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The band spectrum of a Bloch electron in a uniform magnetic field is numerically computed for mod-
els with third-nearest-neighbor interactions, permitting the effects of geometrical frustration. Unusual
contacts between two bands are found and explained by use of semiclassical calculations. Above a given
hopping-term magnitude, we observe a braiding of Dirac sublevels.

I. INTRODUCTION

Since the early works of Landau' in 1930 and Peierls
in 1933, the problem of an electron in a crystal lattice un-
der a uniform magnetic field has been extensively studied.
These studies have led to deep insights in the physics of
electrons in solids (description of the Fermi surface, de
Haas —van Alphen effect, etc.). In 1976, Hofstadter com-
puted the numerical spectrum of the Harper model and
discovered its fractal structure. Experimental discoveries
such as the quantum Hall effect and high-T, supercon-
ductivity, have stimulated further theoretical works (e.g.,
flux phases of the Hubbard model and anyon supercon-
ductivity ).

The Hamiltonian describing the quantum behavior of
two-dimensional (2D) Bloch electrons in a uniform mag-
netic field depends only upon the quasirnomenturn opera-
tor

E„= (P„——eA„), @=1,2,

where A„is the vector potential such that B=curlA, a
is the lattice spacing, e is the electric charge, and A' is
Planck's constant divided by 2'. The quasimomentum
components satisfy the commutation rules

teBa[K„K2]= =2im. =2i~a=iy,
fi Po

where P is the flux per unit cell and Po=h /e is the flux
quantum.

It is important to notice that E
&

and Ez appear as con-
jugate dynamical variables, with the magnetic flux y
playing the role of Planck's constant. For this reason we
shall call the semiclassical limit the limit obtained by tak-
ing yi 0.

The nesting properties of Hofstadter's spectrum were
interpreted by the renormalization-group analysis of
Wilkinson. Let us also mention the mathematical work
of Helffer and Sjostrand using pseudo-differential-
operator techniques.

For y =2rrp/q (p /q E'Q), the Hamiltonian H is period-
ic so that Bloch's theory applies; therefore H may be
written as a q X q matrix whose entries are periodic func-
tions ofK„,p=1,2.

Another approach has been developed by Rammal and

Bellissard, who use an algebraic formalism (for a
mathematical overview see Ref. 10) to extend the semi-
classical calculations. "' Very recently, this semiclassi-
cal analysis has been tested on a triangular lattice' and
on a square lattice modified by second-nearest-neighbor
interactions. '

The y quantum mechanics reveals the topological
structure of subbands for /=0 or P rational. The nature
of points in phase space can be determined by an inspec-
tion of the spectrum of the Hamiltonian as a function of
the magnetic flux. Extrema of the energy band surfaces
in phase space give rise to Landau levels with slope given
by the local curvature.

The appearance of saddle points is revealed by a cer-
tain thickness of the spectrum; Helffer and Sjostrand
studied these regions of the spectrum, which contribute
to the main part of its fractal dimension. ' When sub-
bands are touching, the generic contact is conical giving
rise to Dirac sublevels described by Helffer and Sjostrand
and Rammal and Bellissard for Hofstadter's model.

The tunneling effect between degenerate extrema is re-
vealed by the broadening of Landau levels. This remark
is the basis of the renormalization-group analysis of Wilk-
inson which have been rigorously investigated by Helffer
and Sjostrand. This effect has been illustrated by Barelli
and Kreft' in a model for which close degenerate mini-
ma exist in the unit cell. The study of the action integral
between them shows the existence of a real part which
produces oscillations of the level splitting when varying
the magnetic field.

In the present work we want to complete the previous
scheme by introducing a realistic model with third-
nearest-neighbor interactions with a hopping term of size
t3. When t3 is turned on we are faced with nongeneric
properties in the spectrum such as various kinds of con-
tact between subbands near rational flux, existence of ex-
act degeneracy of contacts leading to a tunneling effect
between Dirac sublevels, and the observation of corre-
sponding spectacular braids.

The flux-phases theory allows one to reduce the study
of Hubbard or t-J models to a Harper-like model for
which the magnetic flux becomes a dynamical variable
minimizing the Fermi-sea energy. In the Harper model
with nearest-neighbor interactions, it has been proved nu-
merically' and by using the semiclassical approach that
the Fermi-sea energy reaches the minimum when the
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magnetic flux is equal to the filling factor. This is a basic
property for the interpretation of anyon theory.

If we take the third-nearest-neighbor interactions into
account, a geometrical frustration effect (when t3 (0)
may appear, modifying the previous result. This was
found by Nori, Douqot, and Rammal' in a model Hamil-
tonian with second- and third-nearest-neighbor interac-
tions. When the Hamiltonian is explicitly flux dependent
and for t3 & 0, we observe a paramagnetic behavior of the
electronic gas.

The paper is organized as follows. In Sec. II, we briefly
recall the construction of Hamiltonians for two-
dimensional electrons subjected to a uniform magnetic
field. Section III is devoted to the introduction of our
three models with third-nearest-neighbor interactions.
We give in Sec. IV some results of the semiclassical calcu-
lations. In Sec. V we study the nongeneric band touch-
ings at half-flux. The braiding of Dirac sublevels is ex-
plained in Sec. VI. Finally, in Sec. VII, the paramagnet-

ic effect is shown for the model whose Hamiltonian de-
pends upon the magnetic flux y.

II. ALGEBRAIC SEMICLASSICAL APPROACH

Let us consider the case of a 2D square lattice with
spacing a in a magnetic field B. The Hamiltonian opera-
tor can be written as

A
( )

[p qAX ]
( )

2m

where A(x) is the vector potential in any suitable gauge
and V(x) is the crystal scalar potential with periodicity a
in both dimensions.

Since we are interested only in the tight-binding ap-
proximation, the x position variables take values on the
lattice sites indexed by two integers (m, n). When 8 =0,
Schrodinger's equation [for any /El (Z )] reduces to

(Hg)(m, n) =t& [P(m —l, n)+g(m + l, n)+g(m, n —1)+g(m, n +1)]
+tz[g(m 2, n—)+g(m +2,n)+g(m, n —2)+P(m, n +2)]

+t3[g(m 2, n ——1)+P(m 2, n —+1)+P(m +2, n —1)

+f(m+2, n +1)+g(m —l, n +2)+g(m —l, n —2)+tj'j(m + 1,n 2)+f—(m +1,n +2)], (3)

where t, , t2, and t3 are the hopping strengths of first-, second-, and third-nearest-neighbor interactions.
The Hamiltonian can be expressed as an algebraic combination of the two fundamental translation operators

(T, f)(m, n) =g(m —l, n),

(Tzg)(m, n)=g(m, n —1) .

By taking into account the periodicity of the lattice, the wave functions are written as Bloch functions:

i (kl m+k2n)
I (m, n)=CI, q e

(4)

where (k, , k2)C [0,2m. ] X [0,2n. ] are Brillouin-zone variables. This transformation reduces the Hamiltonian to a Bloch
Hamiltonian:

g&(k, , k2) =2t, (cosk, +cosk2)+2t2[cos(2k, )+cos(2k2)]

+2t3[cos(2k, +kz)+cos(2k, k2)+cos(2k2—+k, )+cos(2k& —k, )] .

Since we are dealing with electrons in a uniform magnetic
field, we introduce the magnetic translation operators'

( U, P)(m, n) =exp A dl m —1,n
(m —1,n)

( U2$)(m, n) =exp A.dl g(m, n —1),
(m, n —1)

where U, and U2 satisfy the following commutation
rules:

I

This model may be studied by using the method intro-
duced by Rammal and Bellissard which consists of con-
sidering U, and U2 as members of an abstract noncom-
mutative C*-algebra A, called the rotation algebra.
The main interest of such an algebraic approach is that it
allows the generalization of the semiclassical approxima-
tion near zero flux to any quasirational magnetic flux so
that one can obtain an expansion of the Bloch Hamiltoni-
an matrix in small parameter a'= ~a —p /q ~.

Let us give some details upon the construction of the
Bloch Hamiltonian matrix in the general case. It is use-
ful to introduce Weyl's operator

U, U~ =e'~U~U, , y =2' =2~P—
0

W(m, , m~)=U, 'U~'e

and /=a B is the magnetic flux through the unit cell. satisfying the product rule



46 SEMICLASSICAL ANALYSIS OF HARPER-LIKE MODELS 11 561

W(m(, mz) W(mI, mz)

I I

Then, given a classical Hamiltonian O, we get, for its
Fourier transform,

with

0 1 0 000

0 0 1

0 0 0

0
0
0

EM x

(O)(k„kz)=
(m1, m )EZ2

i(k&m& +k&m 2)0 m~, mze
0

Q Q 0 ' ~ 0
(10)

and associate this expansion with the following matrix
Hamiltonian:

i(k(m'+k2 2 ml 2a m„mze W) W2

(m, , m, )eZ 2

W2=

1 0

0 2inp/q

e 2i (p/q)(q —1)

&~qXq .

1 2
—imam m

(9) In our example, we get

ik1 ik2 2ik1 2 2ik2 2H(k„kz)=t((e w(+e wz)+ z(e w(+e wz)

2ik1 ik2 2 —i 2ik1 —ik2 2 —
~ i 2ik2 ik1 2 —i 2ik2 —ik1 2 —

& i+t3(e 'e 'w&wze 'r+e 'e 'w(wz'e'r+e 'e 'wow&e 'r+e 'e 'wzw& 'e'')+H. c. (11)

k;~k;, +V'yE; withi=1, 2, (12)

where k;„i =1,2, are bottom well coordinates in phase
space and E; are operators obeying Heisenberg's commu-
tation rules, namely

[E(,E ]z=i.

The spectrum of H is computed using algorithms for rna-
trix diagonalization. We have performed diagonaliza-
tions up to q =40 for the entire spectrum. We have per-
formed matrix diagonalizations up to q =100 near half-
flux when we wanted to zoom near points of interest.
This approach has been tested on different models. ' ' '

The semiclassical calculation, namely, the expansion
modulo O(y"), can be done by using Peierls' substitution
(rigorously justified in Refs. 9 and 10):

defined by Eq. (6) and setting t, =1:
H= U, + Uz+tz(U(+ Uz)

+t3(U(Uz+U(Uz +UzU(+UzU& ')+H. c. (15)

When t2 = t3 =0, we recover the well-known Hofstadter's
model with its corresponding spectrum looking like a
butterfly; for t3=0 and tz%0 Barelli and Kreft' comput-
ed the spectrum and exhibited the braiding structure of
the Landau sublevels due to tunneling effects in phase
space for particular values of tz, the case tz, t3%0 has
been studied by Nori, Dougot, and Rammal. ' They
pointed out that effect of the geometrical frustration

t3 ——0.5

The expansion near y =0 leads to an effective Hamiltoni-
an. Then, we obtain the energies modulo O(y") using
perturbation theory.

Near a rational flux y=2mp/q+y' the previous sub-
stitution is replaced by

k;~k;, +~@'E, with i = 1,2. (14)

The effective Hamiltonian obtained after the expansion is
then an operator-valued q Xq matrix. Using Schur's-
cornplernent method, we reduce the Hamiltonian to one
band edge and diagonalize it to obtain the corresponding
energies.

I
=;,sing

"(("Hiiii:'

4

2
~ L.

ILRJ(IE(IIL
15%!d1Is

IR

-0 Energy

III. GEOMETRICAL DESCRIPTION
OF THE MODELS

To introduce the different models we want to deal with,
let us recall the second- and third-nearest-neighbor tight-
binding Hamiltonian in a uniform magnetic field 8,
through the magnetic translation operators U-, j =1,2,

FIG. 1. Parabolic contacts between energy subbands at half-
flux for the knight's-move model when t3
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FIG. 2. Braiding of Dirac sublevels emerging from zero ener-

gy at half-flux for the knight's-move model when t3 = 1.

(tz )0, t3 (0) on the ground-state energy.
Here we consider the case tz =0, t3%0 (either positive

or negative). The third-nearest-neighbor interaction per-
mits it to exhibit nongeneric behavior like parabolic con-
tacts near half-(lux (Fig. 1) and the braiding structure of
Dirac sublevels (Fig. 2). In this class of models it is possi-
ble to introduce a geometrical frustration by setting
t 3 (0. This produces a paramagnetic behavior of the
electronic gas (Fig. 3).

To illustrate this class of models let us introduce what
we will call the "knight's-move model" by analogy with
the knight's move (KM) on a chessboard. Using the rules
previously mentioned the classical Hamiltonian is ex-

FIG. 3. Paramagnetism phenomenon in the y-dependent
model for t3= —

—,
'. We have checked that the susceptibility is

negative at low fields.

pressed as

(k» kz ) =2 cosk i +2 coskz

+2t, [cos(2k, +kz)+cos(2k, kz)—
+cos(2kz+k, )+cos(2kz —k, )] .

(16)

And we will consider a model for which the classical
Hamiltonian explicitly depends upon the magnetic Aux

p =27Tcx:

OxM r(k„kz,y)=2cosk, +2coskz+2t3[cos(k, +2kz —2y)

+cos(k, —2kz+2y)+cos(2ki+kz —2y)+cos(2k, —kz+2y)] . (17)

In the weak-magnetic-field limit we recover the knight's-
move model described by Eq. (16).

IV. LEVELS NEAR ZERO AND HALF-FLUXES;
TUNNELING EFFECT

In this section we review for our model the properties
already investigated in previous works: Landau levels
near a =0 and —,', and Landau "braids" near o.=0.

A. Topology of bands near zero lux

The location and nature of critical points for
@KM(k, , kz ) are summarized in Table I. As in the model

I

I

studied in Ref. 14 there is a bifurcation for a special value
of t3. For example, we observe that for t3 lp four de-

generate minima (m, +az), (+az, ~) with az appear such
that cosaz=(1+2t, )/8t3. The consequence of such a bi-

furcation on the structure of the spectrum has been ex-
plained in Ref. 14. For t3 & —

—,'„the corresponding spec-

trum is shown in Fig. 4 and exhibits braidlike structure
for given values of the energy.

B. Landau sublevels near zero flux

By computing OKM near the critical points (minima or
maxima), quantizing and expanding near y=0 up to or-
der 1 (see Appendix A) we obtain the energies

(k„,kz, )

(0,0)

(m,vr)-
(~, az), ( azm)

(0 +cL& ) (+(x& 0)

EKM( )

+ (6t —1)(10t + 1)(2n + 1)3r
32t3 3

8t3

4+8t, —y(1+ 10t, )(2n + 1)
—4—8t3+y(1+10t3)(2n +1)

36t 3
—12t3+ 1 3y (6t, —1)(10t,+1)(2n +1)

8t3 32t3
36t 3

—12t3+ 1

(18)
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TABLE I. Location and nature of the critical points of the knight s-move model Hamiltonian near
zero flux. Here a, =arccos[( —1 —2t&)/8t&], a2=arccos[(]+2t&)/8t, ], a, =arccos(2t, —])/]2t3,
a4=arccos[ —(2t3 —1)/12t, ].

0 1

6
1

2

(0,0) min max max max max

(O, m), (m, O)

(7T m)

(0,aa, ),(+a„o)

(1T,+a2), (+a2, 7r)

(+a3, +a3), (+a4, ka4)

max

max

min

Undefined

Undefined

Saddle point

Saddle point

min

Undefined

min

max

Saddle point

To treat the y-dependent model (17), we had to include
an extra term in the semiclassical expansion.

In erst order in y, the Landau levels are given by

E„'r(y)=O&M r(k„,k2„0)+C~y~(2n+1)

'e"M (k]„kz„0)
By

(19)

+2coskzcosk, —1) . (20)

where the constant C is explicitly related to the deter-
minant of the Hessian matrix of the quantized version of

In our case it is easy to compute the derivative
with respect to the magnetic flux, namely,

OKM, r(kl k2 0)
=8t3sink2(2cos k,

minima corresponding to the energy (see Fig. 5 for
])

3

36t 3
—12t3+ 1

E

As studied in Ref. 14, the braid structure can be ex-
plained by semiclassical calculations related to tunneling
effect in phase space.

Due to the rotational symmetry of our problem, the
effective tunneling Hamiltonian denoted by HT takes the
form

0 t r t

t 0 t r

r t 0 t

t r t 0

C. "Landau" braids near zero flux

Since the four local extrema (minima or maxima) in the
knight's-move model are degenerate, we expect a tunnel-
ing effect below t3 = —

—,', . This tunneling effect leads to a
braiding of the four Landau sublevels at small flux. The
numerical spectrum obtained by diagonalization of q Xq
matrices exhibits the expected behavior near the local

Here t =~e' describes the reduced interaction between
two neighboring extrema while r ER describes the in-
teraction between second neighbors.

The eigenvalues of the tunneling matrix HT are

A& =r+2'T cosO& X2=r 27 cosO

A3
—r +2m'sinO, A,4= —r —2~ sinO .

0.9-

0.8-

tj = -0.5
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FIG. 4. Spectrum of knight's-move model for t3

FIG. 5. Braiding of Landau sublevels near zero flux in the
knight's-move model for t3
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—im(S)/y
2~' (21)

Following the strategy developed by Wilkinson and Aus-
tin in Ref. 19 we numerically compute the classical action
S along a closed path joining the contours (see Appendix
8) and insert it in the expression of the tunneling matrix
element ~, namely,

Energy
0.03

E x L'i(
0 02

0.0":

0

0.006 0.508 ~. . 0~1 ~16 0.018

where co is the corresponding harmonic-oscillator fre-
quency and the phase 0 is defined by

Re(S)
y

The eigenvalues of the tunneling matrix HT give the split-
ting of energy.

Adding the semiclassical energy obtained in (18) and
the contribution due to tunneling effect, we fit to first or-
der in y the data extracted from the exact spectrum (Fig.
6), by

-0 02

-0.03

FIG. 6. Comparison between semiclassical calculations (solid
curves) and datas extracted from the numerical spectrum
(points) for the knight's-move model near zero Aux for t3

translation operators are transformed into

U/(k)=e 'w, (kE'7 ), j=l,2,
36t 3

—12t3+ 1
m„"(y)=

8t3

(6t —1)(10t +1)(2n+1)3y
32t3 3

with

0 1 0 —i

1
(23)

Im(S) /y Qs
7T

3 12t3 + 1I3,4(y )—
8t3

Re(S)
4y 4

(22)

0, o.2, and 0.
3 are the usual 2 X 2 Pauli matrices, with

1 0
3 0

Therefore, the Hamiltonian may be rewritten as

(6t —1)(10t +1)(2n+1)3y
32t3 3

r+y —e rm(s) /'r sin
7T

Re(S) tr

4y '4
The broadening of levels observed in the braids is con-
trolled by e ' ' ' while the oscillations are due to the
real part of the action Re(S)/y. We numerically
checked that the coefficient r is negligible compared with

(k» k2 ) =2[cask, —2t3cosk, cos(2k2 ) ]o,

+2[cosk2 —2t3cos(2k, )cosk2]o 2 .

(24)

As in the weak-magnetic-field limit, we compute the ei-
genvalues of @KM' to get

E+ (k„k)=2+2[c sok, [1—2t3cos(2k2)]

+cos k2[1 —2t3cos(2k& }] I

'

(25)

D. Landau sublevels near half-flux

Following the strategy developed in Sec. II near the
a= —,

' value of the magnetic flux, the Hamiltonian is

represented here by a 2X2 matrix and the magnetic

We also computed the location and nature
points for E+ and E when t 3 is varied. The
summarized in Table II.

For the lowest order in the magnetic flux
the semiclassical calculations give

of critical
results are

(k„,k2, )

(+~/2, +~/2)
(/32, P~)

(0,0), (0, vr), (vr, O), (~, vr)

(O, vr/2), (vr/2, 0), (m, m /2), (~/2, vr)

EKM (y1)

2&2(1+2t3 )&y'n
2v'2( 1+2t3 )Q(2t 3

—1 ) /t 3&@'n

2&2~1 —2t, ~+ O(1')
2il+2t)i+0() ')

(26)

We find the emergence of the usual Landau levels and of two families of Dirac points giving rise to a &y behavior. '



46 SEMICLASSICAL ANALYSIS OF HARPER-LIKE MODELS 11 565

TABLE II. Location and nature of the critical points of the knight s-move model Hamiltonian near
half flux. Here P, =arccos[(12t,'+ 12t, —1)/32t, ], Pz=arccos[+(1+2t, )/4t, ], and

P, =arccos[+(1+2t, )/12t3].

3+2&3
oo

6
2&3—30 1 1

10 2

(0,0), (0,~), (m.,0), ( m., m. )

(0,n. /2), (m. /2, 0), (m, m/2), (n/2, m. )

max
max

max max max
Saddle point

max min
max

max

(+~/2, +m/2)

(~/0, +Pi), (+Pi, n/0)

(p2 pz)

(p3 p3)

Saddle

min

Saddle point

min

Undefined

Undefined

Undefined

Saddle point

min

Saddle point

V. NONGENERIC CONTACTS AT HALF-FLUX

In this section we study the band touching in the particular case a=y/2m= ,' .We—.find parabolic contacts (Fig. 1)

giving rise to Landau levels in the corresponding spectrum (Fig. 7).

A. Contact along lines

The computation of the critical points of E+ (k„kz)requires us to treat as a particular case the band touching for
t3= —

—,'. Then the eigenvalues of the classical Hamiltonian (24) computed at a= —,
' are

E+ (k„k2)=+2+cos k, [1+cos(2k2)] +cos k2[1+cos(2k~)] (27)

We notice that the band touching arises along two lines
of critical points determined by (k„m./2) and (m/2, k2)
with (k„k2)in the Brillouin zone, as it is shown by Fig.
8. The associated spectrum is represented in Fig. 4.

B. Parabolic contacts

I

case Eq. (25) becomes

E+ (kt, k~) =+2[cos k, [1—cos(2k2)]

+cos k2[1 —cos(2k, )] ]'
Near the points

(0,0), (n., O), (O, m), and (n, m. ),

(28)

The semiclassical calculations revealed the emergence
of Landau levels near a= —,

' (26). For t3 =
—,', these levels

correspond to zero energy and the observation of sub-
bands contacts suggests a new kind of behavior. In this

t3 ———O. 5

~ I " ' ' 11189
1

k2

t3= 0-5
0.9-

0.8-

0.7-

~ 0.6-
K
V
g 0.5-
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~pL&l K4gr

Y-~~~ c'
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!. '- ~' ~Qahtligil(
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O Energy
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Energy

FIG. 7. Spectrum of knight's-move model for t3

FIG. 8. Subbands contact along two perpendicular lines in
the knight's-move model at half-flux for t3
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0 58-

small parameter such that k &, 2, is replaced by
k "z,"'+g. Performing the calculation in the limit g)~0
we find the following expressions (up to order 4 in q):

0.56

0.54 .-'
~ ~

The g behavior for E+ explains the parabolic contact
between the two subbands.

~ ~

~0 ~ ~

VI. TUNNELING BET%VEEN DIRAC LEVELS

0.5
Energy

FIG. 9. Comparison between semiclassical calculations
(dashed lines) and datas extracted from the exact spectrum
(points) for the parabolic subband contacts near half-flux in the
knight's-move model for t, =

—,
'. Solid lines correspond to the

addition of a fitted y term in the semiclassical expansion.

The aim of this section is to explain the braiding struc-
ture observed in Fig. 2. As has been done in Sec. IV C,
we compute an effective tunneling Hamiltonian (4 X 4 ma-
trix) and apply Wilkinson and Austin's result to get the
tunneling matrix element.

A. Conical contacts

we observe a parabolic contact (Fig. 1) and the quantized
Hamiltonian can be rewritten in the lowest order in y' as

Let us consider the case t3%+—,
' in the knight's-move

model near half-flux. The equation for band touching,
E+(k, , k2)=E (k„k2),has the following solutions:

HKM (y') =4y'(K2o, +K f o2) =4y'H'o . (29)
(k&„k2,)=(+sr/2, +sr/2) for any t3

The eigenvalues of Ho =K, +K2+2(K,K2+K2K, )

were numerically computed; the lowest corresponding ei-
genvalues are 0.800 807 8, 6.041 937, and 17.673 803.
From these results we perform a numerical comparison
between the exact spectrum and the semiclassical results
(Fig. 9). Dots represent the exact spectrum, dashed lines
the semiclassical expansion up to order one in y, and
solid curves contain a correction of order y .

The nature of the contact can be easily determined by
an expansion given by the following rule: let g be the

I

and

(k„,k2, )=(p~, p2) if t3E( —~, —
—,')U( —,', +~) .

The nature of the contact can be easily determined by ex-
panding around the solutions written above. As was
done to exhibit parabolic contacts, we introduce the pa-
rameter g and replace k „2,by k", "2,"'+g.

When g) 0 we find the following expressions up to or-
der 3ing:

26t3+ 1
E'+— ' — '(g) =2&2 —(1+2t3 )g+

E+' ' (g) =2&2 2+(2t, +1)/4t3g+4+(2t3+1) /4t, (1 t3 )rt ——Q(2t3 —1)l4t3
3t3

6t3+17t3+4
g I

Therefore, the contact is conical at each point where
bands touch, as can be seen in Fig. 10 (t3 = —1).

B. Braid structure at half-flux

The degeneracy of Dirac points (P2, Pz) observed for
f 3 —

2
leads to a braiding of the Dirac sublevels emerging

from the zero energy (Fig. 2). Such a phenomenon due to
the tunneling effect for a rational value of the magnetic
flux o. has not been seen before. Having a look at Table
II, we remark that two bifurcations occur for t3
and for t3= —,

' giving rise to four degenerate minima in
the Brillouin zone.

As in the zero-field limit, we are able to compute the
action along a closed path relating the four degenerate
minima (see Appendix B). The main problem here is to
adapt formulas computed for a bottom well problem' to

a Dirac point leading to a &y' behavior [Eq. (26)j for the
semiclassical energy.

We compared semiclassical results obtained by diago-
nalization of the tunneling matrix with the data extracted
from the exact spectrum (Fig. 11) using the numerical re-
sults for the tunneling action (see Appendix B). To ob-
tain agreement we had to adjust the parameter cu corre-
sponding to the harmonic-oscillator frequency. We no-
tice that for o. )0.515 the accuracy is lower because the
coupling between the four minima and the other
minimum (n/2, n/2) becomes re. l.evant.

VII. PARAMAGNETISM

This section is devoted to the study of the y-dependent
model described by Eq. (17). The corresponding spec-
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0 e extra term com-The contributions of each of them to the e
ing from the y dependence in Eq. (19) are as follows:

(k„,k2, }

n, +a&) +(2t3 —1)Q(10t3+1)(6t3 —1)/16t
(+a&,m. }

P Energy
(32)

Whent = ——' wec3 2
can perform an interesting compar-

ison between the spectra of both models in Fi s. 4
res ectivel .p

'
y. The semiclassical formulas in this case ive

the following extra terms:
n is case give

(k„,k~, )

FIG. 10. CConical subbands contacts for the knight's-move
model near half-Aux for t3 1.

(m, m/2)
(m, 3m /2)

(m/2, m ), (3m/2, m )

4
—4
0

(33)

trum (see Fi . 3)'g. 3& exhibits paramagnetism as the Fermi-sea
energy decreases when increasing the magnetic 6
low fiuxes).

agne ic ux ~at

A. Suppression of the tunneling effect

(n., +a ) (+2), ( a2, m) such that az=arccos
1+2t3

8t3

Energy

0 6

As we said before, the y-dependent model is reduced to
the knight's-move model when y =0. The s

t ere are no braids in spite of the degeneracy of four
minima at =0'
tunnelin e

y =0, t is means in particular that th
'

g effect in this model in the

weak-field

'
a ere is no

Let us c
- e imit.

consider, for example, the case of th f
ma nameley,

eo e our mini-

Insertin (33) in 1
'

g
' ' 9), we obtatn to first order in y' the

Landau levels for the minima

(k„,k~, )

(n., 3n /2)
(~/2, n ), (3m/2, n )

(m, m /2)

EKM, y( )

4+y—(6n —1)—4+ 3y(2n + 1)
4+y(6n—+7)

(34)

These expressions fit perfectly with the spectrum. Thum. ere-

cause the fourfo
ble to explain the vanishing of the b 'd b-e rai s e-

fourfold degeneracy is partially lifted. The lev-
el emerging from —4 on the left side of the s ectrurn

y e previous formulas. It corresponds to
Eo(m, 3n/2) havin a n

'

g negative slope compared with the

two
other Landau levels. Figure 12 h hs ows t e degeneracy of
wo Landau levels as computed in (34).

Flux

0.024-

0,022-

0.020-

0.018-

0.016-

K
y 0.014-

~L 0.012-

0.010-

0.008-

0.006-

0.004-

0.002-

t3 = -0.5 / / }
/ / (

/ / /
I

p n between semiclassical calc l t'FIG. 11. Com arison b
so id lines) an) and exact spectrum (points) for the braidin

n b ua ions

i i e y t e knight's-move model near half-flux
or t3 —1.

I I

-4.4 -4.2 -4.0 -3.8 -3.6 -3 4 -3.2 -3.0 -2.8
Energy

I

-2.6

FIG. 12. Vanishin of'

g braids in the y-dependent model for
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B.Landau paramagnetism

The explicit y dependence of the classical Hamiltonian
(17) is found to lead to interesting phenomenon. Models
previously investigated (up to second-nearest-neighbor in-
teraction without any explicit dependence in the (lux) ex-
hibited "Landau diamagnetism" for the related electronic
gas, namely, the Fermi-sea energy (in the weak-
magnetic-field limit) 8(P) is a function of the magnetic
field and

Po BB
a aa

where g is the magnetic susceptibility.
For our y-dependent model we have a positive value of

the magnetization at low fields and hence paramagne-
tism.

VII. CONCLUSION

This paper presents a detailed study of some charac-
teristic features of the spectra of Bloch electrons in a
magnetic field. We focused our work on the effects of a
third-nearest-neighbor interaction on the numerical spec-
trum. We have studied the effects of parabolic contacts
between two bands and exhibited a braiding structure of
Dirac sublevels due to the tunneling effect near half-flux.
We pointed out the accuracy of the semiclassical calcula-
tions.

The algebraic techniques permitted us to get an
efficient way of computing semiclassical expansions near
the bottom of wells and Dirac points. Nevertheless, there
is a need for improving these algebraic methods to quan-
tize near a saddle point or a line of critical points.

The semiclassical limit in these models, y) 0, has been
studied both with the algebraic approach and in the
pseudo-differential-operator framework. ' As far as the
WKB method is concerned, let us mention the exhaustive
work of Helffer and Sjostrand for the Harper model.

Finally we exhibited a paramagnetism in the sense that
the Fermi-sea energy decreases when the magnetic flux
increases. This property, however, needs to be studied
more precisely for this type of model. '
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APPENDIX A: QUANTIZATION
AND HARMONIC-OSCILLATOR FORMALISM

Near the critical points (k,„kz,) the quantization of O
results from the substitution

k„„+&1K, ,
where K„,p=1,2, are the quasimomentum operator

I

APPENDIX B:
COMPUTATION OF COMPLEX PATHS

In this discussion we calculate complex paths and asso-
ciated action integrals corresponding to situations involv-
ing the tunneling effect for zero and half-flux. Concern-
ing the zero flux case the degeneracy in phase space is
reached for t3 —

—,', and t3 ~
—,'. To find the path relating

the four degenerate wells we have to solve

2 cosk&+2 cosk2

+4t3[cos(2k, )cosk2+cos(2k2)cosk, ] =ED, (Bl)

where Eo=(36t3 —12t3+1)ISt3. If k, is a real number,
the previous equation allows k2 to be complex such that

—I+2t3 —4ticos k, +f(k, )
cosk2 =

St3cosk,

where

f (k, ) = 16t3cos k, —St3(1 —2t3)cos k,

+St3Eocosk, +(1—2t3)

(B2)

From Table II, we expect braiding of sublevels for
t 3 —

2
and t 3

)
—,
' . At first order in y ', the equation giv-

ing the path relating the four degenerate minima in phase
space is

cos ki[1 —2t3cos(2k2)]

+cos k2[ 1 —2t3cos(2k, )] =0 . (B3)

If k, remains real then kz may be complex, satisfying

components satisfying the following commutation rules:

[K„K2]=i.
The semiclassical expansion (y~O) requires the calcula-
tion of matrix elements of the usual harmonic oscillator.
Defining creation and annihilation operators we use the
standard formalism:

a+a* a —a*
K,=, K, = with [aa"]=1.

2 l 2

Let us recall the following rules: a ) n ) =&n
i n —1 ),

a*in ) =&n + 1 ~n +1). Following the strategy devel-
oped in Ref. 9, we find

(tt I(K2i, +K22)in ) =2n +1,
(n~(K, +K2)in ) =

—,'[1+(2n +1) ],
(n ~(KiK2+K2K, ) n ) =

—,'[ —3+(2n +1) ],
(n ~(K, K&K, +K&K iK2) ~n ) =—,'[5+(2n +1) ],
(n i(K, K2K, Kz+K2K, K2K, )in ) =

—,'[1+(2n +1) ] .

—(1+2t3) —16t3cos k, (t3cos2ki —1 —2t3)+g(k, )

cos k2=
32t3cos ki
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where

g (k, )=[(1+2t3) +16t3cos k&(t3cos k, —1 —2t3)] —64t23(1+2t3) cos k, .

The resulting complex actions satisfy

1 maxS=f '
k, (k, )dk, .

l, min

In the following table, we give the numerical results obtained for the four cases of interest:

(B5)

a=O,
a=O,

—1a ——2'
a=——1

2'

23 2

t3 =
—,
'

t3=1
t = —13

Real part

2.125 89
1.167 44
2.707 24
1.370 80

Imaginary part

—0.141 448
—0.331 342
—0.163 531
—0.186932

Observation

Braids for q =40
No braids observed
Braids for q=100
No braids observed
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