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Two-phase dynamical equilibria driven by irradiation in ordered alloys
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We study here two-phase equilibria in driven compounds, where two dynamics are acting in parallel:
thermally activated atomic jumps and forced jumps; such is the case for an alloy under irradiation where
nuclear collisions induce ballistic jumps. We propose a deterministic treatment of the concentration and

degree of order fields (one or two dimensional) and identify two-phase locally stable steady states:
Dynamical equilibrium phase diagrams are thus computed. It is shown that in a body-centered-cubic al-

loy an A2-B2 order-disorder transition of the second kind at thermal equilibrium becomes of the first

kind beyond a temperature-dependent critical forcing intensity. As a result, two-phase steady states can
be stabilized by irradiation. Interface properties are then studied: Surface-tension-like effects are ob-

served; introduction of antiphase boundaries destabilizes ordered precipitates, leading to their dissolu-

tion and redistribution. In order to compare the relative stability of the different steady states, a stochas-
tic description is then proposed: We build a mean-field grand-canonical potential which governs the
steady-state probability distribution of the concentration and long-range order parameter. It shows that
the most stable steady state is indeed two-phase under suitable irradiation conditions.

I. INTRODUCTION

As is well known, irradiation by energetic particles can
enhance or induce phase transitions: Amorphization of
crystalline solids, disordering of ordered alloys, dissolu-
tion of precipitates, or irradiation-induced precipitation
in a solid solution are good examples (for a review, see
Ref. I). These can be reviewed as dynamical phase tran-
sitions in driven systems: Indeed, in a solid under ir-
radiation, nonequilibrium configurations are sustained by
the permanent injection of Frenkel pairs and of replace-
ment collisions (ballistic jumps). Such irradiation-
induced phase transitions have an important technologi-
cal impact: Extrapolating data obtained for one set of ir-
radiation conditions to yet-unexplored irradiating envi-
ronments (e.g. , 14-MeV neutron irradiation) cannot be
done straightforwardly and requires modeling.

Here we focus on ordered alloys: In most simple cases,
the state of the system results from competition between
the disordering due to the ballistic jumps induced by nu-

clear collisions and the reordering due to the thermally
activated jumps of point defects. ' Kinetic models,
based on rate theory and incorporating these competing
two effects, have long been used for fitting disordering or
ordering rates measured experimentally. ' However, as
soon as two or more locally stable steady states are com-
peting, such descriptions do not provide any information
on their relative stability. Furthermore, some relevant
effects such as the production of ballistic jumps by bursts
cannot be addressed by these models (cascade-size effect).

A kinetic description we introduced recently allows
one to address such questions: Starting from a master
equation, stochastic potentials can be computed; they
play a role analogous to thermodynamic potentials for
equilibrium systems and permit one to construct dynami-
cal equilibrium phase diagrams in a (temperature
X concentration X irradiation flux) space. Up to now, this

technique has been applied to a homogeneous description
of ordering-disordering on face-centered-cubic (fcc) or
body-centered-cubic (bcc) lattices: It has been successful
in rationalizing subtle inversion of stability and bistability
effects observed in Ni4Mo during 1-MeV electron irradia-
tion;" it has predicted that various nonequilibrium
phases can be stabilized by irradiation depending on the
saddle-point configuration energy in atomic diffusion'
and the shift in the A 2-B2 transition from second to first
order beyond a threshold in irradiation Aux, with a sensi-
tivity of first-order transition lines to replacement cas-
cade size. ' Thus, in the latter case, phase coexistence is
expected to be induced by irradiation for non-
stoichiometric compositions.

In this paper we address the problem of phase coex-
istence under irradiation for coherent ordered precipi-
tates: We consider a binary A, B, , alloy on a bcc lattice
under irradiation, where two phases at different composi-
tions can coexist in dynamical equilibrium. In Sec. II
homogeneous and heterogeneous deterministic kinetic
descriptions are used for building steady-state stability di-

agrams and for studying interfacial properties. In Sec.
III, after a brief recall of the stochastic description intro-
duced elsewhere, "'-' a grand-canonical ensemble is pro-
posed, from which a global-stability criterion is obtained:
A dynamical equilibrium phase diagram can then be
built. The work presented here is done in the simplest
mean-field approximation ("point approximation"),
which has already yielded useful and unexpected results.
More sophisticated treatments are possible {pair or
higher approximation, Monte Carlo simulations' ) and
are left for future work.

II. DETERMINISTIC KINETIC DESCRIPTION

We study here the A2-82 transition driven on a bcc
lattice. A homogeneous model is first used to show that
the transition becomes first order beyond a critical driv-

46 11 332 1992 The American Physical Society



46 TWO-PHASE DYNAMICAL EQUILIBRIA DRIVEN BY. . . 11 333

ing, while it is second order at equilibrium. Then a
heterogeneous description allows the study of interfacial
properties of the two-phase state induced by external
forcing.

A. Homogeneous model
E Bct

aP

E )

EPa

E Bct

Pa

We consider a binary A, B, , alloy on a rigid bcc lat-
tice and focus on the B2-A 2 order-disorder transition: A
Brag g-Williams approximation is then appropriate. "
For B2 ordering, it is convenient to decompose the bcc
lattice into two simple cubic sublattices a and P. The
state of order is then described by the atomic concentra-
tions C and Cp on both sublattices or by the average
concentration C and the degree of long-range order
S=2(C —C)= —2(C —C~). We restrict discussion to
nearest-neighbor interactions, so that the order-disorder
transition is of second order at equilibrium.

' The order-
ing energy is co=(z/2)(V„+Vbb —2V,b), where V~ is
the energy of a pair of i jato-ms (for ordering systems
co & 0) and z is the coordination number (z =8).

l Di+usi. on model

We model atomic diffusion by permuting two nearest-
neighbor atoms belonging to distinct sublattices accord-
ing to two mechanisms operating in parallel: (i) ballistic
jumps induced by nuclear collisions at a frequency I b,
which is independent of the state of order of the system
and its temperature, and (ii) thermally activated jumps.
According to rate theory, the activation energy E'p
(E&") is the energy necessary to extract an A Bp pair
( A&B ) from its environment, where its energy is E p
(E& ) and to bring it into a saddle-point position where
its energy is E, (Fig. 1). E, is assumed to be independent
of the surrounding of the AB pair.

The exchange of an A atom on the sublattice a with a
B atom on the sublattice P occurs at the frequency

Eact
I..p ——I'.hp+rb =&exp — ' +rb

and the inverse exchange at the frequency

Ea(

(A B() (AIB )

FIG. 1. Schematic variation of internal energy during atomic
exchange with two mechanisms operating in parallel: ballistic
and thermally activated jumps. See Eqs. (1) and (2) for the
definition of the jump frequencies I b and I '".

I'
&

——I,exp( —2ST, /T ) + I b,
I &

= I',exp(+ 2ST, /T )+ I b,
with T, =co/2k and where I, is an averaged frequency
for thermal jumps.

The time evolution of the system is given by

dc
dt

= —8r c (1—c~)+8r ci'(1 —c )pa

or by

ds S S
dt

=f(S)= —16I C(1 —C)+ —+
2 4

S S+16r c(1—c)——+pcz 2 4

systems.
In the Bragg-Williams approximation, the energy for

the extraction of an AB pair in a broken bound model is

E~P =E, —8( V,b + Vbb )
—8( V„—Vbb )C —coS

EP~ E.—8( V——ah+ Vbb ) 8( V~a
—

Vbb )C+nS,
leading to

I p
=I p" +I b =vexp +I b . (2)

For the sake of simplicity, we set V„=Vbb for all nu-
merical applications in Sec. II. By symmetry arguments,
we can restrict ourselves to the case 0 ~ C ~ 0.5.

Note that, in this model, the system "knows" which
state it is leaving but "ignores" the state it is moving to,
beyond the saddle point. It is sometimes assumed' '
that the activation energy is a fraction of the energy
difference between final and initial states: This would
only affect the kinetics of a thermal system (I b =0},but
would modify the steady states of a driven one (I bWO).
Our choice is more appropriate to far-from-equilibrium

2. Thermal system (I b=o)

As required, the kinetic equation (7) or (8} drives a
thermal system toward its equilibrium state as predicted
fi'om thermodynamics. Indeed, the steady-state concen-
tration is solution of dC /dt =0: This equation is identi-
cal to that obtained by extremizing the Bragg-Williams
free energy per site

V(c,C~) = —coc(1—C )
——(C —C~) +4Vbb+4( V„—Vbb )C

+ IC lnC +(1—C )ln(1 —C )+C~lnc~+(I —C~)ln(l —C~)I .
2



11 334 F. SOISSON, P. BELLON, AND G. MARTIN

The order-disorder transition is of the second kind
with a critical temperature T, for an average composition
C =0.S.

3. Driven system (I q&0)

defined by averaging the occupancy on lattice planes or
atomic rows perpendicular to the diffusion direction or
plane, respectively.

Extending the kinetic model described in the previous
section, the jump frequencies are now

T* C(1—C)=4
T, 1+y (10)

We define a Lyapunov function X by BX/BS = f(—S )

and study it in the spirit of Landau's theory of phase
transitions. ' The function f has vanishing odd deriva-
tives at the disordered state (S=0), and the critical tem-
perature at the composition C is defined by
(Bf/BS)s 0=0. The transition is of the second kind for
(8 f /BS )s o (0 and of the first kind for
(8'f/BS )s o&0.

Then the homogeneous disordered solution (S=0) is
stable above

E J
I 'J =vexp — +I"aP kT b'

EJ1
I J&

=v exp — + I b,kT

with

nn(i)
E" =E —g IC~V +(1—C~)V I

nn(j)
IC V,b+(1 —C )Vbbj

q

(13)

(14)

(15)

with

Ib
r,

The transition becomes first order for
(8 f/BS ) =0, i.e.,

T* gc(1 —C)
3+&9—24C(1 —C)

(12a)

and

&9—24C(1 —C)+ 1r'= (12b)

Beyond this tricritical line, a two-phase alloy is expect-
ed (coexistence between the ordered and disordered
phase). These results are summarized in a steady-state di-
agram in the T/T„C,y space, as shown in Fig. 2.

B. Heterogeneous model

In order to follow the spatial behavior of the two-phase
system, we first define a local concentration on each sub-
lattice. In order to derive the mean-field approximation
consistently, we consider one- or two-dimensional prob-
lems where the concentrations on each sublattice are

o

Q

8.
6

p M

second order transition

uicritical line

FIG. 2. Dynamical equilibrium phase diagram for a bcc alloy
in ( T X y X C) space. For clarity, when the transition is first or-
der, only the spinodal is displayed. y is dimensionless Eq. (11).

(and the analogous expression for E~& ).
C and C~ are, respectively, the A atomic concentra-

tions on the sublattices a and P at the locations q and p; i
and j run from 1 to the number of cells n, . The summa-
tions in Eq. (15) are restricted to nearest neighbors of
sites i and j [nn (i ) and nn (j ), respectively].

The rate of change of concentration on the sublattice a
at location i is

y( . nn (i)„'= y I r'&,c—;(1 c,~)+—rh. c,~(1 c;)I—.
J

(16)

1. Steady-state stability diagrams

Beyond the tricritical line, various locally stable steady
states may exist for the same values of T/T„C,and y:
They are identified by varying the initial conditions.

With homogeneous initial conditions, three domains
can be defined: For large values of T/T, or y, only the
homogeneous disordered solution I C, =C~= C I is

stable, while for low values only the homogeneous or-
dered solution is stable, and for intermediate values these
two solutions are both locally stable (Fig. 3).

With heterogeneous initial conditions, a two-phase al-

A similar expression holds for dC~/dt with a and P inter-
changed.

As for the homogeneous model, the control parameters
are the reduced temperature T/T„the average concen-
tration C, and the reduced forced frequency y. The evo-
lution of the system as well as its steady states are ob-
tained by numerical integration of Eq. (16) using periodic
boundary conditions, for different sets of initial condi-
tions IC, (r=0), C~(t=0)).

Typical numbers of bcc cells are n, =40—400 for one-
dimensional computations and n, =40X40 to 80X80 for
two-dimensional ones. The fourth-order Runge-Kutta
method with adaptive step-size control' was found to be
the most efficient. The relative error of the concentra-
tions is kept less than 10 during each integration step,
and the stationary state is assumed to be reached when all
the time derivatives are less than 10
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tained by Frenkel-pair mutual recombination, y is given
b 13

1/2
b

0.2 Here g is a geometrical factor and I
„

is the mean vacan-

cy jump frequency:

0.1 I „=I „exp
Em

kT
(18)
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where E„is the vacancy migration energy. Then, with

yo=g(I b/I „)',we get

Em
r=y""P 2k'T (19)
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TfI' = 0.20 When a quasi-steady-state regime is assumed for point
defects, ' it is easily shown that a similar expression
holds, but with the interstitial migration energy E,.
entering in Eq. (19}instead ofE„.

The irradiation conditions can be defined by T/T„C,
and yo, and an isoforcing steady-state diagram can be
drawn at yo constant (instead of y constant) as in experi-
mental conditions where irradiation flux (which scales
I b ) and temperature are adjusted independently. Such a
diagram is displayed in Fig. 4, with y0=10 and a typi-
cal value Ed =0.5 eV for defect migration energy.

0 ' 1 0.2 0.3 0.4 0.5
2. Surface tension e+-ects

FIG. 3. (a) Isoforcing and (b) isothermal cuts of the steady-
state stability diagram: ordering spinodal line (dashed line),
disordering spinodal line (dot-dashed line), and limits of the
two-phase field (solid line). y is dimensionless.

loy can be stabilized: An ordered phase coexists with a
solute-depleted disordered one. The respective propor-
tion of the two phases fulfills the lever rule: Changing
the average concentration changes the proportion of both
phases without affecting their own composition. Two ex-
amples of steady-state diagrams so obtained are displayed
in Figs. 3(a) and 3(b) (one for a given forcing and one for
a given temperature). As will be seen later, the assess-
ment of the relative stability of various steady states re-
quires a stochastic description (where fluctuations are
taken into account), but their local stability in response to
a given perturbation can be studied. For instance, con-
sider a system which at steady state can be either homo-
geneously ordered or two phased [its representative
point —as point A in Fig. 3—lies in the two-phase field
and below the ordering spinodal in the steady-state
( T /T„C,y ) diagram]. The introduction of an antiphase
boundary (APB) in an initially ordered homogeneous
steady state induces a decomposition into two phases:
The latter steady state could therefore be the most stable.

The parameter y=I b/I, is a function of I b and
T/T, (and of the composition C if V„WVt,&}. I', is pro-
portional to the mean point-defect concentration, which
depends on the irradiation flux and temperature. Assum-
ing that a steady-state point-defect concentration is ob-

1.0
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0.6

04
B

I
I

0.2 - t
I
l
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IA21

0.2 0.4 0.6 0.8

FIG. 4. Steady-state stability diagram with yo constant. De-
fect migration energy Ed =0.5 eV. @0=10 ' (solid line) and
@0=0(equilibrium phase diagram) (dashed line).

The heterogeneous model is suitable for studying inter-
facial properties of the two-phase system and its spatial
behavior.

A surface-tension-like effect is identified: The A atom-
ic concentration in both phases depends on the precipi-
tate radius R (Fig. 5); as for a thermal system, the relative
increase of composition in the precipitate and matrix
with respect to the compositions for a planar interface is
proportional to R ' for small R ' values.

Consistently with this effect, the system is found to ex-
hibit coarsening. We start the computation with two or-
dered precipitates with a different curvature in the com-
putation cell. Each of them is initially surrounded by a
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FIG. 5. 3 atomic concentrations in the ordered (solid line)
and disordered (dashed line) phases which coexist in dynamical
equilibrium as a function of the radius of curvature of the or-
dered precipitate: The concentrations are scaled to their respec-
tive values for a planar interface.

disordered phase, the composition of which is the
steady-state value obtained with a single precipitate
alone. A diffusion flux is then induced which equalizes
the composition in the whole disordered phase, and the
larger precipitate coarsens, while the smaller one shrinks
and disappears: We conclude that, at this scale
(n, ~ 80 X 80), no patterning is expected in the model.

Moreover, in the two-dimensional description, as far as
we could check, "spherical" precipitates are always ob-
served, with no faceting, contrary to a thermal two-phase
system. A systematic study is beyond the scope of this
paper and is left for future work.

3. Redistribution of antiphased preeipitates

The deterministic evolution equations (16) allow one to
follow the kinetic path of systems prepared in non-
steady-state configurations. As a matter of illustration,
we studied the reaction of an ordered precipitate to the
presence of an antiphase boundary, as it would be the
case after shearing by a dislocation.

Figure 6 shows a two-phase alloy stabilized by irradia-
tion ( T/T, =0.20, y =4.55) and its evolution after intro-
duction of an APB in the ordered precipitate, along a
( 110) direction. A disordered region is found to grow at
the APB: The solid solution invades the APB, and the
two antiphased precipitates repel each other by a
dissolution-redeposition mechanism. Finally, the smaller
ordered precipitate shrinks and disappears to the benefit
of the larger one. The evolution is qualitatively the same
with a conservative I 110) or a nonconservative I100I
APB. Note that the ordered precipitate center moved
during the process.

In order to compare this behavior with that of a
thermal two-phase system, second-neighbor interactions
must be taken into account in the Bragg-Williams ap-
proximation. We call V'" and V' ' the ordering energy
for interactions between nearest and next-nearest neigh-
bors, respectively. For particular values of the composi-
tion, temperature, and parameter V= V"'/V' ', a two-

phase alloy can be stable without forcing (here we set
V= —', ). Equations (10)—(13) can then be generalized to
take into account second-neighbor interactions, and the
same numerical techniques are used to compute the
steady state. After its introduction in such a two-phase
alloy (T/T, =0.25 and y=0), the APB tends to align
along a (100) direction (Fig. 7) by a process where the
migration of interface steps plays a crucial role. If the
APB is initially introduced along a (100) direction, no
significant evolution is observed (Fig. 8), the system
remaining trapped into a metastable state. If we now in-
crease the temperature (T/T, =0.5), we note a rounding
of the ordered precipitate and the evolution of the
thermal system after the APB introduction becomes simi-
lar to the one displayed in Fig. 6 for a driven system.
Therefore the isotropy of the surface tension is thought
to be at the origin of the APB elimination mechanism.

Under irradiation, the high-temperature boundary of
the two-phase field is lowered as y increases (similarly to
what is observed in Fig. 2). As a result, keeping constant
the temperature and composition and increasing y, the
representative point of the irradiation parameters be-
comes close to this boundary. In a purely thermal sys-
tern, such a shift can be done by increasing the tempera-
ture. We observed that the elimination of the APB
indeed proceeds in a similar way in the two cases:
(T/T, =0.25, y=0) and (T/T, =0.20, y =4.55). The
introduction of ballistic jumps can be viewed as increas-
ing the temperature of the system. This is reminiscent of
the effective temperature criterion introduced by Martin
for unmixing under irradiation.

Despite its interest, the deterministic description used

up to now suffers strong drawbacks. In particular, the
system will remain trapped in any locally stable state:
This is the case for the equilibrium two-phase alloy with
an APB in Fig. 8. In a real system, the existence of fiuc-
tuations will finally allow the APB elimination, so that
the system can reach its absolute minimum in free ener-

gy.

III. STOCHASTIC DESCRIPTION

The deterministic kinetic description introduced in the
above paragraph allows one to compute the possible lo-
cally stable steady states of the system under irradiation.
However, this description does not give any information
on the relative stability of competing steady states when
several exist: Indeed, the lifetime of metastable states is
governed by the fluctuations which are absent from this
deterministic treatment. We will now introduce a sto-
chastic kinetic description„which includes the Auctua-
tions, and show that from this stochastic description one
can compute stochastic potentials which generalize ther-
modynamic potentials. Using such stochastic potentia1s,
one assesses the relative stability of competing steady
states and builds dynamical equilibrium phase diagrams.
In Sec. IIIA we recall this stochastic description for
canonical homogeneous systems, and in Sec. IIIB we
show how to build a grand-canonical homogeneous
description, so as to address the coexistence between
phases at different compositions as observed in Sec. II B.
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A. Homogeneous canonical stochastic description

1. Master equation

This description has been introduced in Refs. 11, 13,
and 23. We recall briefly the procedure here. Consider-

ing a homogeneous crystal at a fixed composition C con-
sisting of 0 sites on each sublattice a and P, we define the
state of the system by the number of A atoms on a sub-
lattice N L. et P(X,t) be the probability of the value
N at time t for given initial conditions. For the Marko-

(b)
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FiG. 6. Evolution of an ordered precipitate after a conservative APB introduction in a thermal system. T/T, =0.25 and y=0.
The concentrations at lattice sites are visualized by the darkness of the circles. The maxima of A atomic concentrations (here close to
0.98) are represented by the darkest circles, and the minima (here close to 0.02) are represented by the lightest circles. In arbitrary
time units (a) t =0, (b) t = 1, (c) t =300, and (d) t =900.
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vian processes considered here, the time evolution of
P(N, t ) is governed by the master equation

dI (N, t)= g I
P—(N, t)[W(N', —k)+ W(N, +k)j

dt

+P(N" k,—t)W(N —k, +k)
+P(N +k, t)W(N +k, k)—

I .

W(N, +k) is the transition rate at which systems hav-

ing N A atoms on sublattice n reach the state A' +k be-
cause of atomic exchanges: For thermally activated
jumps, the only possible values for k are +1, while for the
ballistic jumps induced by nuclear collisions, 6 (and
therefore k) can be larger than I (eff'ect of replacement
cascades). In the following we restrict ourselves to the
simple case where ballistic jumps are assumed to occur
individually (cascade-size eftects have been treated for the

(b)

f r 5 I' ) t 'I 5 ( I / I 1 r '
(

'
I

t

~ ~ ~

I ~ ~ ~

, II ~ ~ ~

;,'I ~ ~ ~

. '. :I ~ ~ ~

I ~ ~ ~

'I ~ ~ ~

I I.

.I ~ ~ ~

~ ~ ~

I ~ ~ ~

t
I ~ ~ ~

~ ~ ~

~ ~ ~ ~ ~ ~

~ ~ ~ ~

~ ~ ~ ~ ~ ~
~ ~

~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~

~ ~ ~ ~

~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~

~ ~ ~ ~

~ ~ ~ ~ ~ ~

1 ~
~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~

~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

r ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I''

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

:I ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I

I ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ r ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I
I' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

I' ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

I' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I
I' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~Itt
~ 5 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ re ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I

I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ \ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ t
I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I W
'Pt ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ r ~ ~ ~ ~ ~ ~ ~ ~ ~ I

I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I~,"I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ \ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ r ~ ~ \ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I''' '

I ~ 8 ~ ~ 8 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ rr I
I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ r ~ ~ ~ ~ ~ I tt.

.;,I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ r ~ ~ ~ t.';,

) ~ rIr ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ \ I

~ ~ t ~ ~ ~

~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ \

~ ~ ~ )g
~ ~ ~ ~ ~ ~ I

~ ~ ~ ~ ~ ~ I '. :

~ ~ ~ ~ ~ ~ I', ''

~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ I

~ ~ ~ ~ 5 ~

~ ~ ~ t:.

~ ~ ~ I

I'

cI&

$s.
J
~(&

'-. C)-.;-(

I'

I I "I-t +Q t' E & t & -II" r-( tt" t Ir) I & I'

(c)

FIG. 7. Evolution of an ordered precipitate after conservative APB introduction in a dnven system. T/T =0.20 a y=
The concentrations at lattice sites are visualized by the darkness of the circles. The maxima of A atomic concentration (here clos

0.67) are represented by the darkest circles, and the minima (here close to 0.01) are represented by the lightest circles. In arbitrary

time units (a) t =0, (b) t = 1760, (c) t =2660, and (d) t =8960.
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FIG. 9. Dynamical equilibrium phase diagram for C =0.5,
as computed from the potential 4 solution of the master equa-
tion. y is dimensionless.

ballistic jumps are operating: Iterating Eq. (23) between
N =N and Q/2, simple algebra leads to

FIG. 8. Steady-state ordered precipitate after a nonconserva-
tive APB introduction in a thermal system. T/T, =0.25 and

=exp[2Q[l((S) —1((—,
' )]],P(N)

(24)

equiatomic composition in Refs. 13 and 26). The transi-
tion rates entering Eq. (20) are the sum of the thermal
and ballistic contributions, which can be constructed
from the atomistic jump frequencies I '& and I &~ and the
ballistic jump frequency I b introduced in Sec. II:

W(N, +k )= W'"(N, +k)+ W (N, +k),
W'"(N~ + 1 )= 8QC~( 1 —C~)r'"

W (N, + 1)=8QC~(1 —C )I

W'"(N, 1)=8—QC (1 Ct')r—'"

W (N, —1)=8QC (1—C~)r„.

(21)

(22a)

(22b)

In Eqs. (22), I';" is a function of C =N /Q (or of S), as
defined by Eqs. (1) and (2). We are interested in the
steady-state solution of Eq. (20). The latter is a conserva-
tion equation for the probability at each "site" of the N
axis, so that the right-hand side (RHS) of Eq. (20) may be
considered as the difference between the net flux of prob-
ability between sites N —1 and N, on the one hand, and

and N +1, on the other hand. Since systems with
N =0 or 0 can be neither created nor destroyed, each of
the above fluxes must be zero under steady-state condi-
tions. We get

P(N ) W(N, +1)=P(N + 1)W(N + 1, —1) . (23)

Note that the latter equation is particularly simple: It
is the detailed balance property for the mesoscopic vari-
able N . This is very specific to the simple case treated
here where the state of the system is described by the sca-
lar order parameter N and where only single-step pro-
cesses (b = 1) are considered.

Under irradiation, both thermal jumps and single

where the stochastic potential f only depends on the in-

tensive variable (C or S). f is the sum of two terms: a
con6gurational entropy term and another term which
combines energetics (T, /T) and kinetics (I &/I, ). This
latter term is by no means an internal energy term. "'

We have checked analytically that in the absence of ir-
radiation 1(

= —P/kT [V is the free energy defined by Eq.
(9)]: This kinetic model yields the same probability distri-
bution as the thermodynamic one. '

From the knowledge of P(S), the respective stability of
possible steady states can be assessed: The most stable
steady-state configuration corresponds to the absolute
maximum of g. In the stoichiometric case (c =0.5), only
homogeneous steady states are competing and the stabili-
ty boundary between the ordered and disordered states is
computed, ' as displayed in Fig. 9. As derived by Gortz
under some general conditions, the extrema of f are
found to coincide with the steady states of the determinis-
tic equation (7), which corresponds to the first moment of
the master equation (20). The high- and low-temperature
limits of the bistability domain in Fig. 3(a) at c =0.5 cor-
respond to spinodal temperatures of the ordered and
disordered states, respectively, of the potential 1(.

2. Kubo-Matsuo-Kitihara ansatz

When the order parameter is not a scalar' or when re-
placement cascades are operating (b%1)," the equation
obtained under steady-state conditions for the master
equation becomes much more complex than Eq. (23), and
an analytical solution is no longer available. Kubo,
Matsuo, and Kitihara and Suzuki have shown how to
approximate the master equation in the large system-size
limit: We assume that P(JV', t) exhibits the extensive
property P(JV, t) ~exp[2Q@(JV, t)], where ~=IV/Q.
In Eq. (20), assuming that 4& is continuously differentiable
and expanding all functions evaluated at rz. c /Q around
their value at ~ to erst order in Q ', one gets the Kubo-
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Matsuo-Kitihara equation for the potential 4:
ae(, t)

0t
= g w(rz, e)[exp[ —(e.V)24] —1I, (25)

tion of this derivation is the assumption that no spatial
organization takes place in the system.

1. Dynamics of composition changes in a thermal system

where w(rz, e) is the transition rate defined by
w(n, e)=w(Ã, e)2II and 4(rz) will denote the solution of
Eq. (25) under steady-state conditions. It is easily
checked that, for the simple example described above, the
analytical expressions for the potentials 4 and '0 are
identical. In complex cases (Refs. 12 and 26 and below),
the Kubo-Matsuo-Kitihara equation is sometimes easier
to handle than the original master equation.

Note that, from this canonical homogeneous descrip-
tion, off stoichiometry (c&0.5), one can compute (see
Fig. 9) the stability boundary between the ordered and
disordered phases constrained to remain at the same fixed
composition: This is analogous to the T0 line for thermo-
dynamic systems. For allowing the existence of two-
phase states as observed in Sec. II, two approaches are
possible: either using a heterogeneous canonical descrip-
tion or a homogeneous grand-canonical description. Al-
though the former approach is a simple extension of the
one recalled in Sec. III A, the dimensionality of the order
parameter is proportional to the cell number n, so that
the Kubo-Matsuo-Kitihara equation becomes difficult to
solve. Note that numerical integration of the master
equation allows one to assess the relative stability of com-
peting states, without any assumption on the existence of
a stochastic potential. ' In the next section, we will in-
troduce in detail an approach for building a homogene-
ous grand-canonical description that has been presented
in a shortened version elsewhere.

B. Grand-canonical homogeneous description

We consider here a grand-canonical ensemble where
the total number of atoms in the system is fixed, but
where the atomic concentration can vary. The main
question concerns the way of building the dynamics of
concentration changes: Since the microscopic detailed
balance property is in general not fulfilled in driven sys-
tems, the choice for this dynamics —the number of atoms
concerned in an exchange with the particle reservoir and
attempt frequency for such jumps —will affect the kinet-
ics and therefore the steady states reached by the system.
We introduce now an approach where the dynamics of
the canonical system [Eqs. (1) and (2) or (21) and (22)]
provides enough physical information for building a
grand-canonical description. This is performed by adapt-
ing the standard procedure for building grand-canonical
equilibrium ensembles to the case of dynamical systems.
By construction, the homogeneous canonical description
and the grand-canonical one will be fully consistent; e.g. ,
when the system at a given composition is found to
remain single phase, its steady-state long-range-order pa-
rarneter is the same in both descriptions. We will see that
(i) outside irradiation, one recovers classical thermo-
dynamic results, and {ii) under irradiation, we obtain a re-
lationship between the canonical and grand-canonical
stochastic potentials which generalized the Legendre
transformation for thermal systems. The major limita-

We will now use the notations used in Sec. II A: The
bcc lattice is decomposed into two simple cubic sublat-
tices (of 0 sites each), containing, respectively, N and
N~ A atoms. The atomic occupancies on these sublat-
tices are C =N /fl and C~=N~IQ As. before, we re-
strict ourselves to nearest-neighbor interactions, and
here, to simplify the calculations, we will assume that
V„=Vbb (as was done in all numerical computations re-
ported in Sec. II).

Let us first introduce a procedure for building a
grand-canonical ensemble for a thermal system starting
from kinetic considerations: We consider two canonical
systems 4 and $0 in contact at a temperature T, and we
compute the rates of permutations according to the
canonical dynamics of Sec. III A. When the A-B pair to
be permuted belongs to the system 1, one gets the transi-
tion rates W+,. for the dynamics of the degree of long-
range-order S analogous to those of Eq. (22):

W+, (JV) =z vQ C~( 1 —C )I" exp (26a)

W s(JV)=zvQC (1 —C~)I exp (26b)

with

E, z(Vgg+Vbb+2V b)

kT
I =exp — +

2kT
(27)

When the atoms of the A Bpair are sh-ared by 1 and $0,
the exchange will result in a net change of composition in

4; the transition rates for the concentration dynamics are

—,
' —C~

W+, (JV, .No) =zvoQ(1 —C )1 exp co

—Ca
WC~exp

—co
'

(28a)

CP
W, (A;JVO)=zvoQC I exp —to

—,
' —C,

X (1—C~)exp co0 kT
{28b)

when the atom belonging to the system 4 before the ex-
change is a B atom [Eq. (28a)] and an A atom [Eq. (28b)]
on the sublattice a; similar expressions are obtained for
W~+, by exchanging a and P in Eqs. (28); the subscript 0
in Eqs. (28) refers to variables of the system So. The ac-
tivation energy for this jump has been computed as in
Sec. II A [see Eqs. (3) and (4)] assuming that the atom of
each system is surrounded by atoms belonging to the
same system, which in a spatial picture would correspond
to an abrupt interface between the two systems. Note
that the attempt frequency vo for chemical changes [Eq.
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2 (Co —
C&~&) =ln

C (1—CP)

(1—Co )C~o
(29a)

Let us define 5 as

C~ 2C —10 + 0

kT

C0 2C0 —1
=ln +~

1 —C0
(29b)

where the equilibrium relation [Eq. (29a)] has been used
to get the last equality in Eq. (29b). Equations (28) can
then be written as

W;, (W)=zv, n[C~(I —Cf)]'"(I—C )r
-' —c~
2Xexp co

kT
5

exp +—
2

(30a)

W, (N) =zv, n[C),'(I —C~)]'"C r
——C~
2

X exp 67
5

exp
2

(30b)

W~, (JV)=zv n[C (1—C ) ]' (1—C~)r

~ —C
2

X exp co
5

exp +—
2

(30c)

(28)] is not simply related to any physical quantity, con-
trary to the case of the attempt frequency v, for long-
range-order evolution [Eq. (26)], which is the Debye fre-

quency in the system S.
Now we let S0 become very large with respect to 4, so

that S0 acts as a particle reservoir. The variables relative
to the reservoir in Eqs. (28) are therefore no longer
modified by the A-B exchange, and they characterize the
reservoir. We assume now that the reservoir is at equilib-
rium: Minimizing the Bragg-Williams free energy V [Eq.
(9)] with respect to the long-range-order parameter SD

yields

WP(a) =zv, n[C;(1—C; )]'"C'r
-' —C
2

X exp —co
5

exp
2

(30d)

As seen from Eq. (29b), the parameter 5 is simply relat-
ed to the difference in the chemical potentials of species
A and B in a Bragg-Williams approximation through
5=(p„—ps)/kT. The above way of building a particle
reservoir leads therefore, in the case of a thermal system,
to a concentration dynamics fulfilling thermodynamic de-
tailed balance.

2. Nonequilibrium grand-canonical ensemble

In the same spirit as what was done in Sec. II A 1, irra-
diation effects are modeled by considering that two dy-
namics are acting in parallel: a thermally activated one
and a forced one. Now ballistic jumps contribute both to
chemical disordering and to composition changes. In the
present description, this is achieved by considering that
the system is interacting with two reservoirs, undergo-
ing pair exchanges with probability p with a reservoir
characterized by (5,p) (where p is the inverse tempera-
ture) and with probability (1—p) with a reservoir charac-
terized by (5'=5, p'=0). Indeed, as the energies in-

volved are much larger in the ballistic exchanges than in
the thermally activated ones, the situation is simplified by
treating the ballistic jumps as atomic jumps at infinite
temperature [p'=0, as already done in Eqs. (1) and (2)].
Furthermore, in a high-temperature limit (p tending to
zero), ballistic jumps are no longer physically distinguish-
able from thermal jumps in the alloy, and one thus should
recover an infinite-temperature equilibrium description
whatever the probability p: This implies 5'=6.

The total rate of pair exchanges for the driven system
is given by 'N=pW+(I —p)W', and consistently with
Eq. (11), the intensity of external forcing is measured by
the ratio of the ballistic jurnp frequency to an average
thermal jump frequency: y=(1 —p)/(pr).

As we have built the dynamics for the driven system,
based on Eqs. (26)—(28), we can now write the master
equation [Eq. (20)] or the Kubo-Matsuo-Kitihara equa-
tion [Eq. (25)] for the grand-canonical description:

ae(, r) ac=~~, (rz) exp — —4
Bt +' BS

ac—1 .+ca, (~) exp 4
ae ac—1 .+u +, (n) exp —2
as ac

ae ac+~,(rz) exp 2 +
aS aC

—1 +~ ~(rz) exp
ae

2
ae
as

ae ae—1 +u ~, (n) exp 2 +
aS ac

(31)

~here the various transition probabilities are defined by
~(rz)='LV(A)/2n and @(rz) will denote the solution to
Eq. (31) under steady-state conditions.

For driven systems no analytical solution either for the
master equation or Kubo-Matsuo-Kitihara equation [Eq.
(31)] is known when the order parameter is not a scalar,
as is the case here. It is established that, for Markovian

processes, if a steady state exists for the probability distri-
bution, then it is unique. It is clear from Eq. (31) that
this solution N will depend on the ratio v0/v. For the
case of alloys under irradiation we considered here, con-
sistency with a heterogeneous canonical description re-
quires that one compute the potential N in the limit
v0/v~0. Indeed, in such a heterogeneous canonical sys-
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~+,(n )
(C,S =0)=lnBC'() ~~~, (~ )

cc ~, (~)
(32)

where the last equality holds because the transition prob-
abilities ~ are taken for S =0.

Collecting this information yields the following analyti-
cal expression for 4, in the limit vo/v~0:

4(C, S)—4( —,',0)=+—,
' I ds ln

ec +,(~)

, (rz )

tern, where spatial organization does not take place (see
Sec. IIB2) and when the interface width remains finite
(as observed in Figs. 6—8), the fraction of atoms lying on
interfacial sites tends to zero (as 0 '

) in the large
system-size limit (Q~ ), while the attempt frequency
for pair permutation is the same for all pairs. Thus the
frequency of attempts which could modify the overall
composition of a phase is infinitely small compared with
that of attempts within a given phase. In the homogene-
ous grand-canonical description derived here, this implies
that vo/v tends to zero as II ' . In the limit vo/v~O,
Eq. (31) only retains terms in 84/BS: We recover pre-
cisely the Kubo-Matsuo-Kitihara equation of a canonical
system [see Eq. (25)]. Full consistency between the two
descriptions for steady-state values of the order parame-
ter and the fluctuations around them is thus achieved.
Note that in the simple example chosen here, the Kubo-
Matsuo-Kitihara equation for a canonical system can
easily be solved, " so that 8+/BS is known for all JV.
However, B4/BC remains yet unknown in the limit
v0/v —+0.

Before taking the limit v0/v~0, by the use of symme-
try properties of the order-parameter space, B4/BC can
be computed when S =0. Indeed, disordered states
(S =0) lie on a symmetry axis of JV space (see Fig. 10):
This axis is invariant under permutation of the labeling of
the two sublattices; since the partial derivatives of 4 are
assumed to be continuous, ' B4/AS is vanishing along
this axI's, whatever the value of vo/v. Simple algebra
then yields

FIG. 10. Schematic drawing of the order-parameter space in

the grand-canonical description. The various dynamics are
represented by arrows linking sites of the discrete order-
parameter space: long-range-order changes (dashed arrows) and
concentration changes (solid arrows). The grid size (1/A) has
been exaggerated for sake of clarity,

assess the relative stability of competing phases in the bcc
alloy under discussion. Beyond a critical forcing, the
transition becomes first order (see Fig. 2). In the region
where the transition is first order, the knowledge of 4 al-
lows us to build the coexistence field: At a given y and T,
we search for a 6 value such that the two local maxima of
4, corresponding to the two possible steady states (C, S)
and (C', S'), have the same 4 value. Our assumption
that no patterning occurs implies that these two phases,
when in contact, will interact weakly. Then a system of
average composition Co such that C & Co (C' will

decompose (see Fig. 10) and the composition and the de-
gree of order are obtained from 4, and their proportions
given by the lever rule. A slight discrepancy exists (1%
difference for the temperature of the congruent point at
@=4.55) between this phase diagram and the one com-
puted from the heterogeneous deterministic model [Fig.

+ I dc (CS=O),
1/2 'aC (33)

where the first integral in the RHS of Eq. (33) is the
canonical potential. '

Equation (33) generalizes for a driven system the
Leg endre transformation which links grand-canonical
and canonical potentials in an equilibrium system (see the
Appendix). In the framework of the present homogene-
ous mesoscopic description, such a relation holds when-
ever the disordered states lie on a symmetry axis of the
order-parameter space; this relation is therefore not re-
stricted to the mean-field approximation used here to get
a tractable expression for the transition rates 8' or to a
direct-exchange mechanism for atomic jumps. It is easily
checked from Eq. (33) that, without irradiation (y =0), @
is identical to the thermodynamic grand potential in the
mean-field approximation considered here, the Bragg-
Williams one (see the Appendix).

Figure 11 illustrates the results of the above method to

y= 4.55

0.2

I

0.1 0.2
I

0.3 0.4
l

0.5

FIG. 11. Two-phase field at fixed forcing (solid line) and the
"To line" {long-short-dashed line) beyond the tricritical line, as

computed from the stochastic potential 4. Dashed lines corre-
spond to extrapolation of the calculations.
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3(a)]. This difference arises from the fact that some short
range exists in the heterogeneous (deterministic) model,
while it is absent from the homogeneous (stochastic) mod-
el; such differences already exist for thermal systems.

Note that producing the ballistic jumps by cascade, in-
stead of the uncorrelated jumps considered here, affects
the first-order transition lines' and thus should affect the
coexistence field. The existence of cascades of replace-
ment modifies the dynamics of the system ' For the
concentration evolution, the system may now exchange
more than one atom at once with the infinite-temperature
particle reservoir; the derivation of this new dynamics is,
however, a simple extension of the method described
above. This is left for future work.

IV. DISCUSSION AND CONCLUSION

Alloys under irradiation are examples of systems main-
tained in far-from-equilibrium situations by dynamical
external forcing. As a result, such systems may exhibit
states or behaviors which have no counterpart under
purely thermal conditions. For the simple A2-82 order-
disorder transition on a bcc lattice, from a heterogeneous
deterministic kinetic description we have shown that
beyond a critical forcing intensity (i.e., beyond a critical
irradiation flux) an alloy which is always single phase at
equilibrium becomes two phase under steady-state condi-
tions; this new irradiation-induced phase transition re-
sults from the change from second to first order in the
order-disorder transition and is therefore different from
irradiation-induced heterogeneous or homogeneous pre-
cipitations. ' Introducing a grand-canonical nonequili-
brium ensemble from a stochastic kinetic description, we
have shown that a grand potential can be derived for the
stationary probability distribution of ordered states; from
this description we get a dynamical equilibrium phase di-
agram in good agreement with the deterministic one
[compare Figs. 3(a) and 10] and confirming the existence
of the two-phase field.

It is remarkable that this system —always homogene-
ous at equilibrium —can become two phase under an
external forcing which usually is assumed to homogenize
atomic configurations. Transitions which are second or-
der at equilibrium can, under certain conditions, become
first order under an external forcing. Gonzalez-Miranda
et al. and Dickman have found such a behavior for a
ferromagnetic Ising model with two dynamics acting in
parallel: an infinite-temperature Kawasaki dynamics and
a finite-temperature Metropolis dynamics. In the latter
model, the behavior can be rationalized by the fact that
the efficiency of the spin-exchanging Kawasaki dynamics
inside a ferromagnetic domain is almost negligible com-
pared with that at a domain boundary. However, such a
rationalization does not hold for an antiferromagnetic
system, which is analogous to our model alloy.

For a two-phase alloy, we have identified a mechanism
for APB elimination which leads to precipitate dissolu-
tion and redistribution under irradiation. Under irradia-
tion, dislocation loops formed by point-defect agglomera-
tion are growing and thus could shear ordered precipi-
tates: Indeed, Potter and McCormick observed such a

shearing of y' precipitates in NiA1 (12% at. % Ni) under
Ni+ irradiation. Furthermore, they observed that this
shearing induces a precipitate dissolution which was in-

terpreted in terms of coupling between solute and vacan-
cy fluxes toward the loop. The mechanism observed in
our model, where point defects are not taken into ac-
count, offers an alternative explanation.

Among the behaviors we have observed, some are nev-
ertheless reminiscent of thermal behaviors. This is the
case for the surface-tension and coarsening effects ob-
served in Sec. II B2. The knowledge of a stochastic po-
tential for the heterogeneous case would allow one to
derive and compute a surface tension, similarly to what
was done for equilibrium systems. Note also that the
system under consideration here does not exhibit spatial
organization.

Numerical modelization is a powerful tool for studying
the kinetic path in alloys (see the recent work by Chen
and co-workers, ' Fultz, ' and Anthony and
Fultz ). Let us stress that the choice of the kinetic mod-
el is crucial when studying driven systems: While for
equilibrium studies any dynamics fulfilling the detailed
balance property will drive the system to its proper equi-
librium state, the details of the kinetics will affect the
steady states reached under forcing. We choose here ki-
netics according to rate theory [see Eqs. (1) and (2) and
Fig. 1], which should be more realistic for thermally ac-
tivated processes than kinetics where the activation ener-

gy atomic jumps mix energies of the initial and final
configurations. Note that the results obtained are specific
to the choices we made for the kinetic description: (i) a
constant saddle-point configuration energy E„(ii)
V„=Vbb (used for numerical applications), and (iii) a
direct exchange mechanism for modeling atomic
diffusion. For homogeneous fcc driven systems, assump-
tion (i) made here for simplicity is known to modify
significantly the dynamical equilibrium phase diagram, '

leading to the stabilization of new phases, while assump-
tion (ii) is expected to have less severe an effect (for a
thermal system, Fultz has shown that this assumption
modifies slightly the kinetics of B2 ordering in homo-
geneous systems). The choice of the mechanism for the
atomic diffusion [assumption (iii)] is expected to influence
strongly the kinetics of our systems (see Refs. 45 and 47
for comparative studies in thermal systems). Neverthe-
less, some features observed in this model seem to be gen-
eric. Indeed, Monte Carlo simulations, performed for an
equiatornic bcc alloy under irradiation, have, however,
shown that the A2-B2 transition changes from second
order (at equilibrium) to first order (beyond a threshold in
external forcing) whether atomic diffusion proceeds by a
direct-exchange mechanism or by a vacancy-assisted
mechanism. ' Furthermore, for the case of alloys under
irradiation considered here, diffusion through interstitial
or interstitialcy mechanisms is to be taken into account,
so that both vacancies and interstitials should be intro-
duced in the description; this is left for future work.

In conclusion, from deterministic or stochastic kinetic
descriptions, we show that irradiation stabilizes two-
phase steady states in a bcc binary alloy presenting an
A2-82 order-disorder transition, the equilibrium phase
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diagram of which only displays single-phase fields. Inter-
face properties in this irradiation-stabilized two-phase
field are studied: Surface-tension-like effects and coarsen-
ing are observed. APB's are unstable, and they get dis-
solved by the surrounding solid disordered solution; the
smaller half of the ordered precipitate redissolves to the
benefit of the larger one. From the stochastic kinetic
description, the relative stability of competing locally
stable steady states is computed by introduction of a
grand-canonical ensemble for driven systems: The two-
phase state, when it exists, is indeed found to be the more
stable one. Irradiation experiments wil1 be useful for as-
sessing the relevance of our description for real systems.
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APPENDIX: RELATIONSHIP
BETWEEN GRAND-CANONICAL
AND CANONICAL POTENTIALS

FOR DRIVEN AND THERMAL SYSTEMS

We give here the detailed expression of the grand-
canonical potential for a driven system, and we checked
that without irradiation, i.e., y =0, one recovers the usual
thermodynamic grand potential, in the Bragg-Williams
approximation.

Inserting Eqs. (26) and (30) into Eq. (33) yields, for
b,4( C,S)=4( C,S)—4( —,', 0),

b4(C, S)=—
—,'[C lnC +C~lnC~+(I —C )ln(1 —C )+(1—C~)ln(1 —C~+21n2]

5 e ~s/kt+ C+ ,' f —dsln „+f dcln
0 slkT+

to( 1/2 —c)Ik T+
+5(C ——')

e
—co(1/2 —c)/kT m

y
2 7 (A 1)

where s and c are the current values of S and C, and with C =C+S/2 and C~= C —S/2.
Without irradiation, we set y =0 in Eq. (Al); this yields

64' &(C,S)=—
—,'[C lnC +C~lnC~+(I —C )ln(1 —C )+(1—C~)ln(1 —C~)+21n2]

u(C —
—,
'

)
+ — +5(C ——')

4kT 2

[QP(C,S)—(pa I"a )(C —
—,
' —)],1

(A2)

(A3)

where the free energy V(C, S) is the one introduced in Eq. (9) and with the use of the relation between 5 and the equilib-
rium chemical potential [see Eq. (30)]. Equation (A3) shows that the kinetic description derived for a grand-canonical
nonequilibrium ensemble, when specified to a thermal case, 1s consistent w1th equllibrlum thermodynamic description

Under irradiation, at steady state, b4 is extremum, so that aaeraC =aaexaC~=0. This yields the following ex-
pression for the effective chemical potential:

Ca
6=1n

1 —C
1——1n
2

cats /k T+ co( 1/2 —c) /k T+
—

cats Ik T+ —co( 1/2 —c)IkT+
—ln

=ln &
—C~ +—ln
cf3 2

e dos/kT+
y

Ops /k T+
—ln

co( 1/2 —c) /k T+

e +y—co(1/2 —c)IkT I (A4)

The last equality is fulfilled at steady state: It is indeed obtained by setting dC /dt =0 in Eq. (7). The effective chem-
ical potential for the system under irradiation is therefore found to be the same on both sublattices.
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