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Relative scintillation yield at different linear energy transfers
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A theoretical model is presented for the linear-energy-transfer (LET) variation of the relative scintilla-

tion yield in hquid argon. It is based on energy partition between the core and the penumbra of the

charged particle track with little quenching in the penumbra except for fission fragments. Scintillation
from the core can be quenched significantly by a biexcitonic mechanism. Some detailed calculations in-

dicate that the electron-ion recombination may occur before exciton self-trapping. Fairly good agree-

ment with experiment has been obtained with respect to the relative variation of the scintillation yield

with LET using a diffusion-reaction model of free excitons with a specific reaction rate within acceptable
limits. At the same LET different heavy-ion tracks can develop different quenching ratios depending on

the density of deposited energy in the core.

I. INTRODUCTION

Absorption of ionizing radiation in liquid argon (LAr)
produces no permanent chemical change. It is manifest-
ed in free charge carriers [mostly at low linear energy
transfer (LET)], as scintillation from resultant self-
trapped excitons or degraded as heat. The average num-
ber of electron-hole pairs produced by the absorption of
energy T in LAr is given by 1V, = T/8'where the 8' value
has been measured to be 23.6 eV. ' Additionally a certain
number of excitons are directly produced with the ratio
N,

„
/N; ='0.21. It is also known or conjectured on

reasonable grounds that these excitons are quickly self-
trapped (in —10 ' s) and the same applies to excitons
produced by electron-hole recombination. This time is
comparable to the hole self-trapping time. ' The self-
trapped excitons Arz give vacuum ultraviolet (vuv) scin-
tillation. Before self-trapping the free excitons can
diffuse and undergo biexcitonic quenching with a specific
rate k accordingly as

X"+X ~X+X+e(kinetic energy)

when the excitation density is very high. The above reac-
tion has been proposed as a possible mechanism of scin-
tillation quenching.

A series of experiments has been conducted to study
the scintillation yield (the light intensity per unit ab-
sorbed energy) in liquid argon as a function of LET over
more than four orders of magnitude, using ionizing par-
ticles from radioactive sources and accelerators. Of the
particles investigated, a particles, fission fragments, and
relativistic Au ions show considerable quenching due to
high excitation density. As we will show later about 30%
of the energy deposited by a particles or relativistic Au
ions is lost in quenching whereas only —17% is available
for luminescence by fission fragments.

It is important to note that although relativistic Fe and
Kr ions, respectively, of 705 and 730 MeV/n energy,
have much larger LET's than that of a particles, these do
not show significant quenching. This fact demonstrates
that quenching is not determined by LET alone, but also
by the details of track structure, such as the radial distri-
bution of energy deposition, which is given mainly by the
velocity of the incident particle.

The 'X„+and X„+states of Ar2 give vuv scintillation.
The emission lifetimes from these states have been ob-
served to be the same for electrons, a particles, and
fission fragments. If the interactions between these
low-lying molecular states were regarded as a possible
quenching mechanism then the decay times would be
LET dependent. The experimental fact that the decay
times are indeed LET independent therefore rules out the
participation of these states from the quenching process.
The scintillation curves in Fig. 2 of Ref. 5 show a sub-
nanosecond risetime for electron excitation but much fas-
ter risetime for a-particle and fission-fragment excita-
tions. These observations suggest that the electrons and
holes recombine under high LET excitation much faster
than the electron thermalization time which is reported
to be -500 ps in solid Ar.

We propose a quenching model based on energy parti-
tion between the core and the penumbra and a diffusion-
reaction scheme of free excitons. A rapid recombination
model due to a strong cylindrical field will also be dis-
cussed.

II. THEORETICAL FRAMEWORK

From the radiation physics point of view the structure
of a heavy-ion track is conveniently described in terms of
a core and a penumbra. The core is the inner zone of
relatively high-energy deposition density created by
direct interaction with the primary particle and also to
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some extent by energy transfer from secondary electrons
or 6 rays. The penumbra, the outer region surrounding
the core, is a zone of relatively low-energy deposition
density produced by energy transfer from emergent
secondary electrons. Figures 1(a), 1(b), and 1(c) show, re-
spectively, the core and penumbra of tracks of a parti-
cles, fission fragments, and relativistic Au ions in LAr.
Typical values of deposited energy density by a heavy ion
in the core and penumbra are of the order of —10
eV/A and —10 eV/A, respectively. It is therefore
clear that a biexcitonic quenching mechanism, such as
depicted in Eq. (1), cannot be very effective in the penum-
bra region of ordinary heavy-ion tracks. In what follows
we will assume that quenching occurs exclusively in the
core except for fission fragments where due to high ion-
ization density the quenching efficiency will be assumed
to be equal in both the core and the penumbra. With the

exception for fission fragments then the energy T, avail-
able for scintillation should be given by

T~ qT qT +TT T +T {23

where T is the energy delivered into liquid argon with the
components T, and T invested, respectively, in the core
and the penumbra, q is the overall observed quenching
factor (q =1 for no quenching) and q, is that factor at-
tributable to the core. That is, q, is the fraction of energy
deposited in the core that survives quenching. [For
fission fragments only the first of the equations (2) can be
used. ] For example, if we take q =0.71 for 5.31-MeV a
particles in LAr and T, /T =0.72 (see Sec. II A), then Eq.
(2) implies q, =0.6, or that 40% of the energy deposited
in the core is quenched in regard to scintillation. Similar
estimations can be made for other primary ionizing parti-
cles.

Our theoretical model for calculating q as a function of
particle LET and velocity can be subdivided into three
parts. First, we compute the deposited energy partition
between the core and the penumbra, i.e., compute T, /T.
Second, we develop a theory for electron-ion recombina-
tion on a track in LAr and strive to show that most
recombination is indeed completed within the time scale
of exciton self-trapping (see the Introduction). Finally,
we employ a di6'usion-kinetic scheme to calculate the
efficiency of biexcitonic quenching [cf. Eq. (1)] during the
time scale of self-trapping of the free exciton.

A. Energy partition

1 20k ———————————————3OA

(c)
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FIG. 1. The core and penumbra structure of heavy-ion tracks
in LAr: (a) a particles; (b) fission fragments; (c) Au ion (870
MeV/n). The core is shown as dotted. For a particles the pe-
numbra is a disjointed collection of emergent 5 rays (not
shown). These are -200—2000 eV in energy, ejected nearly per-
pendicular to the track axis and have LET's somewhat less than
that of the main particle. In the case of fission fragments the 6
rays coalesce to form a quasicontinuous penumbra although the
energy density is less than that in the core. The average 6 ray
on the Au ion track has energy -2 keV; these are ejected nearly
perpendicular to the track axis with negligible stopping or
scattering within the core. The mean ranges of these 6 rays are

0-2000 A, their LET's are orders of magnitude smaller than the
main particle and they overlap little. The wavy lines indicate
breaks in the path of 6 rays. See text for details.

For nonrelativistic ions it has been shown in Ref. 8
that the core radius is given by Bohr's impulse principle,
i.e., by the maximum impact parameter ro capable of ex-
citing the lowest electronic state E, of the medium. Thus
ro=hU/2EI where h =Planck's constant divided by 2m.

and v is the incident ion velocity (vide infra for some
modification of this concept). The energy deposition
within the core is computed by adding the energy depos-
ited directly by the main particle and the amount
transferred from secondary electrons (5 rays) while
penetrating the core. The calculations of Ref. 8 was actu-
ally made for water. However, the stopping powers of
water and LAr are very similar, the higher density of
LAr almost exactly compensates for its higher value of
the mean excitation potential. Thus the results of Ref. 8
can be used safely for LAr as well. The nonrelativistic
particles used in the experiments are ' Po-a (1.33
MeV/n), ' Bi-a (1.51 MeV/n), ' Po-a (2.20 MeV/n),

Cf-u (1.53 MeV/n), Cf ff (0.98 MeV/n--light and
0.56 MeV/n-heavy). Since the relativistic correction to
stopping power in the lowest order varies as g' where
P=v/c, protons of 17.8 and 38.2 MeV (P=0. 192 and
0.277) should also be considered nonrelativistic. Accord-
ing to Ref. 8 the fractional energy deposited in the core
(T, /T) for the above sequence of particles is given, re-

spectively, by 0.72, 0.71, 0.69, 0.71, 0.76, 0.80, 0.75, and
0.75. The last two numbers for the proton tracks actually
lie outside the range of Fig. 7 of Ref. 8. However, a
smooth extrapolation in this asymptotic region is quite
reliable.
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The relativistic ions used in the experiments are p
(1.04 GeV), He (1.04 GeV/n), Ne (631 MeV/n), Ne (1.35
GeV/n), Fe (705 MeV/n), Kr (730 MeV/n), La (1.08
GeV/n), and Au (870 MeV/n). For such ions the density
effect becomes important and we therefore use Fermi's'
theory of stopping power. It has been shown" that for
relativistic particles the core radius is given by ro=kP
where A, is the maximum core size. This is obtained by
equating the radial outflow of energy at rp according to
Fermi's theory to the neglected part of the stopping
power by application of Bohr s impulse principle, imply-
ing that direct deposition of energy by the main particle
beyond rp is negligible. The quantity A, is given by
x,„c/cooe'~ where x,„=1.074, coo is a typical excita-
tion energy, and e is the dielectric constant. For LAr we
take @=1.56 and Rap=25 eV and obtain A, =68 A. For
relativistic particles of the above list P changes little
(0.80—0.91), reflecting a corresponding change in the core
radius (54—62 A). This may be contrasted with r0=4 A
for a particles using the Bohr criterion with E& =12 eV.
The equipartition of deposited energy between glancing
and knock-on collisions has been substantiated for rela-
tivistic particles. ' Fano' gives the energy distribution
of 5 rays produced by knock-on collision as

dns/dTs=zNZ[1/Ts —(1 P)/2mc —Ts],
where a=4mz e .NZ/mu is the kinematic factor, ze is
the incident particle charge, m is electron mass, 1V is the
number density of the medium, and Z is the atomic num-
ber of the medium. The average energy of 5 rays with
respect to this distribution is then given by

(3)

where T =2mu l(1—P ) is the kinematically maximum
value of Ts and the lowest energy of 5 rays is taken to be
I, the mean excitation potential, in consistence with the
equipartition principle. For LAr I =200 eV; for P be-
tween 0.80 and 0.91, T lies in the range 1.78-4.81 MeV,
thus giving from Eq. (3), (Ts) between 1700 and 1852
eV. The ejection angles for 5 rays with energy (Ts),
given by cos ' (( T& ) /T )'~ lie between 88.0' and 88.8',
i.e., almost perpendicular to the track axis. The stopping
power of low-energy electrons has been calculated rather
accurately for water by LaVerne and Mozumder. ' Fol-
lowing a similar procedure we compute the range and
stopping power of -2 kV electrons in LAr, respectively,
as 2143 A and 0.61 eV/A. The elastic scattering of 5 rays
is not expected to be significant within the core radius
(-60 A), neither is the variation of the stopping power
within it. Thus the estimated energy loss of a typical 5
ray within the core is -60X0.61 or 36 eV. This is about
2%%uo of the 6-ray energy or overall —1 Jo of the total ener-
gy loss. Thus the energy partition between core and pe-
numbra for experimental relativistic particles turns out
to be 51:49, or for our purpose, roughly 50:50. In sharp
contrast with nonrelativistic particles, this implies that
very little energy of the 5 rays is deposited in the core and

that basically an equipartition holds between the core and
the penumbra.

B. Recombination time scale

The current estimate of electron thermalization time in
LAr is -500 ps. Although such a time may be relevant
for high-energy electron tracks it is greatly in excess of
the self-trapping time of free excitons which is variously
estimated to be in the range —1—10 ps. ' Since the pro-
posed mechanism of scintillation quenching favors that
the electron-ion recombination be substantially over be-
fore the time scale of self-trapping we must conclude that
such recombination actually occurs prior to thermaliza-
tion. Indeed we will demonstrate that the electron, in-
stead of being thermalized on a heavy-ion track, comes to
a classical turning point provided by the field due to the
line of positive charges on the track axis. Following this
the electron is repeatedly drawn towards the track axis
and at each pass it undergoes a small probability of
recombination. This idea will be developed in the follow-
ing paragraphs.

After ejection from the track axis some of the secon-
dary electrons penetrate the core and others of less ener-

gy are essentially contained within it. Taking a Ruther-
ford (E ) spectrum of ejected electrons between the ion-
ization potential (14 eV) and an estimated upper limit
(-200 eV) for penetration based on the core radius and
range-energy relationship, the mean energy (E ) is found
to be 40 eV, for which the range and stopping times are
computed as 28.6 A and 1 fs. ' Elastic-scattering mean
free path L for low-energy electrons, between subexcita-
tion energy E, (12 eV) and (E ), has been estimated by
Mozumder' -3 A and by Atrazhev and Yakubov' -5
A. Taking L =4 A and using a random-walk model the
rms penetration to subexcitation energy is computed as
R, =4 (28.6/4)'~ or 11 A. From here the electron exe-
cutes random flight in the cylindrical field due to an axial
density of P positive charge per unit length and comes to
a classical turning point (CTP) at a radial distance R clap
where its kinetic energy is reduced to zero. Then the
electron is drawn back to the axis where it has some
chance to recombine with one of the positive charges or
to go back to the CTP, from where the sequence of steps
is repeated until full recombination becomes possible.
Figure 2 shows schematically one phase of such a motion
where the zigzag course depicts the projection of the
motion of the electron including random scattering.

In the cylindrical field due to a linear density of +Pe
charge on the track axis the distance of the classical turn-
ing point is given by

Rc~p R, exp(eE, /2Pe ——),
where we have ignored the small energy loss due to elas-
tic scattering (at most -2%) and equated the potential
difference between R

&
and Rcyp with E, . For 5.31-MeV

a particles in LAr we compute P =4.33X10 cm ' from
its range' and 8'value. ' With t. =1.56, E, =12 eV, and
R

&

= 11 A (vide supra) we then estimate R clap
=50 A.

The actual tortuous path length would be greater because
of elastic scattering for which the mean free path A at



11 466 A. HITACHI, T. DOKE, AND A. MOZUMDER

ample shows that electron-ion recombination on heavy-
ion tracks in LAr can essentially be completed before
self-trapping.

C. Biexcitonic quenching kinetics

FIG. 2. Sketch of the random Aight of an electron in the cy-
lindrical field caused by the line of positive charges on track
axis. Rgyp is the classical turning point and t, is the return time
from this to the recombination distance ao.

middle energy (6 eV) has been estimated to be 10 A. '

The rms crooked pathlength is then -R zrp /A or 250 A
in this example, giving the rms time to get to the CTP as
=17.2 fs using an average velocity 1.45 X 10 crn s ' cor-
responding to 6 eV kinetic energy. The return time t„in
the absence of scattering is simply calculated solving the
radial equation of motion with the result

t„/to=erfI [ In(Rcyp/ao)]

where a, is the reaction radius, to=Rcmp(n/2a)', and
a=2e /Pem, m being electron mass. We take ao equal
to the core radius (4 A, vide supra), giving in the present
example, to =5.27 fs and t„=5.14 fs. Similar to Bethe's'
Umwegfaktor concept we assume the ratio of mean re-
turn time to that in the absence of scattering to be equal
to the ratio of rms tortuous path length to the radial dis-
tance; i.e., ( T„)/t„=(Rc&p—ao)/A=4. 6. This gives
( T, ) =23.6 fs. Since we are neglecting the small energy
loss due to elastic scattering the time for outward and in-
ward journeys should be statistically equivalent. We
compute somewhat different times (17.2 and 23.6 fs) part-
ly because of different procedures (thus refiecting the rel-
ative uncertainties of calculation) and partly because the
starting (11 A) and final (4 A) distances are diff'erent.
The total return time, apart from the small ( —1 fs) time
to slow down to subexcitation energy, may, however, be
reliably estimated at (17.2+23.6) fs or -40 fs. This ex-
ample is for o. tracks in LAr. For particles of higher
LET, R, would be less but the energy differences will
tend to remain the same, thus decreasing the time for a
round trip pass through the CTP and the reaction radius.
The number of passes required to complete recornbina-
tion can be approximated as kD/k„, where kD is the
Debye rate and k,„,is the experimental specific rate of
electron-ion recombination. This factor has been found
experimentally to be' —10, which then gives the recom-
bination time scale on o. tracks in LAr to be -0.4 ps.
Since the self-trapping time of excitons in LAr have been
estimated to lie in the range 1 —10 ps, ' ' the above ex-

The relative scintillation yield in LAr has been
thoroughly investigated as a function of LET over more
than four orders of magnitude. It is clear that this quan-
tity reaches a peak for relativistic heavy ions of the Ne-
La group (LET between 200 and 5000 MeV cm g ') and
it decreases on either side of this LET interval. Although
some necessary details remain to be filled in, it appears
that the loss of scintillation on the low-LET side can be
explained in terms of electrons escaping recombination,
for which a probability 0.35 has been obtained for high-
energy ( —1 MeV) incident electrons. ' We will there-
fore make no further comment on this aspect of the prob-
lem. On the other hand, the loss of scintillation at high
LET was also observed by Salamon and Ahlen for
NaI(T1) crystals. These authors proposed a second-order
annihilation mechanism for scintillation quenching at
high LET. Even though the exact quenching mechanism
remained elusive a diffusion-reaction equation for the
contributing species was set up and integrated in time un-
til —10 s, which is the 'trapped" exciton or e-h pair
lifetime in this system. The computed result was com-
pared with the experimental values for luminescence
quenching. A similar second-order mechanism has been
hinted at for luminescence quenching at high LET in
LAr, but no specific computation was made and no de-
tails of the mechanism was arrived at.

Any theory of scintillation quenching in LAr must
contend with the fact that the observed light emissions
are from self-trapped singlet and triplet excitons having
the nature of molecular excimer states ('X„+and X„+).
Furthermore the emission life-times are experimentally
found to be independent of LET, i.e., the same under
electron or a-particle excitation. This rules out interac-
tions between these low-lying excited molecular states as
a possible quenching mechanism. To explain the experi-
mental quenching results in LAr we propose a cylindrical
track model including electron-ion recombination and
diffusion-reaction of free excitons. The working hy-
pothesis rests on the following: (1) Exciton formation,
directly (with about 0.21 probability) or on ion recom-
bination. (2) Competition between exciton diffusion and
self-trapping. Biexcitonic quenching reduces scintillation
in the cores of heavy ions and also in the penumbra of
fission fragments. (3) Scintillation from self-trapped exci-
tons. Since the self-trapped exciton lifetime is LET in-
dependent it is necessary that recombination must occur
before self-trapping (this point has been established in
Sec. II B).

In the biexcitonic quenching mechanism shown in Eq.
(1), the electron carries the excess energy, which is, to a
good approximation, 2E,„—E, where E,

„

is the excita-
tion energy and E is the band gap. The electron loses
this energy before recombination. One thus gets one ex-
citation in place of two resulting in fewer phonon emis-
sion. The diffusion-kinetic equations for the free (index 1)
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Bn, /Bt =D V n, k—n f n—, /r —A, n, (4)

and

and the self-trapped (index 2) excitons may be writ«n as dependence of the total amount of species (here excitons)
rather than in their spatial variation. In cylindrical
geometry one writes with Gaussian approximation

n, (r, t}=N(t}G(r,t},

Bnz/Bt =n, /r —A2n2, (5)

where N(t) is number of free excitons per unit length at
time t and

G(r, t)=(ma, )
' exp( r—/a, ), a, =ao+4Dt (7)

where n is the exciton density, D is the diffusion
coeScient of the free exciton, k is the specific rate of
biexcitonic quenching, ~ is the free exciton lifetime
against self-trapping, and A, and A2 are the respective
radiative decay constants. The last two constants can be
neglected since the free exciton emission is very weak
and self-trapped excitons are not responsible for quench-
ing. Diffusion-reaction equations of the type of Eq. (4)
are often encountered in radiation chemistry involving
electrons, ions, and free radicals. One standard technique
of solving this equation is by the application of the
method of "prescribed diffusion. " It means that the spa-
tial dependence of the reactive intermediates (here exci-
tons) is prescribed as a well-known mathematical func-
tion, often as a Gaussian which is the solution of the
diffusion equation without reaction. The time-dependent
normalization factor of the Gaussian function is then ob-
tained by substituting the prescribed function into Eq.
(4), followed by an integration. This kind of approxima-
tion is usually reliable when one is interested in the time

kN

2n (a o +4Dt)
(8)

Equation (8) can be linearized with the substitution
u =N ' and solved in the usual manner. The result is

N( ) N gy~ 1+ o f & exp( t /r)dt
(a', +4Dt')

(9)

where Np is the initial number of excitons per unit
length. The integral in Eq. (9) may be written as

is a normalized distribution at any time t in the sense that

fo"dr2nrG(r, t)=1. Note that the Eq. (7) provides the
"spread" of the spatial distribution in time by diffusion.
Substituting Eqs. (6) and (7) in Eq. (4), integrating over all
r and noting that fV G du =0 by Green's theorem under
standard boundary conditions, one gets

kN—f G (2n)dr
dt ~ o

f r exp( t/r')dt —e"p(ao/4Dr) ao

o (a o+4Dt') 4D 4D7
Ei —E j.

a o+4Dt
4D&

(10)

dN, (t)
dt

N(t)

where we have ignored the radiative depopulation term—A2n2 in Eq. (5) since the self-trapping time ~ is much
shorter than the lifetime of light emission. All the self-
trapped excitons give vuv emission. Thus we have

(12)

The fraction q, which survives biexcitonic quenching is
now given by

f o" [N(t)/r]dt
q, =N2( ao ) /No = (13)

where E,(g)= f &
exp( —g)dg/g is the exponential in-

tegral for which extensive tabulation exists.
We observe the emission from the self-trapped exci-

tons. The population of self-trapped excitons per unit
length Nz(t) is given by N2(t)= fo"dr 2mrn2(r, t) and
from Eqs. (5)—(7) we obtain

which can be calculated using Eqs. (9) and (10) and an in-
tegration. The actual evaluation of the quenching factor
q, using realistic track constants (No, ao ), the free exciton
diffusion coefficient (D), and rate parameters (k and r}
will be discussed in the next section.

III. RESULTS AND DISCUSSION

The constants needed for the quenching calculation are
Np Qp k ~, and D. Here Np is the initial number of ex-
citons in the core per unit length, produced either direct-
ly or on electron-hole recombination. For relativistic
particles, the energy deposited in the sensitive region
(Table 1 of Ref. 6) divided by the path length in the re-
gion (2 cm) was taken to be the LET and it was assumed
that 51% of this was deposited in the core (Sec. IIA).
For a particles and fission fragments, the ranges were
taken from Northcliffe and Schilling. ' Although the
LET changes considerably over the ranges of these parti-
cles it was assumed to be a constant at an average value
along the track. The fraction of the energy deposited in
the core is given in Sec. II A for those particles. For LAr
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W =23.6 eV and X,„/N;=0.21 were used.
For the first calculations, it was assumed that the

recombination time is much shorter than the free exciton
lifetime ~. Therefore the radial distribution was taken to
be a Gaussian with a size parameter the same as the core
radius given by AP where A, =67.8 A (see Sec. II A) for
relativistic ions. For some nonrelativistic ions such as a
particles of energy less than 1 MeV/n, ro according to
the Bohr criterion becomes smaller than the interatomic
distance, in which case the latter (3.9 A for LAr), is taken
for ro. The excitation density due to fission fragments is
so large that it becomes unreasonably high if a core ra-
dius given by Bohr's impulse principle or an interatomic
distance is taken for ao. It probably implies that initially
each Ar atom on the path of a fission fragment is multi-
ply excited or ionized and very quickly the charges and
excitations are shared by other atoms in the proximity.
Therefore ro =16.5 A was determined such that the ener-

gy deposited is distributed in a single Gaussian, and the
number density of excitons at r =0 does not exceed that
of Ar atom in LAr. The initial radial distributions deter-
mined in this way are shown in Fig. 3.

We can estimate the cross section cr for process (1) us-
ing a theoretical formula for Penning ionization in the
gas phase. Excitons are treated as particles moving
rapidly in condensed media with a mass similar to the
electron mass (effective mass = 0.5m, for solid Ar).
The rate constant k is given by k =o.U where U is the
thermal velocity of collision partners ( U —1.2 X 10

1 0 23

O

U
C)

Z

FF (106 MeV)
~o ~ ~ ~ 0 ~ ~ eras~ ~ e ~ ~ e ~o

10

, +(5.305 Me~) l

10

'
AU (870 MeV/n) l

l

. La (1080 MeY/n)
~ ~ ~~ ~ ~ ~ ~

1020
1 10

r(A)
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FIG. 3. The initial distribution of excited species,
XOG(r, O)=[cVo/(vrao)] exp( —r /ao), in the track core pro-
duced in liquid Argon by 5.305-MeV a particles (

———),
106-MeV fission fragments ( —"—- ~ ), 1080-MeV/n La ( —.——),
and 870-MeV/n Au ions ( ).

0
cm/s). Thus we have o -2.5 A and k —3 X 10 cm /s
for dipole-dipole interaction, using the transition dipole
moments for Ar* ~Ar and Ar' ~Ar +e available in
the literature. This estimated value of o. may be a
lower limit since the "free" exciton motion is so rapid
that o. due to dipole-dipole mechanism is rather small.
The upper limit may be given by the hard-sphere cross
section. We estimate a value for Ar*+Ar* to be —170
0 0
A using the hard-sphere radius of Ar* as rHs =7.4 A. "

The free exciton lifetime is taken to be 1 psec and the
diffusion constant D = 1 cm /s is used.

The evolution of the quenching process is shown in
Fig. 4 for 5.305-MeV a particles and for 870-MeV Au
ions. The figure shows the ratios of the number of self-
trapped excitons with and without quenching as a func-
tion of time (t) in unit of the free exciton lifetime r. We
have calculated the value up to t/~=4. The limits show
the values of q„which is the quenching factor in the
track core [see Eq. (2)j. One quarter of the hard-sphere
cross section was taken to compute the k value used in
this figure. Comparing the quenching kinetics in the nar-
row, dense core of the n particle with that in the broad

0
core of the Au ion (ro =58 A) we see from Fig. 4 that the
quenching develops gradually for Au ions since in this
case the core radius is comparable to the free exciton
diffusion length, reported to be 100 A for solid Ar. For
a particles a strong quenching occurs at a very early
stage (tlr=0 01) due. to high initial density of excitons.
The core then quickly diffuses out and quenching
progresses slowly. The core quenching factors q, ob-
tained for n particles and Au ions with o. =oHs/4 are
0.65 and 0.45, respectively. The entire track q value is
then obtained from Eq. (2) using T, /T values of 0.72 and
0.51, respectively, for o, particles and Au ions. These are
shown in Fig. 5 together with the results for other parti-
cles and those obtained by using o „d.
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g 0.6

0.4

0.2

I

0.1 0.40.3
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0 0.2

FIG. 4. The calculated evolution of quenching in the track
core produced in liquid Argon by 5.305-Me V a particles
(
———) and 870-MeV/n Au ion ( ). The ratio of the

number of self-trapped excitons with and without quenching as
a function of time is plotted. The initial radii are a0=3.9 and

0
58 A for a particles and Au ions, respectively. A specific reac-
tion rate k =kHs/4=5X10 ' cm /s, T, /T=0. 722 and 0.52 for
a particles and Au ions, respectively, are used in the computa-
tion. The time is in units of the free exciton lifetime ~. The cal-
culation was carried until t =4~.

+Au



46 LUMINESCENCE QUENCHING IN LIQUID ARGON UNDER. . . 11 469

S, 0887a

1 ~ 2 t t t tI I I 11I I I 1II I I III I I III I I l 1

Ne Fe La

1.0

0.8

UJ
O

0.6

(a)
II
~ Au
ll

0.4

0.2

- ttgS/4 (FF)

0.0
0. 1

t I II t I I II I t I II I

1 10' 10
I I II I I I tl I I I I

10 10 10

LET (MeV g 't:m )

FIG. 5. The relative scintillation yield per unit energy depo-
sition as a function of LET. Circles show experimental results
with error bars. Filled circles are for relativistic ions. Present
calculations are shown as vertical boxes with the upper end
given by a dipole-dipole collision cross section and the lower
end obtained from the hard-sphere collision cross section divid-
ed by 4.

The values of q calculated by using Eqs. (2) and (13) to-
gether with the observed relative scintillation yields
dL/dE are shown in Fig 5as .a function of LET. The
circles with error bars are experimental results. Ions of
Ne, Fe, Kr, and La do not show any significant quench-
ing and their dL/dE values are normalized to unity.
Slightly smaller values for low-LET particles such as 1-
MeV electrons, 1.04-GeV/n protons, and He ions are due
to escaping electrons. Considerable quenching is seen
for high-LET a particles, fission fragments, and Au ions.
Although there is substantial qualitative agreement be-
tween experimental data and model calculations the
quantitative agreement in Fig. 5 is not exact. The main
reason for this is that the quenching cross section o. is not
well known and we are only able to give upper and lower
limits, denoted, respectively, by crHs!4 and od d. The
corresponding calculated results are contained within
vertical boxes in Fig. 5. On the other hand, it should be
noted that there is no other theory at present which gives
a better or comparable agreement with experiment for
liquid Ar. In this paper we have attempted to combine
the various elements of energy deposition, diffusion, self-
trapping, and biexcitonic interaction to develop a useful
model for the LET dependence of specific luminescence
in liquid Ar. It shows the general agreement of the track
theory with a biexcitonic quenching mechanism, but that
the quenching rate constant is not well known. The im-
portant finding is that the experimental results at all LET
are bracketed between the limits of theoretical quenching
cross sections.

As we have stated in the previous paragraph the main
uncertainty in the theoretical calculation is attributab1e
to the quenching cross section o. It is clear that a cross

0 2 ~

section —a few tens of A is quite reasonable to explain
the order of magnitude of the quenching. As expected

quenching computed with O. =o.
d d is too small; that

computed with o. =o-Hs/4 agrees well with experiments
for a particles and Au ions. However, the corresponding
computed value of q for fission fragments is too low,
which may be attributable to 6 rays penetrating the core.
In our calculations the 6 rays of the fission fragments
were not treated separately from the core. If so done the
calculated q value should be larger and nearer the experi-
ment. For 18—40 MeV protons our calculation shows
insignificant quenching, a typical value being q =0.99.
The relative experimental value of dL/dE =0.8 —0.9 re-
ported for protons in this energy interval may then be at-
tributable to escaping electrons.

Another source of uncertainty in the theoretical calcu-
lation originates from the lack of precise information
about the "free" exciton lifetime ~ in liquid Ar. It can be
longer than 1 ps, ' perhaps as large as —10 ps since
the luminescence of "free" excitons has been observed.
If we assume an exciton self-trapping time ~=1 ps and
use a recombination time r„,=0.4 ps for a particles (see

0
Sec. II) then the a core, initially -4 A in radius, will
diffuse out within the recombination time scale resulting
in little quenching. As seen from Fig. 4 about 85% of the
quenching is over at t =0.4~. On the other hand, for Au
ions with -60 A initial core radius, considerable quench-
ing can be expected if a slightly larger cross section is as-
sumed. While the free exciton lifetime ~ against self-
trapping is not known precisely in LAr we should note
that the return time for the electron can be shorter if the
electron recombination occurs in a higher n-exciton state
which has a larger radius. Therefore it is not unreason-
able to expect that v.„,&&~, which is the basis of our
model calculation.

The scintillation yield as a function of LET has been
studied for many years ' and a number of models have
been proposed for quenching. Luntz assumed that
quenching occurs when the deposited energy density
exceeds a critical value and applied the model to NaI(T1).
This model is probably inapplicable to liquid Ar because
a critical value which gives some quenching for Au ions
demands complete quenching for a-particle cores as seen
from Fig. 3, but that is not the case.

The ion-explosion theory is also generally inapplicable
to liquid Ar. It has been observed that an external elec-
tric field as low as —1 kV/cm can influence the quench-
ing of a cores in liquid Ar. The field corresponds to a
difference in potential energy —10 eV for atomic di-
mensions which is far weaker than that required by the
ion-explosion theory. Nevertheless this fact does not
completely rule out the possibility that the field-
independent part of quenching is caused by ion explosion.

Salamon and Ahlen introduced the diffusion of exci-
tons and a second-order annihilation process for quench-
ing in NaI(T1). They assumed that the quenching is a
rather slow process. The evolution of quenching was car-
ried out until t =10 s, which corresponds to the life-
time of the "trapped" exciton (or electron-hole pair) in
NaI(Tl). However, as has been discussed above, quench-
ing is a very rapid process in liquid Ar as well as in inor-
ganic crystals.

The influence of secondary electrons was not taken into
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account when the recombination time ~„,was calculated
in Sec. II. It was suScient to show that ~„,in the high-
LET track cores can be much shorter than the electron
thermalization time and less than 1 ps. It should be in-
cluded in a refined theory. The recombination process in
a dense plasma needs much more detailed discussion. We
assumed that "free" excitons are responsible for quench-
ing. Other highly excited or ionized species with a high
velocity and a reasonable collision cross section are also
possible candidates for quenching. Studies with very
short time resolutions are needed to identify such pro-
cesses.

ic quenching mechanism using a track model. Loss of
luminescence at low LET may be attributable to escaping
electrons. (ii) On heavy-ion tracks most recombinations
may be over before the self-trapping time scale. (iii) At
the same LET diferent quenching can result for ions hav-
ing di8'erent deposited energy density in the core.
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