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The mean resistance of a one-dimensional wire is calculated with the use of Landauer formula

for three types of arrangements: the random, Thue-Morse, and Fibonacci chains for which the
positions of the atoms and the scattering strengths are modulated according to the prescribed rules.

Comparison of the obtained numerical results shows that for the position modulation, a Thue-Morse

chain is more localized than a Fibonacci chain, while for the scattering strength modulation it is

less localized. It is shown that the Thue-Morse chain can be switched from being localized to being
extended when the ratio of the strength modulation to the position modulation is increased. A

similar change occurs in the generalized Thue-Morse chain.

I. INTRODUCTION "1," can be generated by the following recursion formula:

Technical advances in submicron physics have en-
abled experimentalists to fabricate nearly ideal one-
dimensional wires (see, for example, Ref. 1 and refer-
ences given therein). In these systems, both the magneto-
optical absorption and the transport properties have been
studied recently. 1z The relationship between the elec-
trical conductance at zero temperature and the trans-
mission coefilcient, given by the well-known Landauer
formula, s indicate that some experimentally measurable
quantities can be adequately explained when regarding
a one-dimensional (1D) wire as an infinite 1D array of
potentials.

The discovery of quasicrystals4 has stimulated inter-
est in exploring the physical nature of quasiperiodic
sequencess as well as commensurate-incommensurate
systems. s Work on aperiodic sequences, including the
Thue-Morse, incommensurate, and others, has also in-
cluded studies of direct experimental relevance to semi-
conductor multilayers (superlattices) (Ref. 7) and super-
conducting networks. s It is interesting to note the con-
tradiction between some calculated thermodynamic and
spectral properties and the results from the structure fac-
tor in a Thue-Morse (TM) sequence as to whether the
TM chain is more random or more "periodic" than the
Fibonacci chain (see Kolar et al in Ref. 5). I. n this paper,
we will concentrate on comparing the mean resistance for
the TM and the Fibonacci chains with position or scat-
tering strength modulation. Our calculations of the lo-
calization length as a function of the chain length have
shown that the TM chain is more localized for position
modulation but less localized for the strength modula-
tion.

The TM sequence composed of two symbols, "0" and

where e„denotes the nth element of the sequence. The
resulting infinite string of digits never repeats itself. In
spite of this periodicity, the TM sequence is still self
similar in nature. Both the TM and Fibonacci sequences
can be generated by the simple substitution rules: 0 -+
01, 1 ~ 10 for the TM sequence, and 0 -+ 1, 1 ~ 10 for
the Fibonacci one. The finite chain obtained from a single
"0" by n times of applications of the respective substitu-
tion rule is called the nth generation chain. It has 2" ele-
ments for the TM case, and F„elements for the Fibonacci
case, where the Fibonacci numbers (F„)are recursively
defined by F„+1 = F„+F„1with Fp = F1 = 1. For
the TM sequence, the ratio of the number of 0's to the
number of 1's is equal to one in any generation. How-

ever, this is not true for the Fibonacci sequence. For
the infinite Fibonacci sequence, this ratio has the limit-

ing value v = (~5+ 1)/2 (golden mean), an irrational
number. We can choose two fundamental lengths a and

b, and assign them to the numbers "0" and "1" in the
sequence, respectively. Then the successive TM chains
are (ab, abbar abbabaab, . . .), and the Fibonacci ones are
fb, ba, bab, babba, . . .). The nth generation of these se-
quences is obtained in a straightforward way. For the
TM case, we have W„+q ——W„W„', where Wo ——a and
W„' is obtained from W„by exchanging a and b. For
tile FlboIlaccl sequence, we obtain Sny1 = SnSn 1 with
Sp = a, S1 = b The lengt. hs a and b are the separations
between neighboring scatterers and the whole sequence
determines where the scatterers are. For example, the
third-generation Fibonacci chain (bab) has scatterers at
(zn)n=1, .. .P; = b, (b + a), and 2b + a. The length of
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the nth generation (n ) 0) is I~M = 2" (a+ b) and
I» = (E„ ib+ F„za) for the TM and Fibonacci se-
quences, respectively.

The rest of the paper is organized as follows. In Sec.
II, we describe our model and present the theory for
calculating the resistance. This includes a brief review
of the transfer-matrix and optical methods, along with
some related numerical results. In Sec. III, we calculate
the mean resistance for the random, TM, and Fibonacci
chains, and compare the localization length as a function
of the chain length for these three systems. Section IV
is devoted to a discussion on the generalized TM and Fi-
bonacci chains. A short summary of the key results is
also presented at the end of Sec. IV.

II. MODEL AND THEORETICAL DESCRIPTION

The scaled (5 = 2m = 1) one-dimensional (1D)
Schrodinger equation in the presence of potential scat-
terers is given by

(2)

The short-range scattering potential for N scatterers can
be expressed as

V(z) = ) q„6(x —x„) .

Reading and Sigels obtained an exact solution of Eq. (2)
using the potential in Eq. (3) with finite N and arbitrary
strengths and positions. Gumbsio later solved the 1D
Dirac equation for arbitrary b-function scatterers. For
simplicity, in this paper, we let q„have two values to
simulate the randomness in the scattering strength. That
is, we take q„= qi, qz (qi P q2). The positions {x„}of
the scat terers are taken as being given by the Thue-Morse
(TM) sequence. Specifically, if we know the positions
of the scatterers for the nth generation TM chain, say
{yi,yz, . . . , yz },then the positions of the scatterers for
the next generation {zi,xz, . . . , zz +i }are given by

x= fori = 1, . . . , 2",
yz + [(b + a)(i —2") —y, z j for i = (2" + 1), . . . , 2"+

with the known first-generation scatterers located at
{a,b+a} To defin. e the notation and for comparison, we
also list the results for the Fibonacci chain. In this case,
if the positions of the scatterers for the (n —1)th and nth
generations are {yi,yz, . . . , y~„,}and {zi,zz, . . . , zs„},
respectively, we can obtain the positions of the scatterers
for the (n+ 1)th generation at {zi,xz, . . . , z~„+,}from

~

~ ~

z' fori =1, . . . , F„,
z~„+y, F„ for i = (F„+1), . . . , I'„+1,

with the first- and second-generation scatterers located
at {b}and {b,b+a}.

With the use of the 1D single-channel Landauer for-
mula, we can calculate the dimensionless conductance g
of the system from

2ez/h 1 —T (6)

A. Transfer-matrix method

where T is the transmission coefBcient through the whole
quasicrystal chain. For the calculation of transmission
coefficient T, we shall use two methods, i.e. , the transfer-
matrix and optical methods which are described in detail
in the following subsections.

where g~ (z) and Q~ l (z) are represented by the spinors
of the coefficients from the plane-wave expansion of their
wave functions. The transfer matrix T„ is given explic-
itly by

1 —iq„/2k —iq„/2k
iq„/2k 1 + iq„/2k

which is position dependent due to the two different kinds
of scatterers in the system. Here, k = ~E is the wave
vector along the chain direction and E is the incident
energy of an electron. The propagation of the right-going
plane wave between the nth and (n + 1)th barriers is
related by

where D„ is the displacement matrix, given by

~iky O

o —ckp~
W

and y„= (z„—z„ 1). The scattering strengths {q„}are
distributed according to

qi«r y~-i =~,
gn =

qg for y„g ——b,

Making use of the transfer matrix, we can obtain the
relationship between the wave functions Q

' (x) on the
left and right sides of the nth scattering barrier. A
straightforward calculation yields

with yi = xi. The total transfer matrix M for this chain
with N scatterers is obtained from

(7)
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(1,2) iql 2

2k+ iqg, 2

The sequence {q„)is the same as in Eq. (11). Current
conservation gives two additional constraints

t„p„' + p„t„' = 0 .
(16)

If the values of (t„q, p„q) are known, we can calculate
(t„, g„) from

(Z, 2)

1 —~(~ 2)~

The total transmission coefBcient through N barriers is
obtained by T = t~t~.

In Figs. 3(a) and 3(b), we compare the results of our
calculations for the resistance of a periodic chain by us-

ing the transfer-matrix and optical methods, respectively.
These caIcuIations show that there is a good agreement
of the values of the height and position of each peak ob-

where &q ——ti ) and pq = pi &. Also, H„q = 2ky„
is the phase angle acquired by an electron after two suc-
cessive reflections at the (n —1)th and nth barriers. The
amplitudes for transmission and reflection (t, p) through
a single b barrier are given by

(y 2) 2k

2k+ q,. '

tained using two methods. If more scatterers are added
to the chain, less of the fine structure will be retained
from the optical calculation. There is also less agreement
between the results of the two calculations. In Figs. 3(c)
and 3(d), we plot the calculated results of the resistance
of the Fibonacci chain with the use of transfer-matrix
and optical methods, respectively. Clearly, there is still
some agreement both in the height and in the position
of the peaks obtained with these two methods. If several
more scatterers are added to the chain, the fine structure
will be gradually eliminated from the optical calculations.
However, the overall agreement between the results is not
as good as in a periodic chain since there is more of the
fine structure in a quasiperiodic chain. We conclude that
the optical method could be used in both periodic and
quasiperiodie chains if the number of scatterers is not
very large.

III. LOCALIZATION EFFECT

In this section, we address the main question of our in-

vestigation, consisting of which of the two chains, Thue
Morse or Fibonacci, is more localized. We answer this
question by comparing the mean resistance as a function
of the chain length. This will show which chain has the
shorter localization length for the same chain length. We
have computed the mean resistance by averaging the re-
sistance over an interval of k c [ko, ko + Nhk] with the
step Ak for different lengths l. or difFerent generations:

p = ) p;(kp+ ib, k) .

From this calculation, we are able to compare the L de-
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pendence of p for different systems. The so-called o.
parameter s can also be obtained from this L dependence:

The inverse of o. defines the localization length (. In
our numerical calculations, we take the interval to be
[0.9, 1.0] and b,k = 10 s.

Figures 4(a)—4(c) show plots of the mean resistance as
a function of the chain length L for the random, TM,
and Fibonacci chains with position modulation. These
calculations show that the threshold value of L (indi-
cated by a vertical arrow in the figures) is the largest for
the Fibonacci chain. For the random chain, the mean re-
sistance increases exponentially with L. However, for the
periodic and quasiperiodic chains, this increase is accord-
ing to a power law. This is clearer from Figs. 5(a)—5(c),
where the localization length ( is plotted as a function
of L In a random ch. ain, there are oscillations of ( only
for a small range of values of L. As L increases, there
is Anderson localization~s where ( is independent of L,
i.e., the mean resistance increases exponentially with L.

For the Fibonacci and TM chains, there are substantial
oscillations in the entire range of values of L. This means
that there is a power-law increase of the mean resistance
with L. The mean localization length in the TM chain
is smaller than in the Fibonacci chain. This implies that
in the case of position modulation the TM chain is more
localized than the Fibonacci one.

For the strength modulation in the random, TM, and
Fibonacci chains, from the L dependence of the mean
resistance we find that the threshold values of L do not
mutually differ very much in all three arrangements. The
main difference is that the rate of increase of the mean
resistance with L is the largest for the random and Fi-
bonacci chains. The absolute magnitude of the mean
resistance is much larger in the Fibonacci chain. In Figs.
6(a)—6(c), the L dependence of the localization length is
presented. In the random and Fibonacci chains, there
are oscillations of the localization length in the short
chain regime only. As L increases, there is localization
for which ( is independent of L For the TM ch.ain, on
the other hand, there are large oscillations of the local-
ization length which is attributed to a power-law increase
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of the mean resistance with L. The localization length in
the Fibonacci chain is comparable to that in a random
chain. This indicates that the Fibonacci chain with posi-
tion modulation is almost localized. We conclude that in
the case of strength modulation, the TM chain is much
more extended than the Fibonacci one.

From the results presented above, we expect some can-
cellation of the effects of the position and strength mod-
ulation in the TM and Fibonacci chains. This is con-
firmed in Figs. 7(a) and 7(b), where we have shown the
L dependences of the mean resistance (see the left-arrow
indicated ones) and the a parameter (see the right-arrow
indicated ones) for the TM and Fibonacci chains with
both position and strength modulation. The threshold
values of L and the rate of the resistance increase now
become comparable to each other. The behavior of o; as
a function of L is quite similar in these two systems. This
gives strong evidence for the large cancellation of the ef-
fects of the position and strength modulation in the TM
and Fibonacci chains. Based on these studies, we predict
that one can switch the TM sequence from an extended
state to a localized state by increasing the ratio of am-
plitude of the position modulation to amplitude of the
strength modulation.

IV. GENERALIZED THUE-MORSE CHAIN

We now extend our discussion to the generalized Thue-
Morse (GTM) chain. The GTM sequence is generated by
the substitution 0 ~ 0~1", 1 ~ 1"0~ (see Kolar et at. in
Ref. 5). The tth generation chain has m(m+ n)' ~ digits
"0" and n(m+ n)' ~ digits "1." The ratio of the number
of 0's to the number of 1's is a rational number m/n,
independent of the generation index. As an example, we
choose two fundamental lengths a and b, corresponding

to the numbers "0" and "1," and generate the successive
GTM chains (abs, abs(bsa)s, . . .) for rn = 1 and n =
3. For the tth generation, the length of the string is
L = (m, + n)' ~(ma + nb). Procedures for the resistance
calculations developed for the original TM chains (rn =
n = 1) can also be applied to this case. If the ratio m/n
is very large or very small, a GTM sequence will be very
close to a periodic one.

Figures 8(a)—8(c) show plots of the resistance as a func-
tion of the incident energy E of an electron for the pe-
riodic, GTM, and TM chains, with position modulation.
When the ratio m/n is small, say m/n =

&&, the behav-
ior of the resistance in a GTM chain looks more like its
periodic counterpart. In fact, we can consider a GTM
chain with very large or very small ratios of m/n as be-
ing periodic with a slight disorder in the positions of the
scatterers. In this way, we can switch the TM sequence
from a localized to an extended state by increasing or
reducing this ratio from a value of one.

In a similar way, one can obtain the so-called general
ized Fibonacci sequence. ~s ~7 The 1th generation of this
generalized sequence is given by the recursion relation
St+~ ——S, S," „where So ——a, S& ——b. The correspond-
ing generalized Fibonacci numbers, de6ned by the recur-
sion formula F~+~ ——mFt + nF~ q with Fo ——F~ ——1, in-
crease exponentially. For the golden , silver , and coppe-r-
mean sequences, we have m = n = 1; m = 1, n = 2; and
m = 2, n = 1; respectively. It has been proved~ ' that
the matrix trace maps of the golden- and silver-mean re-
cursion formulas belong to the same universality class of
dynamical systems, while the map of the copper-mean
sequence has a very diR'erent dynamical behavior: it is
two dimensional, area nonpreserving, and noninvertable
and has a fractal invariant. For a generalized Fibonacci
sequence, the ratio of the number of 0's to the number
of 1's depends on the generation index. This is difFer-
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ent from a GTM sequence. For the infinite generalized
Fibonacci sequences, the limit of this ratio is equal to
(v5 + 1)/2, v2+ 1, and 2 for the golden-, silver-, and
copper-mean sequences, respectively.

In conclusion, compared to the Fibonacci chain, we
have found that the TM chain is less localized for the
strength modulation, and more localized for position
modulation. We can switch it from an extended one to
a localized one by increasing or reducing the ratio rn/n

from one or by increasing the ratio of strength modula-
tion to position modulation.
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