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In this work we study the Glauber dynamics of the one-dimensional Ising Inodel with nearest-
neighbor and next-nearest-neighbor interactions, for which an approximate solution of the magnetiza-
tion per site is obtained. When the dynamical critical exponent z is investigated following the treatment
of Cordery, Sarker, and Tobochnik [Phys. Rev. B 24, 5402 (1981)],our observation shows that its upper-
bound value is the same as the known value, thus implying that z is independent of the range of the in-

teraction. We also suggest a high-temperature expansion approximation which is then used to solve the
two-dimensional Glauber dynamics governed by a master equation; this solution is compared with that
of the decoupling method. The time-delayed correlation function is also calculated.

I. INTRODUCTION

Since the time when Glauber discussed the time-
dependent statistics of the Ising model and gave a one-
dimensional exact solution, many developments in criti-
cal dynamics have occurred and extensions have been
made. For the one-dimensional kinetic Ising model (of
the Glauber type) the time-dependent magnetization per
site and spin-spin correlation function can be obtained by
an exact solution of the master equation' and the dynam-
ic critical exponent z is obtained by using
renormalization-group methods and physical argu-
ments. Subsequently, the dynamical critical exponent
was found to be nonuniversal. In these studies only
nearest-neighbor-interaction Ising systems have been con-
sidered.

In the two dimensions, much work has been done on
such systems by solving the master equation approxi-
mately or by using renormalization-group methods and
computer simulations. The multispin correlation func-
tion and dynamical critical exponent have been obtained
and discussed The master equation for systems with
d ~ 2 is known to be very complicated, for which an exact
solution, in general, cannot be obtained; therefore a
decoupling approximation is often made.

In this work we will investigate the d =1 kinetic Ising
model with not only nearest-neighbor but also next-
nearest-neighbor interactions in the absence of a magnet-
ic field. In the equilibrium case, it is well known that this
model is equiva1ent to a model with only nearest-
neighbor interactions in the presence of an effective
"external" field and the static critical behavior is in-
dependent of the range of the interaction. In the dynami-
cal case, however, our observation shows that this
equivalence is never attained. We also find an approxi-
mate expression for the time-dependent magnetization
per site. In addition, by using the same physical argu-
ments as presented by Cordery, Sarker, and Tobochnik
(CST), we obtain an upper-bound value of 2 for the
dynamical critical exponent z, implying that z is indepen-
dent of the range of the interaction.

To find an exact solution of the two-dimensional kinet-
ic Ising model appears to be a much more difficult task.
In fact, in such a system we will be faced with a set of
coupled equations in various n-spin correlation functions.
However, we note that if the transition probability is ap-
propriately chosen, a compact solution of the master
equation can be obtained. We also note that at a critical
point Onsager's result, k&TC=2. 269J (where kz is the
Boltzmann constant; T„ the critical temperature; and J
the exchange integral) can be used, and then an approxi-
mation that corresponds to a high-temperature expansion
can be applied. We will solve the master equation under
the above approximation and find n-spin correlation
functions (n =1,2). Our result is compared with that of
decoupling method. We will also find the time-delayed
correlation function.

This paper is organized as follows. In Sec. II, we study
one-dimensional Ising model with nearest-neighbor (NN)
and next-nearest-neighbor (NNN) interactions in the ab-
sence of a field. We argue that it is not equivalent to the
model with only NN interaction in the existence of an
effective external field in dynamics. Then solving the
master equation and employing a decoupling approxima-
tion, we get an expression for the magnetization per site.
Finally, we use the arguments of CST to find the dynami-
cal critical exponent z. In Sec. III, we investigate the
solution of the master equation for an anisotropic Ising
model on a two-dimensional lattice under the high-
temperature expansion and using the decoupling ap-
proach; n-spin correlation functions and the time-de1ayed
correlation function are found. Finally, in Sec. IV con-
clusions are given.

II. ONE-DIMENSIONAL KINETIC ISING MODEL
WITH NN AND NNN INTERACTIONS

We study an Ising model with nearest-neighbor and
next-nearest-neighbor interactions whose Hamiltonian is

PH k, go, cr, +, +—k2+—o, cr, +~,
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PH—=k
1 gi;+ k2&i;V;+1 (2)

which is just the Hamiltonian of a Ising model with only
nearest-neighbor interaction k2 in the existence of an
effective external field k &. The equilibrium thermo-
dynamical behavior is determined by the partition func-
tion

where k, and k2 are the interaction parameters between
nearest and next-nearest-neighbors, respectively, lt3=1/
kz T and 0.=+1. In the equilibrium case, one customari-

ly introduces a change in variable, p; =o.;0.;+&=+1, so
that Eq. (1) may be rewritten as

Z=ge =+exp k, go;o, +,+k2+o, o, +2
IaI Io I i 1

=2+exp k, gp, +k2+)u, p, +, , (3)
tpI i i

which is easy to calculate by using, for example, the
well-known transfer-matrix method. The equivalence be-
tween model (1) and (2) is then very obvious.

For dynamics, the situation becomes much more corn-
plicated. Our analysis shows that the above equivalence
is not carried over. To see that, we start from the master
equation, which describes the time-dependent behavior of
the spin system under study. Let P (cr „o2, . . . , cr;, . . ; t.)
be the probability of the occurrence of the configuration
(o„o2, . . . , o;, . . . , o„) at time t. The evolution of
P (cr „o2, . . . , t) obeys the master equation'

d P(o—„o2, . . . , o;, . . . , t)= Q—W(o;)P(. . . , o;, . . . ;t)+gW~( —o;)P(. . . , cr;, —. . ;t).,dt
(4)

where W(o;) is the probability, per unit time, of a transition from configuration (ol, o2, . . . , o;, . . . ) to
(o l, o „.. . , —o;, . . . ). In Glauber dynamics, only one single spin fiip is allowed each time. According to statistical
physics, the magnetization per site and the spin-spin correlation function are given, respectively, by

q;(t) =
& cr; ) =go;P(. . . ,o;, . . ;t), .

r, 1, (t)=.&cr, ok) =go, okP(. . ., cr;, . . . , ot„. . . ', t) .
Ial

These functions obey the following equations:

q;(t) = —2—
& o;(t)W;(o; )),d

—r, „(t)= —2& o;(t)o „(t)[W, (o;)+Wk(cr„ )] ) .d
(8)

As usual, W;(o; ) is phenomenologically given by means of the condition of detailed balance, ' and we propose

Wl(cr, ) = —,'a[1 ,'51o;—(o—;,.+o;+1)][1 ,'52cr, (—cr—, 2+.o;+2)],
with 51=tanh(2kl ), 52=tanh(2k2). Substituting (9) into (7) and (8), we arrive at

d
q;(t) = —q;(t)+-'51(q; -1+q;+1)+-,'52(q, —2+'ql+2)d at

5152(&ala' —i+i —2)+ &a o +1+i—2~+ &+i'' —lai+2~+ &oiai+1 '+2~ ) (10)

d
r. . .(t) = 2r, , +, +—5, + ,'5, (r. . . +, +r, , +2)—

+ 52(ran+1, ' —2+ '+1, '+2+re, i —1+re, '+2)

5152( &alod —2~+ &o'a'+2~+ & '+loi —1)+&oi+lo'+3~+ &a'o +la' —lo' —2)

+ &a;a;+la;-la;+2)+ &a;o;+1;+2o;-1)+&a;a;+1;+2a;+3&)

Equation (11) gives the time-dependent behavior of the
nearest-neighbor spin-correlation function.

Similarly, for model (2), from the master equation with
P(pl, p2, . . . , 1M, , ...;t) and W, (lM, ), we obtain

Q;(t) = —Q;(t)+5', +—[Q;,(t)+ Q;+,(t) ]
d, ~z

5~52
[R. . .(t)+R, , ~,(t)], (12)
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where

~, (V, ) =!-a[1—
—,6zV;(S; —1+p +1)][1—t, 6i]

Q, (t)=&@,&,

, (t) = &p;p;

q, (t)=e ' g q, „,„,(0)I„(a6,t)I (aG(t)),
17, m

where

(20)

and 6[=tanhki, 6z=tanh(2k&). Comparing Eq. (11)
with Eq. (12) and noting that p,-=o, cr, +, , we find that
r, , +~ and Q; obey completely diff'erent equations, and
therefore, in general, they have different solutions. This
implies that in dynamics we cannot identify model (1)
with model (2).

We now turn our attention to Eqs. (10) and (11). Be-
cause the 3- and 4-spin-correlation functions appear on
the right-hand side of these equations, we have to work
with equations including higher-order correlation func-
tions. As a result, we will have an infinite set of equa-
tions. In order to solve them, we use a decoupling tech-
nique as usual. Here we take the following prescription:

& o, o, ,o, & = & cT, c7, , & & cr, , &
= r. . .q,

& cr cr + i cr —z & = & cr cr + i & & cr —i &
= r, + i q. —i

&a, a;-ia;+i& = &a;a;-i &&a, +z&=r;, , -iq, +

&a, a;+ia, +i&=&a;a;+i&&a, . i&=r, , +iq;+i

(14)

q, (t) =
q, (t)+ [q—, ,(t)+q—, +,(t)]d (o.t)

In the zeroth-order approximation, we assume that
r, , +, = r,', +, , where r,', +, is the equilibrium value, and

r,';+i =«",
, -i =()(kiki)=(7o

we thus write Eq. (10) as

G(t)= J 6i(t')dt' . (21}

Comparing (20) with (17), we find that the only diff'erence
between them is that the linear function of time, u5zt, in
the second modified Bessel function is replaced by the
nonlinear function of time, aG(t).

Finally, we are interested in the dynamical critical ex-
ponent z, which is defined as

(22}

where ~ is the relaxation time and g is the correlation
length at the critical temperature. For a determination of
z, using simple physical arguments relating to movement
of domain walls proposed by CST (Ref. 3), the behavior
of the relaxation time near the transition point is deter-
mined by the time that a domain wall takes to move
through a distance g. Suppose that the rate at which a
domain wall moves by one step is 8'. Then according to
random-walk theory, the wall must make, on average,
,V —

g steps to move through a distance g (if g is large
enough); it follows that r behaves like g /W. In the argu-
ments of CST, the fastest mechanism of the motion of the
wall is chosen, and so the resulting value of z should be
an upper bound on the exact one. From (9), we have the
highest transition rate 8', (cr; )=a/2, so that we obtain
z =2.

We find that, as a reasonable extension, the above
analysis can be applied to the one-dimensional Ising sys-
tem including further finite- and long-range interaction,
the transition rate can be written as

5,'+—[q, ,(t)+q. ..(t)],2

where

6l = 6~ —()o6i6i = 6&(1 —6)o6i)

(15)

(16)

W, (a, ) =-,'a[1 —6,a, (a, , +a, „)]

X —,
'

[ 1 6,cr; ( o—
, , +o, +, ) [

&&
' [1 '6ia, (a, ~a—, +-~)l (23)

Immediately we obtain the solution of Eq. (15) as fol-
lows:

q, (t)=e ' g q, „ i,„(0)I„(a6,t)I,„(a6'it),
n, m = —o

(17)

which reproduces precisely Glauber's result. '

In a higher-order approximation, we use the nonequili-
brium value of r, , +,(t) instead of r,', +, , so that

where I„(x) is the modified Bessel function and qk(0) is
the initial value of the kth spin. In the limit 6&~0, cor-
responding to the vanishing of the next-nearest-neighbor
interaction, Eq. (17) reduces to

q, (t) =e ' g q, „(0)I„(a6,t),

which corresponds to the existence of nearest-, next-
nearest-, and the kth-neighbor interactions. Obviously
here we obtain z =2 as well.

Our result leads to the following statement: the
dynamical critical exponent z is independent of the range
of the interaction for one-dimensional Ising system„
which is similar to that in equilibrium case. As we have
already mentioned, we discuss in this paper the relation-
ship to universality in dynamics of the further- and long-
range interactions.

III. TWO-DIMENSIONAL GLAUBKR DYNAMICS

We now start with an anisotropic Ising Hamiltonian on
the square lattice

6', (t) =6, 0(t)6,6,=6,[1——0(t)6, ], (19)
f3H = k, ger, ,a, +,—, +k, ger, ,o, ~, , (24)

and find the solution of (15) as in which the summations are taken over all nearest-
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neighbor-spin pairs along the X and Y axis, respectively.
In Glauber dynamics, under the condition of detailed bal-
ance, we choose the transition rate as

W; (o; )=—,'a[1—o;j tanh[ki(cr; i +o;+i )]]

X [1—o;, tanh[k~(o;, , +o; j+,)]] . (25)

In the special case of k, =k2 = k, (27) reduces to the iso-
tropic model and the transition rate becomes

Wj(o; )=—,'a[1 cr—;j tanh[k(o;, j+o;+, j
+o.. .+o, ,+,}]] . (26)

To solve the master equation, we proceed to simplify
the expression of (26). We make use of the following
series expansion:

tanhx =x — + x — x +, ~x~ & —.
x 15 5 17 7 m

3 2 315 2
'

(27)

It is clear that the requirement of ~4k~ & m/2 will strictly
be satisfied for T ) Tc (Onsager's result gives
kc =J/ks Tc = 1/2. 269). We call it the high-temperature
expansion. Retaining the leading term of (27), the transi-
tion rate is approximately written as

W;, (o;, ) = —,'a{1—kcr;, (o;, , +o;+,

FIG. 1. The definition region of r+ and r

d r;—, = —2(o, o;, [Wj(cr; )+ W, . (o; j )]),dt "''
where

q j(t)=go;jP(. . . ,a;, . . .;t),
IOI

(30)

+ai j —i+ ai, j+ i ) ]

As with Eqs. (7) and (8), we write

q; (t)= ——2(o; Wj(o; )),d

(28)

(29)

(31)

in which q, is the magnetization at site (i,j ) and r j ;j(t).
is the correlation function of spins 0; and cr; '.

Substituting (30) into (31) and (32), we obtain

d
q, (t)= q, (t)+k(q;—, +q;+»+q; j i+q; j+,), (32)

d
r, , (t)= —2r,", ,(t").+k(r, , i +r, , , ;+i +r; ;. &,+r j ;.+.

& j+r; ' ;j. .

+ i'j';i j +1+ ij;i',j' —1+ ij;i'j'+l} '

Immediately we can write the exact solution of (32) as follows:

(33)

q „(t)=e ' g q ~ „(0)I .(2kat)I„„(2kat) .
I Im, n = —oo

(34)

For Eq. (33), we note that it is not applicable to r;; =(cr, cr,, ) because"the latter is a constant, always equal to 1. To
account for this exceptional case, we introduce the following definition: '

r, , ,(t}—r,
'

,
'= r+ for. '"i )i' or —i =i', j )j'

r, , , = . r", , ,(t)+r ,
'=—r "fo. r i &i' or i =i', j &j'

0:—ro for i =i',j=j' .

(35)

The definition regions of r+ and r are shown in Fig. 1. Here r;; ' represents the equilibrium spin-spin correlation
function. With the above consideration, a similar equation is obtained:

d
d ( )

ij;i j (t) 2F'ij'i j (t)+k ( ri''j'';i —1 j +ri'j', i+i,j + ~ij i' —i j'+rij;i +i j'+rij'''i j—i

i'j', i j + i+ ij;&',j'—i+ ij;i',j'+i } (36)
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In terms of a generating function, we finally get the solution

X[I,(2kat)I„(2kat)I ~,'(2kat)I„. '(2kat)

I„, —
, (2k at)I„,-.(2k at)I;(2kat)I„, (2k at) ],

for m )m' and m =m', n )n',
where r.j .., ,(0) is the initial value of r,

We now return to the anisotropic Ising model (25) on the square lattice and study its dynamical behavior governed by
a master equation. As before, we rewrite the transition probability as

W; (o;, )=—,'a[1—
—,'5, cr,, (o. . .+o;+, )] [1—

—,'52o;, (o,j,+o, +, )], (38)

where 5, =tanh(2k, ), 5z=tanh(2kz). The first- and second-order spin correlation function obey Eqs. (29) and (30), re-
spectively. On the right-hand side of Eqs. (29) and (30) there appear higher-order correlation functions. We again use a
decoupling procedure as follows:

Ij I —1,J I J+1&& lj I j+1&& I 1,J& lj;I j+lql l,j
&Oij O +I1,jai j —1 & & ij ai j —1&& Oi +1,j & Ij ;ij —'lqi+1, j

o, +1,,o;,, +1&=&a a+1, &&a,, +1& ";+1,q;, +1

&oijoi —1jo j —I1& & ij oi —1j &&oij —1& ij i —1j'qij —
1

We then get

(39)

dq J(t) 5,
q, (t)+-

d(at) 'j 2

5,52 5~ 5,52

4 ' ~ ' ~ 2 4
fj1 (q, -1,j+q, +1,j)+ —— 92 (q„,-1+q;,, +1» (40)

dr„,', (t)
"j'i'j'(t) ~1 (r j ;i —1,'j '+rl'j';!+1,j +rij;i —1,j'+' ~ij;i +1,j')'

&z
~2 i'j', I j —

1 i'j', i'j+1+ ij, ;i',j' —1+ ij;i',j'+1)

where we have assumed that r.... , , =r,. .+, —=9,(t) and r. . . , =r... . +, , =0 (zt). We now take the equilibrium"22"
values of 9,(t) and 82(t) as a zeroth-order approximation, so that

]/2
(1—a, e ")(1—aze '~)

0.= 'd~
(1 a, e '"—)(1 —aze'~)

(42)
(1—aze'~)(1 —a, e '~)

(1 —aze '")(1—a, e'~)

in which

Z, (1—fZ, f)

1+ fZz f Z, =tanhk,

Z1 '(1 —fZz f)

1+fZ, f

(43)

It is immediately found that Eqs. (40) and (41) are precisely the same as Eqs. (32) and (33) if one replaces
( —,'5, —

—,'5,5z/0, ) and ( —,'5z —
—,'5,52/01) with k. Therefore, their solution can be written as

q „(t)=e ' g q,„(0)I (2aat)I„„.(2bat), (44}

r „. ,„,(t) =r'„. .„.+e 'g (r, . ,'. (0)—rj ,'J') [I,(2 ta)Ia„.(2b t)Ia, ,'(2aat)I„(2b t)a
ljl I I,'( a2at)I„'( 2—bat)I . ;(2aat)I„(2bat)]

for m )m' and m=m', n)n',
{45}
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where

51 ~1b2~10) b ( ~2 ~1~2~20) (46)

It is interesting that (44) and (4S}are found to be of the same structure with Eqs. (34) and (37},except for the difference
of arguments in the modified Bessel functions. Thus it strongly suggests that the decoupling approximation may corre-
spond to the high-temperature approximation. Physically speaking, the coupling between spins can be destroyed by
thermal disturbances at high temperature. We find it to be a reasonable physical interpretation for the decoupling ap-
proximation.

Finally, we proceed to find the spin-spin correlation function at different times and different sites. Let us consider the
time-delayed spin correlation function, which is defined as

(o;j(t)o«(t+t')}= g g o,j(t)P(. . ., cr j(t), . . .;t)
I 0 ( t) I I cr( t')

I

XP, (. . , o,,. (t) . . ~. . .,o,j(t'), . . .;t')o«(t') . (47)

where P, (. . . ,o; (t), . . . ~. . . , o; (t'), . . .;t'} is the condition probability of spin at site (ij ) being in state cr; (t) at time t
and being in state cr j.(t'}at time t + t' Obvi. ously, in the high-temperature approximation, we have

g P, (. . , tr, (.t), "I . ,o,,(t'), . . .;t')o«(t')=q«(t+t')=e ' g ok-, »(t)Ik «-(2kat')It 1 (2kat') .
I
cr(t')

I
k",I"

Substituting (48) into (47), we get

(aj(t)ok&(t+t') }=g trj(t)e ' g crk-&. (t)I& k. (2kat')I& 1-(2kat')P(. .. ,a;j(t), ... ;t)
I cr(t) I

k",I"

g rij;k"I"(t)Ik k (2kat')I1 1 "(2ka—t') .

(48)

(49)

Similarly, in the decoupling approximation, we obtain

(o,j(t)cr«(t +t')) =e ' g rtj k..&..(t)Ik k.
-(2aat')I& &-(2bat') . (50)

IV. CONCLUSIONS

In conclusion, we have studied the dynamics of the
one-dimensional Ising model which NN interaction k,
and NNN interaction k2 in the absence of a field and
showed that it is not equivalent to the Ising model with
NN interaction k2 in the presence of an effective external
field k&, in contrast with that in the equilibrium case. By
solving a master equation, we obtained an approximate
expression of the magnetization per site. Following the
arguments of CST, we found an upper-bound value of 2
for the dynamical critical exponent z of our model which
is the same value as that of the Ising model with only NN
interactions. This knowledge increases our understand-
ing of the concept of universality in the dynamic region.

In the second part of this paper, we investigated the solu-
tion of the master equation in high-temperature expan-
sion and using a decoupling treatment. We found that, in
both cases, the results have the same structure, which
strongly implies that the decoupling approximation cor-
responds to the high-temperature expansion, and decou-
pling approximation is then suitable for use under high-
temperature conditions so we conclude that the reason-
able physical considerations support this point of view.
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