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We studied electron-phonon interactions in systems consisting of conducting layers separated by
insulating media. The conducting layers are treated as two-dimensional Fermi liquids, and the inter-
action between them is assumed to be tunneling. Phonon modes modifying the interlayer distances
are found to lead to an attractive electron-electron interaction which can induce a superconducting

transition.

Superconductivity of layered crystals has been of
great interest with the hope of obtaining high transi-
tion temperatures.! The motivation underlying the syn-
thesis of two-dimensional (2D) systems of the sandwich
type is to locate an easily polarizable medium adjacent
to a conducting layer, and hence to realize the exciton
mechanism of superconductivity. The transition-metal
dichalcogenides and intercalation compounds have been
candidates for the observation of this kind of electronic
pairing mechanisms. Strong anisotropy of crystals of this
class pointed to the fact that the superconductivity can
be dealt with an almost 2D motion of conduction elec-
trons. The discovery of copper oxide superconductors?
opened new horizons in the field of low-dimensional sys-
tems. Several experiments have led to the conclusion that
charge carriers in these high-T|, materials are mainly lo-
calized in 2D copper oxide planes separated by insulating
media. Not only their unusually high critical tempera-
tures but also peculiar normal state properties of high-T,
compounds have been subject to several studies.

In this work, we study the effects of phonon modes
which modify the interlayer distances in systems consist-
ing of a sequence of conducting and insulating layers.
We show that the modification of the interlayer transi-
tion rate of electrons by phonons can lead to an attrac-
tive electron-electron interaction. We conclude that a
bare interlayer interaction is enough for a superconduct-
ing transition in layers which are otherwise normal.

For simplicity, we consider a system composed of two
conducting (metallic) layers separated by an insulating
medium. This system contains the essential ingredi-
ents of tunneling-induced superconductivity as revealed
in this study. Recently thin films of high-T, superconduc-
tor YBazCuzO7 have been grown artificially, allowing us
to investigate the properties of one-unit-cell thick films3
which contain two copper oxide layers only. For such a
system we assume that the metallic layers can be treated
within the 2D Fermi-liquid picture and the only inter-
action between the layers is phonon-assisted tunneling.
The Hamiltonian relevant for the said system is given by
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Here, € is the self-energy, o is the spin of the electron,
and t is the hopping matrix element between nearest-
neighbor lattice sites. These lattice sites (labeled by i
or j) lie in the same metallic layer (labeled by n). The
first two terms in Eq. (1), represent on-site and nearest-
neighbor-hopping processes, respectively, and they lead
to the electronic energy structure of the layers in the ab-
sence of interlayer interaction. The third term stands for
the phonons. For the purpose of this study, we are going
to consider only the transversal phonon mode with dis-
placements perpendicular to the layers. Phonon-assisted
tunneling introduced via the last term describes the in-
teraction between the metallic layers. The factor t; is
simply the hopping matrix element for an electron to go
from site ¢ in layer 1 to the corresponding site in layer 2.
This term is the first-order contribution of the interlayer
interaction within the tight-binding approximation. The
coupling to the phonon degree of freedom comes from
the dependence of ¢; on the interlayer separation.* We
assume that t; is of the form t; e "%, where 2; is the
displacement of the site ¢ from the equilibrium value.
This assumption is justified by the fact that the atomic
orbitals have a radial part decaying exponentially. Note
also that in the case of the square barrier the transmission
amplitude is exponentially dependent on the width of the
tunneling barrier. In both cases, the adiabatic approxi-
mation is valid. That is the changes in t; are treated as
very slow in comparison to the interlayer tunneling rate
of electron. This is nothing but the Born-Oppenheimer
approximation applied to the current problem. For small
displacements the exponential can be expanded to give
t1 (1 — kz;). Here z; is linear in phonon operators and is
given by
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where N is the number of lattice sites, M is the ion
mass, and R; is the equilibrium position of site i. Here,
we do not take into account the modification of the in-
tralayer hopping matrix element ¢ by the phonons since
these changes are only second-order in z;. The Hamil-
tonian takes a familiar form by two successive canoni-
cal transformations. The first one is the usual Fourier
transformation which changes site label to wave vector
k, and also introduces the energy bands ex. The electron
layer operators cni, are now changed to c,xo. In the ab-
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sence of interlayer tunneling- this transformation would
diagonalize the Hamiltonian completely resulting in two
identical energy bands €x. The next transformation is
obtained by taking the symmetric and the antisymmet-
ric combinations of the layer operators c,x, in order to
diagonalize the interlayer tunneling term. The composed
transformation can be written as

dmke = —-\/.;—_N ;[Clia + (_1)m+1c2ia]e—zq.Ri_ (3)
Note that this is actually a three-dimensional Fourier
transformation with only two different values (0 and )
for the component in the perpendicular direction. We
introduce the split energy bands €,,x and the electron-
phonon interaction constant gq by

€mk = €k + (—1)™11t, (4)

and

5 1/2
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respectively. Neglecting the umklapp processes, we can
write the transformed Hamiltonian as
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Clearly, this is nothing but the Frohlich Hamiltonian® for
two independent subsystems labeled by m since the band
index m is a good quantum number. As a result, the
conventional BCS theory® can be applied to each band
separately. Earlier, BCS theory of superconductivity was
generalized to take into account the materials having sev-
eral energy bands.” Our Hamiltonian after the canonical
transformation is simply a two-band model with a van-
ishing interlayer coupling. Thus, we can use the results
of existing solutions of the two-band model.

It should be noted that the calculation of the electron-
phonon coupling constant in terms of the variation of the
hopping integrals owing to the change of interatomic dis-
tances was proposed first by Frohlich.# Later, Ashkenazi
et al.8 showed that this method is equivalent to the Bloch
approach.? The same method has been used by Weber!?
to calculate the electron-phonon coupling leading to high
T, in Lap_,(Ba,Sr),CuO4. In this paper, we use the
Frohlich approach?® to study the effect of phonon modes
modifying the distance between two conducting layers in
normal state. We find that the modification of interlayer
transition rate of electrons and hence phonon-induced
tunneling can lead to an attractive electron-electron in-
teraction. As a result the normal layers become super-
conducting due to an interlayer interaction alone.

According to the two-band model of superconductiv-
ity, the Hamiltonian in Eq. (6) will adopt a solution
with two order parameters A; and A, corresponding to
bands 1 and 2, respectively. Furthermore, as a result
of the vanishing interband interaction there will be two
critical temperatures, one for each band.” However, in
our case the energy bands given by Eq. (4) are iden-
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tical apart from a small splitting, and hence there is
only one critical temperature T,. The strength of the
electron-phonon coupling is measured by the dimension-
less parameter A. In the case of the vanishing Coulomb
coupling constant p*, T, ~ hwoe™ '~/ where wy is the
maximum phonon frequency.! The critical temperature
for the present model can be calculated by using the
known parameters of some materials, but it is not al-
ways reliable since T, is a very sensitive function of A.
Nevertheless, we are going to determine the order of mag-
nitude only. The value of A can be calculated in terms of
the electronic matrix element g (which is constant and is
given by g = t, k in our case), and phonon frequencies
w. The expression for the dimensionless electron-phonon
coupling constant is

N(0) < g% >
= -2 7 7
A M <w?> ™

Here < g? > is the square of the electronic matrix el-
ement averaged over the Fermi surface and < w? > is
an average of the square of the phonon frequency. N(0)
is the electronic density of states (DOS) at the Fermi
level and M is the atomic mass. Since the two bands
of the system we are considering differ by a small split-
ting only, N(0) and hence T, is the same for both bands.
Considering the acoustic branch of phonons we see that
the average < w? > can simply be taken as wg. Since, we
are dealing with two weakly interacting 2D layers, the in-
terlayer hopping matrix element ¢, is small as compared
to its intralayer counterpart. Therefore, if we assume
that the latter is ~ 1 eV then t, can be taken to be
~ 0.1 eV. An estimation for k can be obtained by using
a square barrier model of the interlayer tunneling process.
As a result, for typical values of the parameters given by
M ~ 10726 kg, wy ~ 1013 571, N(0) ~ 10 eV~!, k ~ 1
A-1 and ¢t; ~ 107! eV, the electron-phonon coupling
constant A is found to be of the order of unity which can
lead to physical T, values.

The order parameters A; and A, can also be written
in the real space, i.e., by using the layer index rather than
the band index. Since A; and A, are symmetric and an-
tisymmetric combinations of the layer orbitals, the real
space representations A; A, give rise to pair wave func-
tions localized either in layer 1 or 2. The generalization
of the problem to infinite number of layers also gives the
same result. In this case, there is band formation in the
perpendicular direction and hence the order parameter is
labeled by a wave number k, instead of the discrete val-
ues 1 and 2. Since, Ag_ is more or less independent of k,
owing to the small dispersion in the z direction, the real
space representation of A is given by a Dirac delta-like
function. Thus, electron pairs are localized in the layers.
This is also what is observed in experiments on high-T,
materials.

Electron-phonon coupling in solids is a result of the
modification of the lattice structure by phonons.’ De-
pending upon the nature of the solid this interaction is
dominated by a certain type of coupling (deformation,
piezoelectric, polar, etc.). In our model, the interaction
is due to the change in the interlayer hopping matrix ele-
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ments caused by the phonons existing in the medium. If
the interlayer distance becomes smaller, it becomes easier
for an electron to tunnel from one layer to the other. Now
the pairing can be visualized in terms of this interpreta-
tion. Consider two electrons in the same layer. If one
of them tunnels to the other layer owing to the shrink-
ing interlayer separation caused by transversal phonons,
then the other one will also choose this way. As in the
conventional systems, the many-body ground state is at-
tained if electrons having opposite momenta couple to
each other. Consequently, it is energetically more favor-
able for electrons to tunnel in pairs.

At this point we should note that the interaction we
mentioned has nothing to do with Josephson tunneling.
In the latter there are two systems which are already
in a superconducting state and the phases of the or-
der parameters at two sites are locked by means of the
interaction between them. On the other hand in our
model, superconductivity is induced by the interaction
itself. Two conducting layers here, are in the normal
state unless they are brought together to allow interlayer
tunneling. Then, tunneling causes a kind of pairing in-
teraction which results in superconductivity of whole sys-
tem. Superconductivity of systems composed of layers
coupled via Josephson interaction have been studied in
detail earlier.!! It was shown that Josephson tunneling
does not contribute to the pairing.12

In order to investigate the stability of the solution
with respect to imperfections (defects, impurities), one
has to study the behavior of the system in the presence
of scattering centers. This is, however, very similar to
the problem of two-band superconductivity with impuri-
ties studied earlier.!® The present problem corresponds
to the strong intraband coupling limit of the two-band
model where the interband phonon coupling is neglected.
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The temperature dependence of the order parameters is
given by two coupled equations whose general solution
is quite complicated and thus is beyond the scope of the
present study. An interesting observation is that if the
order parameter of one band is much larger than that
of the other, the interband impurity scattering enhances
the lower critical temperature.!3

It is easy to modify the model for the continuum limit
which is relevant especially for metals where the tight-
binding approximation is replaced by a more realistic
nonlocal picture. For a 2D noninteracting electron gas,
DOS is independent of energy and therefore identity of
the critical temperatures of the two energy bands is fully
satisfied. The continuum model is analogous to the jel-
lium model®*® of conventional systems. Phonons are now
the quantized vibrations of the two membranes. The cut-
off frequency is related to the sharpest possible deforma-
tion on the membranes. In this respect, the assumption
that the conducting layers are identical and have lattice
sites on top of each other can be generalized to cover
incommensurate layers.

In conclusion, we propose a mechanism for the super-
conductivity of layered systems. The only interaction be-
tween the 2D Fermi-liquid layers, is assumed to be tun-
neling. We show that transversal phonon modes with
displacements perpendicular to these layers causes an at-
tractive electron-electron interaction which can induce
a superconducting transition. According to this model
electrons and phonons can couple via tunneling and as
a result a bare interlayer interaction can cause otherwise
normal layers to go into superconducting state. In this re-
spect, short periodicity semiconductor superlattices (con-
sisting of consecutive quantum wells and barriers) can be
interesting systems to explore.
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