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Investigations of pairing in anyon systems
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We investigate pairing instabilities in the Fermi-liquid-like state of a single species of anyons. We de-

scribe the anyons as fermions interacting with a Chem-Simons gauge field and consider the weak-

coupling limit where their statistics approaches that of fermions. We show that, within the conventional

BCS approach, because of induced repulsive Coulomb and current-current interactions, the attractive
Aharonov-Bohm interaction is not sufficient to generate a gap in the fermion spectrum.

The possibility of superconductivity in anyon systems
is of general interest. The mean-field-theory approach to
systems with a single species of anyons developed by
Fetter, Hanna, and Laughlin and other authors' argued
that a finite anyon density induces a background statisti-
cal magnetic field and a Landau-level picture of the
ground state and the ensuing energy gap and supercon-
ductivity emerged. There are also alternative scenarios
for anyon superconductivity where the background sta-
tistical magnetic field is absent, the ground state of the
anyon system resembles that of a Fermi liquid, and the
superconductivity is realized in the conventional BCS
mode. This occurs in a system which contains two species
of anyons of opposite charges with respect to the statisti-
cal gauge field and which therefore have opposite frac-
tional statistics [we denote this as (+ —

) pairing].
There, the statistical background magnetic fields cancel
and it has been found that the Aharonov-Bohm interac-
tion is attractive enough to generate the pair formation.

Recently, it has been noted that systems with a single
species of anyons and a Fermi-liquid-like ground state are
also of interest. Anyons are described as fermions in-
teracting with a Chem-Simons gauge field so that in the
weak-coupling limit their statistics approaches that of
fermions. The Fermi-liquid state is achieved when the
mean background statistical magnetic field is canceled by
an external magnetic field. A pairing instability in such
systems [which we denote (++)] has been suggested as
an explanation of the even denominator states in the frac-
tional quantum Hall effect. It has been conjectured in

Ref. 7 that the Aharonov-Bohm interactions (with cou-
pling constant I/tc) which give the fermions fractional
statistics are sufhcient to drive a superconducting pairing
instability. In this paper we shall show that this is not
the case. When the back-reaction of the gap in the fer-
mion spectrum to the interaction potential is taken into
account, the BCS gap equation has only the trivial solu-
tion. We conclude that, if there is such an instability in
this system, it must occur outside of the weak-coupling
BCS scenario or else be driven by other interactions. It is
also worth noting that in the physical systems of interest
tc is small (for example, in Ref. 7 tc= li2ir), and strong
coupling effects could lead to the gap formation (in that
scenario there would be a critical a where pairing takes
place). In that case, we observe that [as was previously

found for the (+ —) case ] the coefficient of the Chern-
Simons term is renormalized as K~K I/4m, where I is
the angular momentum of the Cooper pair which, be-
cause of Fermi statistics, must be an odd integer. Thus,
the Hall conductivity and fractional statistics of quasipar-
ticles and magnetic vortices are modified by the gap. Be-
cause of no renormalization beyond one-loop arguments
for the Chem-Simons term we expect that the latter re-
sult is valid beyond our large-~ perturbation theory. To
get an even-denominator Hall conductance, 2mk should
be a half-odd integer.

It is interesting to compare the (++) case with the
(+ —

) case where it has been shown that Aharonov-
Bohm interactions do lead to pairing and formation of an

energy gap, which even proves to be parametrically
larger than the simplest BCS gap. At the tree level these
cases are equivalent: both contain only long-ranged
Aharonov-Bohm interaction (which might be both attrac-
tive and repulsive, depending on the angular momentum
of the anyon pair"' ). Bare Coulomb and magnetic
current-current interactions are absent, but will be gen-
erated by the radiative corrections. The difference be-
tween the (+ —

) and (++) cases stems from different
back-reactions of the gap formation on the effective in-

teraction between anyons.
Since the (+ —

) pairs are neutral with respect to the
statistical gauge field, their presence in the ground state
does not lead to a Meissner eff'ect (i.e., generation of a
London mass) for the statistical gauge field. Moreover,
since at zero temperature all anyons are bound in pairs,
there are no free charge carriers in the system, and there-
fore, no Debye screening. This in turn results in the fact
that radiatively induced Coulomb and magnetic current-
current interactions are short ranged (topologically mas-

sive), whereas the Aharonov-Bohin interaction remains

long ranged and, therefore, dominant. In the equal-
charge case, on the contrary, the formation of (++)
pairs of course leads to both Debye and Meissner screen-

ing, and all interactions become short ranged (so that the
Aharonov-Bohm interaction will no longer have the to-
pological nature). Thus the interaction which causes
anyon pairing will in turn be completely changed by this

very pairing. Note the the values of the Debye and Lon-
don masses are defined only by the density of the free
charge carriers in the former case and that of the super-
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where the statistical coupling ~ is taken positive and
large, and e(k) is the (quasi)particle (anyon) dispersion
law below taken to be e(k) =k /2m FF. The t—ree-level
potential has pure Aharonov-Bohm form and reads in the
radiation gauge (8; A; =0}

I
2i s0prPJ 2i sin8

Km (p —p')~ Km p/p'+p'/p —2cos8

(2)

where p=p(cosg, sing), p'=p'(cosP', sing'), 8=/
This potential leads to the formation of bound pairs of
anyons with nonzero angular momentum. Substituted
into the standard BCS gap equation

dp' ~p
2 PP(2~)'

it gives rise to the exponentially suppressed gap, which
depends nontrivially on the momentum

b(p)=he "~
I I

8(pF —p)+ 8(p —pF )p. '
. p.

(4)

The largest gap is achieved for P-wave pairing

2'1TK

Taking into account the back-reaction of the gap on
the renormalization of the potential leads to drastic
changes in these tree-level conclusions. In the case of
(+ —) pairing it removes the exponential suppression of
the gap

6-e+/a,
which demonstrates the existence of a new universality
class for the superconducting order parameter. (For
small sc, which corresponds to the strong-coupling re-
girne, one expects the gap to be of order of the Fermi en-
ergy, although no precise statements can be made in this
case. )

conducting fermions in the latter one. If there is a gap in
the fermionic spectrum these two are defined by the den-
sity of anyons in the system, and for zero temperature
have nothing to do with the magnitude of this gap, ir-
respectively of how small it is. They can therefore have
an important in6uence on the gap equation. The purpose
of this paper is to consider a self-consistent picture of this
feedback. We will demonstrate that for large K (2n/k .is
the statistics parameter) there is no gap in the fermionic

spectrum, contrary to the result in Ref. 7. For simplicity
we will consider the zero-temperature case.

%e start with the Lagrangian

L = ——e"" A 8 A
K

p v A,

where Do is the bare propagator, the only nonzero com-
ponent of which is

1 &Igqj
D .=—

pi
K q

and P is the polarization operator. So,

H
Dpp = iDO Do

K q +mil/2m.

D -= —iD 5-—ij 1 ij
qiqj m /2m

q v q +mII/2m

1
Dpi D2cjqj, D2-

zq +mII/2m'
The behavior of the functions Do, 2 is depicted on Fig.

1. Note, that for

q0 PF(E/K EF)— (10)

Now we will show that in the (++}case the result is
quite the opposite: the only solution of the renormalized
gap equation is 6=0.

To find the gap improved potential we need to know
the polarization operator (herewith we will be interested
in the static limit, when there is no energy transfer
through the gauge line, and we will restrict ourselves to
the first-loop correction, as in the large-~ limit the contri-
bution of higher loops will be suppressed). In the radia-
tion gauge we find the following.

(1) 1100(q)=im/2m, for all ~q~ (2PF. Indeed, in the
case of the single-charge plasma the Debye screening
does not depend on whether or not the ferrnions are
bound in the pairs.

(2) II;.(q) = —i 11(q)5; . II(q=O) =(eF/4m. )5,i Th.e
nonzero value of II; (q=O) indicates the appearance of
the magnetic London mass of the statistical photon
(Meissner effect). Note that this London mass does not
depend on the value of the gap, exhibiting thus a nonana-
lytic behavior, as for the case of the absent gap
II(q=O)=0. This is of no surprise, since we know that
the value of the London mass is determined by the densi-
ty of superconducting fermions, and at zero temperature
all fermions are superconducting however small the gap.
When q =~q~ increases II(q) decreases, and for large
q ))b, /vF it approximately equals Il(q) =(AeF /qvF
+q /24a m }5, , where the last term in the parentheses is
the magnetic response of the normal metal.

(3) 110;(q=O)=(l/4m)s;J. qi, where 1 is the angular
momentum of the pair. This leads to the same renormal-
ization of the Chem-Simons couping as those first found
in K „=K I/4n, but it is worth recalling that now, after
the formation of the BCS pairs, the Aharonov-Bohm in-
teraction is short ranged, and this renormalization does
not lead to a considerable enhancement of the
Aharonov-Bohrn attraction, and in what follows we will
neglect it in the large-~ limit. Since there is no correction
to the Chem-Simons term in the ordinary free plasma,
for q &&6/U~ Ho; decreases to zero.

The full gauge propagator is in the matrix notations

D '=D ' —P,
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1~(ir e~/b)' (13)

which look implausible. We do not expect the gapless su-
perconductity" for the anyon system either. Indeed, for
this scenario one in general needs the attraction to vary
in the vicinity of the Fermi surface much faster than the
repulsion, whereas in our case the attraction (Aharonov-
Bohm interaction) and the repulsion (current-current in-
teraction) have essentially the same behavior near the
Fermi surface.

The arguments presented above, of course, do not rule
out the general possibility of the superconductivity in
these systems. As we mentioned above, for real physical
systems the value of the statistics parameter ~ is rather

cause of the Kohn-Luttinger effect. ' Indeed, as we
showed, the most important region of the transferred
momentum in the gap equation (3) is q -qo, where the
net interaction is repulsive, which makes the improved
gap equation (12) have no nontrivial solutions. To smear
out this repulsion one needs very large angular momenta,

small, so these systems correspond to the strong-coupling
regime. For example, for sc-2m. the statistics of anyons is
close to that of bosons, and the system of equally charged
anyons in this case will behave like the XY model, for
which the long-range order exists. ' All these should be
a subject of further investigations.

Note added. B. Halperin, P. Lee, and N. Read' have
recently applied the usual methods of theory of the Fermi
liquid for anyon systems in the absence of the back-
ground magnetic field. These authors found a divergence
in the effective mass of the fermions. Our results support
their conjecture that this problem can be cured without
drastic changes in the Fermi-liquid-like description of
this system.
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