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Theorem on the one-dimensional interacting-electron system on a lattice

T. Xiang and N. d*Ambrumenil
Physics Department, Warwick University, Coventry CV4 7AL, United Kingdom

(Received 8 July 1992)

A theorem about the spin properties of the ground state and the ordering of the energy levels for
different spins of an interacting-electron model including an arbitrary diagonal interacting potential, an
antiferromagnetic exchange, and an electron pair-hopping term for particles on a one-dimensional lattice
is stated and proved. We show that when the number of electrons N =4n +2 (n an integer) with period-
ic boundary conditions or N =4n with antiperiodic boundary conditions, the ground state is a nondegen-
erate singlet. This theorem generalizes a similar theorem Lieb and Mattis proved for the one-
dimensional interacting electron system.

I. INTRODUCTION

The properties of the ground states of interaction-
electron systems have been studied for many decades.
However, rigorous results for them, even in one dimen-
sion are still rare. In 1962, Lieb and Mattis' showed that
for a one-dimensional (1D) electron system with a diago-
nal interaction potential which conserves the total spin
(either on a lattice or in the continuum limit) the ground
state is a spin singlet and the lowest energy level belong-
ing to each Hilbert subspace of a total spin S is ordered in
a special way. In 1989, Lieb showed that for the attrac-
tive Hubbard model in any dimension the ground state is
a spin singlet. He also proved that for the repulsive Hub-
bard model on a bipartite lattice with A and B sites on
each sublattice the ground state has the total spin
S=

~
A —8~/2 at half filling. Ueda, Tsunetsugu, and

Sigrist have recently extended this work of Lieb to the
periodic Anderson model and shown that the ground
state of the periodic Anderson model is also a singlet at
half filling. More recently, the authors have shown that
the ground state of the 1D t -J model is a spin singlet and
nondegenerate for any even number of electrons with ap-
plied boundary conditions.

In one dimension, some of the interacting-electron
models, for instance, the Hubbard model, the single im-
purity Kondo model, and the supersymmetric t -J mod-
el, can be solved using the Bethe ansatz. However it is
generally hard to obtain the value of the total spin and
degeneracy of the ground state from the solution of the
Bethe ansatz alone.

In this paper we generalize the theorem Lieb and
Mattis proved in 1962' and the theorems we proved re-
cently for the 1D t-J model. We show that the theorem
of Lieb and Mattis for the 1D electron system on a lat-
tice' is still valid in the presence of an antiferromagnetic
exchange interaction and/or some other nondiagonal in-
teraction terms (the model Hamiltonian will be defined
precisely later). We will also consider the effect of the
boundary conditions which was ignored in the proof of
Lieb and Mattis. '

The 1D interacting-electron system we consider here is
defined on a lattice of I. sites by the Hamiltonian

H=H, +H~+HJ+Hp,

H, = —g t;c,~+, c, +H.c. (t;)0),

Hy=V(n), . . . , nN),

H~= $J;S; S;+1 (J; ~0),

Hp= —QT c;+,rc, +, tc, gc;r+H. c. (T(~0),

where c; (c; ), n; =g c; c;, and S,. =c; (o l2) y;& are,
respectively, the electron annihilation (creation) operator,
the electron number, and the electron spin operator at
site i. V(n&, . . . , nz) is an arbitrary real function of
n „.. . , n~ with N the total number of electrons. H, de-
scribes the hopping of an electron between nearest-
neighbor sites with a site-dependent hopping constant—t;. t; &0 has been assumed here. However, a global
phase factor can be added to t, , in which case the
theorem we shall prove later is still valid, provided that
the boundary condition is suitably amended. t, (same as
for J; and T; ) can also be a function of electron
configurations; generally, it can be represented as
t;(n&, . . . , nz). HJ describes the antiferromagnetic ex-
change between electrons on neighboring sites. Hz
denotes the hopping of an electron pair between nearest
neighbors.

The Hamiltonian H conserves the number of electrons
and the total spin of the system. Thus we can restrict our
discussion to states within a subspace with a given value
of the z component of the total spin S„say M, and a
given value X. %'e choose the basis set of this Hilbert
subspace to be

/ {x&} {x&} )=c„.c„c„.. c„ 10),
Ir 2l

(2)

where {x&}= {x»,. . . , x~ ~x» & . . &x~ } and

&xM } Ml(M2) is the

total number of up (down) spins, N=M&+M&, and
M=(M& —M2) j2. The eigenstate of H can be expanded
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in this basis in terms of the amplitudes f ( j x t j [x ~ j ):

(3)

Three kinds of boundary conditions will be considered in

this paper: (1) periodic boundary conditions (PBC); (2)
antiperiodic boundary conditions (ABC); (3) free bound-
ary conditions (FBC). If the lowest energy level belong-
ing to a total spin S is defined by E(S), then the following
theorem holds.

Theorem (1) In the cases (a) N=4n +2 (n=integer)
with PBC or (b) N=4n with ABC, the ground state is
unique and a spin singlet, and E(S) satisfies the inequali-

ty E(2m +2))E(2m), where m is an integer.
(2) In the cases (a) N =4n +2 with ABC or (b) N =4n

with PBC, E (S) satisfies the inequality
E(2m +3))E(2m +1).

(3) For arbitrary N with FBC, the ground state is

unique and a spin singlet if N is even or twofold degen-

erate and a spin if N is odd, and E (S + 1))E (S).
The content of this theorem is the same as the theorem

we proved for the 1D t -J model. However, it is valid for
a much wider class of models. The theorem covers many
of the interacting-electron models which are physically
interesting in one dimension. If t; =t and HJ =Hz =0, it
reproduces the result of Lieb and Mattis. ' The theorem
we proved recently for the 1D t-J model is also included
in this theorem since the 1D t-J model is only a special
limit of the Hamiltonian (1) with t; = t, J; =J, H~ =0, and

Hz=Ug;n;&n;& (J/4)g—;n;n;+, in the limit of U~ ~.
The choice of the boundary condition is important in

the theorem. When PBC or ABC are imposed, N must be
even because it is only in this case that all off'-diagonal
matrix elements of the hopping terms and the exchange
terms between the two edge sites are seminegative and
the theorem can be proved. However, if different bound-
ary conditions are allowed for the up- and down-spin
electrons and ABC are imposed for the spin operators,
then an analogous theorem can be proved for the case
when N is odd if either of the following two boundary
conditions are assumed for the electrons: (1) PBC for the
up-spin electrons and ABC for the down-spin electrons;
(2) ABC for the up-spin electrons and PBC for the down-
spin electrons. In both cases, the ground state of the sys-
tem can be shown to be twofold degenerate and a spin
doublet.

To prove the theorem, we shall make use of a theorem
which was first used by Lieb and Mattis in their
proofs. ' That theorem says that: If, for a Hilbert
space with a given basis set, all the off-diagonal matrix
elements of a Hamiltonian H are real and seminegative,
then to within a common phase factor all the coefficients
of the ground-state wave function are positive or zero. If
the Hilbert space cannot be divided into two subspaces
such that all the matrix elements of H between vectors
belonging to different subspaces vanish, then to within a
common phase factor all the coefficients of the ground-
state wave function will be positive and the ground state
is unique. In the following we shall call this theorem the
Lich-Mattis {LM) theorem.

II. PROOF OF THE THEOREM

We first consider the case of FBC.
A proper choice for the basis set is important if we are

to make use of the LM theorem in our proof. Previously
we used the LM theorem to prove a similar theorem for
the 1D t -J model, but we chose the vectors

i fx j fo j )=c„c, i0} (4)

as the basis states, where [x j
= (x&,xz x~~ 1 &x&

&x~ L j and [o j
= (o)o2

=M j. The off-diagonal matrix elements of the antiferro-
magnetic exchange term are not seminegative in this
basis. In Ref. 4 we had to introduce a gauge transforma-
tion to remedy this defect. However, a better and
simpler choice for the basis states is that of Eq. (2). It is

simple to check that all nondiagonal matrix elements of
H in the basis set (2) are seminegative and that the Ham-

iltonian H cannot be divided into sets of noninteracting
parts in the subspace of M, up spins and Mz down spins.
Thus the gauge transformation we introduced in Ref. 4
for the 1D t-J model is no longer needed. According to
the LM theorem, all the coefficients of the lowest energy
state of H in this subspace can be chosen positive and this
lowest energy state is nondegenerate. We denote this
state as C&o(M „M~ ).

The value of the spin of the state 40(M„M2) can be
found by noting that 40(M„M2) is not orthogonal to the

ground state of a noninteracting electron system, i.e.,
H&=HJ=H& and t, =t, in the same subspace, because

they both contain all the basis states (2) with no changes
of signs in the amplitudes. The ground state for the
noninteracting electron system with a uniform hopping
constant t is easily found. It is easy to prove that it has
total spin S = ~M, —M2 ~

/2= ~M ~. Thus the lowest ener-

gy state of H in this subspace also has total spin S= ~M~.

Furthermore, since any eigenstate with spin S has a cor-
responding eigenfunction in the

~ S, ~
& S subspace of

eigenfunctions (N fixed), E(S)&E(S+1) is immediately
obtained. (The strict inequality follows by virtue of the
uniqueness of the lowest energy state. ) Obviously, the

ground state of H is unique and a spin singlet when N =
even and twofold degenerate and a spin doublet when

N =odd.
The case of PBC or ABC is more complicated since in

this case the nondiagonal matrix elements of the bound-

ary terms in H are not always smaller than or equal to
zero. Generally, the nonzero nondiagonal matrix ele-

ments of these edge terms are functions of M, and Mz.
But it can be shown that they become negative in the fo1-

lowing four cases:

(i) M, =odd, M2 =odd, N=4n +2 (n an integer), with

PBC imposed;
(ii) M, =even, M~ =even, N =4n, with ABC imposed;

(iii) M, =even, Mz=even, N=4n +2, with ABC im-

posed;
(iv) M, =odd, M2 =odd, N =4n, with PBC imposed.
These four cases correspond to the four itemized cases

in (1) and (2) of the theorem. If we restrict our discussion

to these four cases, then following the same steps as for
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the case of FBC we find that clauses (l) and (2) of the
theorem are true.

The theorem is therefore proved.

III. CONCLUSION

In conclusion, a theorem concerning the value of the
total spin and the degeneracy of the ground state and the
ordering of the energy levels for different total spins of
1D interacting-electron model has been stated and
proved. This theorem generalizes a similar theorem
proved by Lieb and Mattis for 1D electron models to in-

clude the antiferrornagnetic exchange and other nondiag-
onal interaction terms in the Hamiltonian. The theorem
shows that the ground state of 1D electron systems is

generally boundary-condition dependent. Although the
effect of boundary conditions is only of order 1/L in the
thermodynamic limit, it is important for a system on a
finite lattice. Our theorem should be useful in guiding
the choice of boundary conditions in studies of the Harn-
iltonian H on a finite lattice.

As seen from the proof of the theorem, all coefficients
of the ground state of H in the subspace spanned by the
basis set (2) have the same sign as those for the ground
state of a noninteracting electron system with equal hop-

ping constant. Thus if the interactions, Hz, HJ, and Hp
are increased adiabatically from zero then the ground
state will evolve within the relevant subspace from the
noninteracting ground state without any level crossings.

(Any level crossings would require some coefficients to
change sign).

The LM theorem plays an important role in our proof.
In some special cases this theorem can be also used in
two or higher dimensions. The Nagaoka theorem' for
the one-hole Hubbard model in the limit of U~ Do, for
example, can be simply proved by using this LM
theorem. However, this theorem cannot in general be
used in the case of electron systems in two or higher di-
mensions owing to the "minus sign" problem associated
with the swapping of two electrons in these systems. "
This is the reason why our theorem is valid only in one
dimension.

So far, only the properties of the total spin of the sys-
tem governed by H has been considered. However, the
properties of other physical quantities which are con-
served by H can also be studied by using LM theorem.
For a homogeneous system (i.e., setting t; =t, J;=J, and

T; = T in H), for example, it can be shown that the lowest

energy state of H in each Hilbert space with M, up spins
and Mz down spins has total momentum zero' in the
above-mentioned four cases (i)-(iv) using the LM
theorem.
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