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Anisotropy and magnetic field dependence of the planar copper
NMR spin-lattice relaxation rate in YBa2Cu40s
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We have measured the temperature and magnetic field dependence of the Cu nuclear spin-
lattice relaxation rate W and its anisotropy r at plain Cu(2) sites in normal and superconducting
YBagCu40s. Below T, we observed that an applied magnetic field B II c enhances W = W„whereas
B J c suppresses R' = W g. Such a behavior seems to rule out the spin diffusion to the fluxoid
cores and the fluxoid motion as being responsible for the effect. It indicates more an unexpected
field-related breaking of the spin-rotation invariance in the superconducting state. The anisotropy
r defined as the ratio W,b/W, is almost field and temperature independent in the normal state but
develops a nonmonotonic temperature dependence below T, with a flat minimum at 45 K in B = 5.17
T and a much more pronounced minimum at 55 K in B = 0.58 T. A qualitatively similar behavior
of r has been reported previously for YBa2Cu30p. Comparing r in both compounds, we note one
essential difference at low B. Namely, the slope dr/dT just below T, is large for YBa2Cu30& but
almost zero for YBa2Cu408.

Nuclear magnetic resonance and neutron-scattering ex-
periments have shown that spin fiuctuations in high-
temperature superconductors have strong antiferromag-
netic (AFM) correlations, which persist into the super-
conducting state. The study of the temperature and field

dependence of the NMR spin-lattice relaxation rate W,
where o; = a, b, or c specifies the orientation of the static
applied field B, and its anisotropy r = W b/W, at the
Cu plane site [(Cu(2)] may help to understand how these
AFM correlations are affected by superconductivity.

Recently, it was reported ' that in YBa&Cus0& (ab-
breviated 1-2-3) measurements of W and r in the su-

perconducting state appear to require a modification of
theories such as that by Millis, Monien and Piness but
agree qualitatively with the orbital-d-wave fits by Bu-
lut and Scalapino4s and Lu.s In addition, Martindale
et aL2 found that in the superconducting state W„and
to a lesser degree W b, become enhanced in a magnetic
field, with the enhancement growing at lower tempera-
ture. A temperature-dependent anisotropy below T, in
1-2-3 has also been studied in low magnetic field by Taki-

gawa, Smith, and Hulst. "
We have reported previouslys similar investigations of

W~ anisotropy and its field dependence for Cu(2) in the
stoichiometric double-chain compound YBazCu40s (1-
2-4), which has the same Cu-0 plane structure as 1-2-3
but lower charge-carrier concentration. In particular, the
Cu(2) rate W„ field independent in the normal state,
shows a field-dependent enhancement in the supercon-
ducting state that already begins 13 K above T, in a
5.17 T field. Consequently the anisotropy r that is tem-
perature and field independent above T, + 13 K (r = 3.3)
starts to diminish below this temperature. Down to 80 K
the reduction of r is hardly noticeable. However, below

that temperature r drops very rapidly to a value of 2.2
and after passing a flat minimum at 45 K it increases

again at lower temperature.
Since in the superconducting state the change of r due

to a magnetic field could be a secondary effect caused,
for example, by fiuxoid cores or by T, suppression in a
magnetic field, we decided to extend our previous high-

field experiments to low fields, where the field-induced

anisotropy effects may be neglected. In this Rapid Com-
munication we will show that the anisotropy r behaves

similarly as in 1-2-3, but with some pronounced differ-

ences. In addition, new results on the low-temperature
behavior of W, b and W, will be presented.

We briefly discuss the procedure to determine the rate
anisotropy. For a strong magnetic field and pure mag-

netic relaxation the nuclear spin-lattice relaxation rate
W involves fiuctuating hyperfine fields H perpendicular
to the applied external field. In case of B

I ~

c the rate may

be expressed as W, = zs (Hz+Hbz)ps 7, where p„ is the nu-

clear gyromagnetic ratio and w is the (isotropic) correla-

tion time. s For B J c, the rate is W b = sz(Hz+ Hz)pz7. ,

since a and 5 are not distinguishable for the Cu(2) site.

By a zero-field nuclear quadrupole resonance (NQR)
experiment, only W, can be obtained for the Cu(2) nu-

clei because the largest component V„ofthe axially sym-

metric electric-field gradient at the Cu(2) sites, defining

the quantization direction, is parallel to the c axis. To
determine W b, a 'nonvanishing magnetic field perpen-

dicular to V,, has to be applied. To keep the anisotropy
effect of the applied magnetic field on T, and relaxation

possibly small, we studied the temperature dependence

of r at rather low field of 0.58 T. A choice of apprecia-

bly lower fields is limited by the rapid deterioration of
the signal to noise ratio 8/N with decreasing field. S/N
of the Zeeman splitted +1/2: .. —1/2 resonance used

in the experiment is proportional to the square of the

applied field. Our measurements were performed on a c-

axis-oriented powdered sample imbedded in epoxy, with
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a random orientation of the a and 5 axis in the plane per-
pendicular to the c axis. The 1-2-4 powder used exhibits
T, = (81.0 + 0.5)K.

Since the quadrupole splitting of the Cu(2) nuclear
spin levels is much larger than the Zeeman splitting for a
small field, a special procedure is required to obtain the
anisotropy of W. 7 For a weak magnetic field applied
perpendicular to the c axis there is no obvious quanti-
zation axis, and therefore the relaxation of the Zeeman
splitted +1/2: - —1/2 resonance is caused by the in-

plane and the out-of-plane components of the fiuctuating
hyperfine fields. For a spin-

&
nucleus such as Cu(2), the

magnetization recovery following an inversion pulse is de-
scribed by
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where +PI, = 1. The P~ and Ai, are functions of the
anisotropy r and of the ratio between the Zeeman vL, and
the quadrupole frequency vq. In Fig. 1, Pg and Ai, are
plotted as a function of r calculated for vg = 6.44 MHz

(B = 0.58 T) and vq = 29.75 MHz. Using the values of

W, as measured by NQR, ii we fitted the magnetization
recovery data by Eq. (1) to obtain A and, hence, r

Figure 2 shows the temperature dependence of the
anisotropy ratio r measured in a low magnetic field B =
0.58 T (solid circles) and high magnetic field B = 5.17 T
(open circles). Within experimental errors of +10%%uo, the
weak field ratio r = 3.2 in the normal conducting phase
agrees with our previously reported high-field result r =
3.3.

Below T„both the high- and low-field r values de-
crease. While the high-field values level off around r =
2.2,s the low-field r passes a pronounced minimum at 55
K, increases again at lower temperatures and reaches at
30 K a value of 5.7. We did not continue our low-field
measurements below 30 K because of an inhomogenious
distribution of W, seen in zero-field NQR arising most
probably from extrinsic effects as disorder and impuri-
ties. Figure 3 compares our low field r values for 1-2-4

FIG. 2. Temperature dependence of Cu(2) spin-lattice re-

laxation rate anisotropy r for YaapC~O8 in two di6erent
magnetic fields B = 0.58 T (~) snd B = 5.17 T (o).

with those of Takigawa, Smith, and Hulstr for 1-2-3. The
arrows indicate the value of r above T, for 1-2-4 and 1-2-
3. The two sets of data are quite similar. However, the
minimum of r in 1-2-4 seems to be deeper and is posi-
tioned about 0.1T/T, lower than in 1-2-3. The upturn of
r with decreasing temperature is much more pronounced
as compared to 1-2-3.

New explanations of the temperature dependence of
r in the superconducting state have been presented re-
cently by Bulut and Scalapino4 s and by Lus using a BCS
pairing theory. Both groups use spin-singlet pairing and
assume temperature-dependent energy-level broadening
and include pair-creation and -annihilation terms in the
calculation of the susceptibility. They also include an
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FIG. 1. Calculated r dependence of Pg snd Ag for vr, =
6.44 MHz (B = 0.58 T) snd vg = 29.75 MHz. P3 is zero snd
not plotted.

FIG. 3. Cu(2) spin-lattice relaxation rate snisotropy r
vs the reduced temperature T/T, in s weak magnetic field:

YBszCu408 in B = 0.58 T (I) snd YBs2Cu30y in B = 0.44
T (h.) (Ref. 7).
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anisotropic on-site and an isotropic transferred hyper-
fine coupling of the Cu(2) nuclei to Cu(2) electron spins.
Figure 2 of Ref. 2 compares the theoretical results with
experimental data for 1-2-3.

The sharp decrease of r just below T, and its upturn
at lower temperature is in qualitative agreement with
these theories, which predict such a behavior as a result
of nodes in the gap (d-wave pairing). In addition, the
change of r close to the normal-to-superconducting tran-
sition reveals the importance of coherence factors.

However, our data for 1-2-4 exhibit just below T, a
much softer decrease of r; the derivative dr/dT is al-
most zero at T, . It remains to be shown whether such a
behavior can be reproduced by the above-mentioned the-
ories. Thus, at present it cannot be decided whether our
anisotropy data for 1-2-4 favor d-wave pairing or not.
Theoretical calculations of r for 1-2-4 by Eremin and
Markendorfiz are in progress.

We now discuss the field dependence of the relaxation
rate. We have measured W, b and W, in strong, weak and
zero fields in an oriented powder sample. A summary
of the temperature dependence of the absolute values is
given in Fig. 4. The results normalized to the respective
rate at T, are plotted as a function of the reduced tem-
perature T/T, (B) in Figs. 5 and 6. The T, values for a
fixed field were derived from H, z measurements done on
a 1-2-4 single crystal by Bucher et aLis

We first note that W, depends more strongly on the
field than W~b does. The field dependence increases
with decreasing temperature. At T = 0.4T, the high-
field rate becomes about twice as large as the zero-field
rate. A similar enhancement has been found in 1-2-3.z

On the other hand, W, b exhibits quite a difFerent behav-
ior. Down to about T = 0.7T„an applied field slightly
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enhances the relaxation rate as previously observed in 1-
2-3. ' However, below 0.7T, the enhancement gives way
to a suppression that becomes more evident at lower tem-
peratures. At 0.35T, the high 5.17-T field reduces W, b

to about 40% of the value measured in the low 0.58-T
field. Such an unique field dependence is in contrast to
the behavior of W, b in 1-2-3.

The opposite response of W~i, and W, to the applica-
tion of a magnetic field seems to rule out the possibility
that Huxoid cores or thermally activated Quxoid motions
cause the field dependence as it has been discussed for 1-
2-3.z To account for the opposite response of W~i, and W,
an unexpected field-related breaking of the spin-rotation
invariance in the superconducting state has to be con-
sidered. Finally, we want to stress the fact that in 1-2-4
the high field W, is larger than the NQR rate from the
lowest temperatures used in our experiment, up to T, +
13 K (see Fig. 4). This is in contrast with a recent obser-
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FIG. 5. Temperature dependence of the normalized

Cu(2) spin-lattice relaxation rate W, divided by T/T, in

YBaqCu40s for B = 0 T (~) and B = 5.17 T (0).

FIG. 4. Spin lattice relaxation rates vs temperature for

Cu(2) for difFerent magnetic fields and orientations. The tri-

angles are for B J c and the circles for B
I~

c.

FIG. 6. Temperature dependence of the normalized

Cu(2) spin-lattice relaxation rate W q divided by T/T, in

YBa2Cu40s for B = 0.58 T (~) and B = 5.17 T (o).
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vation by Borsa et at. ,
4 who found in the temperature

region just above T, an opposite behavior for 1-2-3 and
Lai.ss Srp isCu04.

In conclusion, our new data for 1-2-4 and the com-
parison with results from 1-2-3 clearly show that at the
moment there is no consistency with regard to the influ-
ence of an applied magnetic field on the planar copper

spin-lattice relaxation rates in the superconducting state
and the normal state just above T, .
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