ' a ~ ~ a ~ ~ ~ I ~ I ~

10 '
Jz/J~

10 '

FIG. 3. The shift e„ in Eq. (6) as a function of J2/Ji. The
curves are for the three J, steps (n = 1,2, 3).

Once a series of MS's has been observed, and the value

of the exchange constant J responsible for it has been
determined, it is still necessary to associate that J with a
particular neighbor. That is, one has to decide if that J is

J, , or Jz, or J3, or some other J;. In most cases an ap-
proximate value for the dominant exchange constant J,
is already known from the Curie-Weiss temperature. In
such cases it is immediately obvious whether J is or is not

J, . If it is not, then the task of identifying the distant

neighbor i becomes more difficult.
Suppose that all possible series of J, steps, up to a cer-

tain value of i, have been observed. Since the magnitude
of J, is expected to decrease with increasing i, the series
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at highest fields is due to J&, the next series in order of
decreasing H is due to Jz, etc. , [cf. Fig. 2(b)]. Thus, in

principle, the order in which the various series of MS s
occur (starting at the highest fields and moving toward
lower H) can be used to identify each series. In practice,
however, this procedure is not always reliable. Even if J&

is known, one may not be sure that the Jz steps were not
missed because the available magnetic field was not high
enough to reach these steps. In addition, one may not be
sure that the experimental resolution (for M) was ade-
quate to observe all the series. For these reasons, two ad-
ditional methods of identifying the relevant J; have been
suggested. ' Here, we discuss only one of them, which
proved to be helpful in the present work. The method
focuses on the magnitude 5M of the magnetization rise
near each of the magnetization steps.

Consider a series of J; steps arising from J, pairs with a
particularly index i. The size 5M of each step in the
series is determined by the number of J; pairs. The latter
number can be calculated by assuming that the magnetic
ions are randomly distributed. (The strong evidence sup-
porting this assumption is summarized in Ref. 6.) The
number of J; pairs is proportional to the probability PJ;

0.10

0.05

that a magnetic ion is a member of a J, pair. The proba-
bilities PJ; for different i are known for the various cluster
models. ' ' ' ' If the steps are Jz steps then their size
will be governed by the probability PJz in the J,-Jz mod-
el. This Pzz is shown as a solid line in Fig. 4(a). Here, a
zinc-blende structure (appropriate for Zn, ,Co„Te) was
assumed. The probabilities PJ3 in the J,-Jz-J3 model,
and P~z in the J, -Jz-J3-J~ model are shown in Figs. 4(b)
and 4(c), respectively. These two probabilities govern the
sizes of the J3 and J4 steps.

In order to associate a series of MS's with a particular
J, , the observed size of a step is compared with the vari-
ous possible sizes calculated from the different probabili-
ties PJ;. For x (1%, the J3 steps are predicted to be
much larger than the Jz steps, essentially because there
are 24 third neighbors compared to 6 second neighbors.
This size difference is helpful in deciding if the series is
due to Jz pairs or to J3 pairs.

One complication that occurred in the present work
was that the ratio J3/Jz was about 0.5, i.e., not very
small. In that case the observed Jz steps should corre-
spond to pure Jz pairs in the J&-Jz-J3 model rather than
to Jz pairs in the J,-Jz model. The size of a Jz step is
then governed by the probability PJz in the J&-Jz-J3 mod-
el. This PJz is shown as a dashed curve in Fig. 4(a). For-
tunately, for the concentration x=0.7% in the present
experiments the difference between PJz in the J,-Jz mod-
el and P~z in the J,-Jz-J3 model [solid and dashed curves
in Fig. 4(a)] is not large. In the data analysis, Pjz of the
J)-J)-J3 model was actually used.

III. EXPERIMENTAL PROCEDURE

0.15
(b)

0.10

0.05
J3 Pall

0.06
(c)

0.03

I

2
x( a)

FIG. 4. (a) The probability P» that a magnetic ion is in a J&
pair. The solid curve shows P» in the J&-J& model, while the
dahsed curve shows P» in the J&-J~-J, model. (b) The probabil-
ity PJ3 that a magnetic ion is in a J3 pair, as given by the
JI-J~-J3 model. (c) The probability PJ4 that a magnetic ion is
in a J4 pair, as given by the J&-J,-J3-J4 model. All the results
are for the zinc-blende structure, in which the cations form an
fcc lattice. A random distribution is assumed.

Two single crystals of Zn, „Co„Te,referred to as sam-

ple A and sample B, were used. Both had been grown by
chemical vapor transport under similar conditions, but at
different times. Atomic absorption analysis gave
x =0.0068 for sample A, and x =0.0072 for sample B.
The values of x were also obtained by comparing the
measured magnetization at the highest fields with the cal-
culated "technical saturation value". ' ' This gave
x =0.0072 for sample A, and x =0.0068 for sample B.
Compared to the atomic-absorption values the magneti-
zation results for x in the two samples are in reverse or-
der. These discrepancies, however, are compatible with
the experimental accuracies of the two methods (about
3%%uo for atomic absorption, and about 2% for the magne-
tization). In the data analysis we used x=0.0070 for
both samples.

Two magnetometers were used to measure the magne-
tization M. The choice of magnetometer depended on
the temperature. For measurements in liquid He and
liquid He, from 0.6 to 4.2 K, a vibrating sample magne-
tometer (VSM) was used. The measurements with the
VSM were performed both in a Bitter magnet with a
maximum field of 20 T (200 kG) and in a hybrid magnet
with a maximum field of 27 T. This VSM was designed
to operate in the high-noise environment of these mag-
nets. The signal from the VSM was proportional to M,
but the proportionality constant (which depended some-
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what on sample size and shape) was only known to within
a few percent. Absolute calibration of M was achieved by
comparing the VSM signal at 4.2 K and 5.0 T with the
value measured with a Quantum-Design superconducting
quantum interference device magnetometer.

Measurements in a dilution refrigerator, at T—=0.08 K,
were performed in a 20 T Bitter magnet using a force
magnetometer. With this magnetometer, the signal
from the sample was superimposed on a small monotonic
background. Because the signal was sma11, due to the low
value of x, the background was not negligible. The back-
ground did not obscure the MS's, but it prevented the
determination of the size of the MS s in relation to the to-
tal magnetization. This problem did not exist with the
VSM.

The size of each of the MS's was rather small, only
1 —3% of the total magnetization, which itself was small
because of the low value of x. To improve the signal-to-
noise ratio, several traces of M vs H were always taken
under identical conditions. The traces were then aver-
aged using a computer.

IV. RESULTS AND DISCUSSION

A. Two series of MS's

Two series of MS's, arising from two different distant
neighbors, were observed. The analysis was complicated
by the fact that the magnetic-field ranges in which the
two series occurred overlapped to some extent. The two
series were disentangled and identified only after the re-
sults of several experiments were compared to each other.

The overall behavior of the magnetization curves at
low temperatures is illustrated by the data in Fig. 5. The
solid curves show the measured magnetization of sample
8 at 4.2 and 0.6 K. The dashed curves are the same data,
but after a correction for the diamagnetic susceptibility
of the lattice, yd = —3.0X 10 ' emu/g (Ref. 24). At 4.2
K the MS's are not observed because of the large thermal

0.6
Sample B

broadening. At 0.6 K, on the other hand, three MS's are
observed at the highest fields. These MS's stand out
more clearly in the expanded plot shown in Fig. 6(a).
Similar resu1ts were also obtained for sample A.

The derivative dM/dK of the data in Fig. 6(a) is shown
in Fig. 6(b). The three MS's now appear as peaks. A sin-

gle series of steps arising from Co + pairs should consist
of three steps with equal separations between the steps.
Although there are three MS's in Fig. 6(b), the separation
between the third and second MS's appears to be some-
what larger than that between the second and first MS's.
Thus, the three MS's may not belong to a single series.

Figure 7 shows the magnetization (plus some back-
ground) of sample B at 0.08 K. Similar data were also
obtained for sample A. The derivative dM/dH for both
samples at 0.08 K is shown in Figs. 8(a) and 8(b). For ei-
ther sample there are now four prominent MS's, i.e., one
more than expected for a single series. The three MS's at
the highest fields correspond to the MS's in Fig. 6. It is

now clear that these three MS's are indeed not equally
spaced, so that they do not belong to a single series. On
the other hand, the three MS's that are at the lowest
fields seem to belong to the same series. One reason for
this conclusion is that these three MS's are equally
spaced. Another reason is that the ratios of the fields at
which these MS's occur are approximately 1:2:3. Such
field ratios are expected from the analog of Eq. (7) when
the shift b, is small compared to 2~ J; l. The latter condi-
tion (b, «2~J, ~) held in all previous experiments on
MS's. Moreover, the unusually low value of x in the
present experiments should have resulted in a low 6, be-
cause the number of distant spins with which a pair in-
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FIG. 5. Magnetization curves for sample 8 at 4.2 and 0.6 K.
The solid curves show the measured magnetization. The dashed
curves include a correction for the diamagnetic susceptibility of
the lattice.

FIG. 6. (a) Upper portion of the 0.6 K data in Fig. 5. The
bars are the calculated sizes for a J& step and for a J3 step. (b)

The derivative dM/dH obtained by a numerical dift'erentiation

of the data in part (a). The MS's are identified as J& steps, as J3
steps, or as an overlap J3andJ& of both types of steps.
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FIG. 7. The magnetization curve of sample B at 0.08 K. This
curve contains a small monotonic background. The MS's are
indicated by arrows.

teracts is smaller for a smaller x. The series consisting of
the first three MS's (at the lowest fields) in Figs. 8(a) and
8(b) will be called the "first series. "

The fourth MS in Figs. 8(a) and 8(b) (at H -=160 kOe) is
the same as the highest-field MS in Fig. 6(b). This MS
must belong to a "second series, " which also consists of
three steps. If the MS near 160 kOe were the highest-
field member (n =3) of the second series then the lowest
member should have occurred at roughly a third of this
field, i.e., near 53 kOe. Since no MS is observed near this
field [see Figs. 8(a) and 8(b)j, it is likely that the MS near
160 kOe is either the first or the second member of the
second series. If it is the first member (n =1) then the
next member (n =2) should occur roughly at 320 kOe. If
it is the second member (n =2) then the next member
should occur roughly at 240 kOe.

To distinguish between these two possibilities, magneti-
zation data up to 270 kOe were taken at 0.6 K using a
hybrid magnet. The high-field portion of these data is
represented by the solid curve in Fig. 9. There are two
MS's in this field range, marked by arrows. Both MS's
are comparable in size. The first MS, at 158 kOe, is also
seen in Figs. 6, 7, and 8. The second MS in Fig. 9 is at
H—=232 kOe, i.e., not far below 240 kOe. This means
that the two MS's in Fig. 9 are the second and third
members (n =2, 3) of the second series. The first member
(n = 1) is expected to be near 80 kOe. It so happens that
the second member of the first series is just below 80 kOe,
so that the first member of the second series and the
second member of the jirst series nearly coincide. As dis-
cussed later, the size 5M of a step in the first series should
be considerably larger than that for a step in the second
series. For this reason the first step of the second series is
masked by the second step of the first series.

In summary, there are two series of MS's. The first
series consists of the first three MS s in Fig. 8(a) or Fig.
8(b). The first two MS's in Fig. 6(a) or Fig. 6(b) are the
second and third members of this first series. As for the
second series, its second and third members are the MS's
in Fig. 9. The first member of the second series is ob-
scured by the second member of the first series. The
highest-field MS in Figs. 6, 7, and 8 is the second member
of the second series.

The exchange constants J; associated with the two
series were obtained from the field separations
(H„+& H„) using —Eq. (8) with J, replaced by J;. The
value g =2.297 for Co + in ZnTe was used. This pro-
cedure gave J, /kz= —(2.7+0.3) K for the first series,
and —(5.7+0.6) K for the second. Both exchange con-
stants must be associated with distant neighbors, because
the NN exchange constant is J, /k~ = —38 K (Ref. 5).

B. Identification of the two series

Several methods were used to identify the two series,
i.e., assign each of them to a particular type of pairs asso-

50 100 150 200 O. 59

~~ 0.58

E

O. 57 Sample B
T=0.6K
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H (kOe)

120 1 70 220
H (kOe)

270

FIG. 8. The derivative dM/dH at 0.08 K. (a) Sample A. (b)
Sample B. These curves were obtained by a numerical
differentiation of the magnetization curves. The peaks are
identified as J2 steps, as J3 steps, or as an overlap J3 and J2 of
both types of steps.

FIG. 9. The solid curve shows the upper portion of the mag-
netization curve of sample B at 0.6 K. These data were taken in
the 27 T hybrid magnet. The two MS's in this field range are in-
dicated by arrows. The bars show the calculated sizes for a J2
step and for a J3 step. The dashed line is an extrapolation of the
data between the two MS's.
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ciated with a particular distant-neighbor exchange con-
stant J;. All methods led to the conclusion that the
second series (at the higher fields) is due to Jz pairs,
whereas the first series is due to J3 pairs.

The expected sizes of the J2 steps, J3 steps, and J4
steps were calculated. Here, use was made of the known
value of x, the results in Fig. 4, and the known g factor.
The calculated size 5M for each of these three series
turned out to be much larger than the resolution of the
present magnetization measurements. Thus, none of
these series should have been missed because of inade-
quate experimental resolution. A second condition for
observing a series is that it must occur within the avail-
able field range. The upper limit for the observable

~ J; ~
is

then set by the maximum available magnetic field [the
analog of Eq. (7), with n =1]. In the present experiments
the largest observable

~ J,. /kzi was 21 K, which is above
half the value of ~J, ~/ks. Because Jz/J, is expected to
be well below 0.5, the Jz steps should have been observed.
Assuming that the J s decrease in magnitude with the
distance r, , it then follows that the largest J, observed in

the present work (for the second series) was Jz. The next

largest observed J; (for the first series) was then J3.
Another method of identifying the series was based on

a comparison between the observed and calculated size
5M of each step. In both Fig. 6(a) and Fig. 9 the calculat-
ed sizes for a J2 step and for a J3 step are shown as bars.
The size of a J3 step is significantly larger. There were
large uncertainties in the observed sizes because the MS's
were small, and because they were superimposed on a
monotonic variation of M. Nevertheless, the size of the
steps in the second series [both MS's in Fig. 9, and the
highest-field MS in Fig. 6(a)] seemed to agree better with
Jz steps than with J3 steps. For the first series [e.g. , the
second MS in Fig. 6(a)] the size was consistent with J3
steps.

The relative sizes of the MS's in the two series also
seems to support the preceding assignments. The data in
Figs. 8(a) and 8(b) suggest that the MS at the highest
field, which belongs to the second series, is smaller than
the other three MS's, or at least is not larger. For the
present value of x, the J2 steps should be much smaller
than the J3 steps. On the other hand, the J3 steps are
predicted to be significantly larger than the J4 steps.
Thus, the second and first series are consistent with J2
and J3 steps, respectively, but not with J3 and J& steps,
respectively. Some of the assignments for the various
MS's are indicated in Figs. 6(b) and 8(b) as J, , J3, and
Jzfr J3 (when they overlap).

C. Exchange constants and their ratios

Based on the above assignments, the second- and
third-neighbor exchange constants are J2/kz
= —(5.7+0.6) K, and J3 /k~ = —(2.7+0.3) K. These
values should be compared with the dominant exchange
constant J, /k~ = —38 K, determined by Giebultowicz
et al. using neutron diffraction.

The ratio J2/J, =0.15 is comparable to the ratio 0.09
given by Eq. (1), which is the prediction of Larson et al.
for Mn-based II-VI DMS's. The observed Jz/J, ratio
also agrees with the suggested algebraic dependence
J(r) ~r ", if n =5.5. Of greater significance, in our
view, is the fact that the experimental result for J2/J,
supports the generally held belief that in II-VI DMS's, J2
is an order of magnitude smaller than J, .

The observed ratio J&/J2 =0.47 is substantially higher
than the value 0.09 given by Eq. (1). This equation, how-
ever, was obtained specifically for Mn + ions. Apparent-
ly it does not apply to Co + ions. The algebraic depen-
dence J o-r ", with n between 5 and 8, implies that
J3/J2 is in the range 0.20 to 0.36. The experimental ratio
0.47 is outside this range. The deviation from the alge-
braic dependence is not too surprising, since this depen-
dence was proposed on purely empirical grounds. The
data on which the relation J ~ r " is based involve the
added contributions of several, or many, exchange con-
stants. ' These data seem to suggest that the algebraic
dependence represents the general trend of J vs r, but
they do not necessarily imply that this dependence is ac-
curate for each individual J, . There is also some doubt,
based on theory, as to whether the algebraic dependence
represents the correct general trend at large r (Ref. 3).

The measured ratio J3/J2-——1/2 is in excellent agree-
ment with the suggestion of Bruno and Lascaray, Eq. (2).
At present it is not known whether their suggestion will
also hold for other II-VI DMS's. Some preliminary re-
sults which were obtained earlier' for Zn, Co Se
( J3 /Jz =—1/4) suggest that it will not.
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