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Spin- —Heisenberg antiferromagnet with anisotropic nearest- and next-nearest-neighbor coupling
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A modified Lanczos method has been used to study the ground-state properties of a frustrated one-
dimensional anisotropic Heisenberg antiferromagnet. The ground-state energy as well as all two-particle
spin-spin correlation functions are obtained for a 16-site lattice. Both the relative couplings and aniso-
tropies for nearest and next-nearest neighbors are varied.

I. INTRODUCTION

One-dimensional magnetic systems have been the focus
of serious attention since the early 1960's when the exact
solutions to a number of quantum spin-chain problems
were obtained. The excellent agreement achieved in
some cases, both qualitatively and quantitatively, be-
tween theory and experiment has pointed up the
relevance of these systems to our understanding of real
quasi-one-dimensional magnets. In particular, the com-
pound [C&H&&NH3]CuBr3 has been studied extensively' as
has the linear chain magnetic insu'lator CoC12(2H20)
which may be interpreted in terms of one-dimensional
spin- —, anisotropic Heisenberg model with a nearest-
neighbor exchange interaction. The case of alternating
spin chains is also of interest to physicists. This problem
was originally studied by chemists to explain the proper-
ties of certain organic free radicals. More recent applica-
tions have been to copper nitrate ' and copper bromide
imidazole as well as the members of a family of or-
ganometallic complexes, insulating relatives of the organ-
ic conductor TTF-TCNQ. These include the TTF bis-
dithiolenes [TTF BDT(M), where M =Cu or Au]. There
are many other quasi-one-dimensional materials which
are known to exhibit either ferromagnetic or antiferro-
magnetic properties. Interpretation of neutron-scattering
experiments has yielded evidence that dichlorobispyri-
dine copper [CuC122N(C5Ds)] behaves as an isotropic
spin- —,

' Heisenberg quantum antiferromagnet while

CsCoC13 (and CsCoBr3), on the one hand, and Cs2CoCI~,
on the other, represent spin- —,

' Heisenberg antiferromag-
nets of the XXZ type, displaying high anisotropy into the
Ising-like and planarlike regimes, respectively. More re-
cently the discovery of high-T, superconductors has reig-
nited interest in systems of low dimensionality. In partic-
ular, the extraordinary magnetic properties both of the
normal and superconducting states has brought quantum
spin systems to the fore. One major area requiring fur-
ther study is the nature of the ground state. The spin- —,

'

Heisenberg model has been studied as a model for the
ground state by a number of authors on a variety of lat-
tices. ' ' A fully disordered resonating-valence-bond
(RVB) state has been proposed by Anderson as candidate

for the two-dimensional ground state. However, recent
numerical studies of the antiferromagnetic Heisenberg
model which have included frustration by considering
next-nearest-neighbor interactions point to an ordered
ground state of the Neel variety.

In one dimension, various ground-state properties for
the isotropic nearest-neighbor case have been calculated
in the exact N~~ limit. ' This case has also been
studied by Borysowicz, Kaplan, and Horsch' who calcu-
lated the correlation function for rings of up to 16 spins
by the Lanczos method; by Betsuyaku and Yokota' who
made the same calculation for rings of from 10 to 20
spins using the projector method and by Gagliano
et al. ,

' who calculated the ground-state energy and
correlation function for rings of up to 24 sites using a
modified Lanczos method. The isotropic case with next
nearest-neighbor interactions has been examined by Ma-
jumdar and Ghosh' who calculated the ground-state en-
ergy for linear chains of up to 10 particles. For this same
case Tonegawa and Harada' calculated several ground-
state properties, including the energy and correlation
function for a railroad trestle lattice of up to 20 sites.

For the anisotropic case Lagos and Cabrera' have
looked at the ground-state energy for nearest-neighbor
interactions only using a coherent-state solution, and
Gottlieb et al. have made the same calculation for a
frustrated system by the addition of a next-nearest-
neighbor interaction.

In this paper we extend the work of Gagliano et al. '

by applying the modified Lanczos method to the case of a
spin- —, antiferromagnet Heisenberg system with the addi-
tion of anisotropic first- and second-nearest-neighbor ex-
change interactions. We consider a ring of 16 sites with
periodic boundary conditions. The behavior of the
ground-state energy per site and all spin-spin correlation
functions are studied. Variations in both anisotropy pa-
rameters as well as the nearest-neighbor and next-
nearest-neighbor exchange ratios are considered.

The paper is organized as follows: In Sec. II, we define
the spin- —, antiferromagnetic Heisenberg Hamiltonian
and outline the modified Lanczos method. In Sec. III, we
present our results and compare with previous work. In
Sec. IV, we offer our final comments.
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II. METHOD

The Hamiltonian for a one-dimensional spin- —, Heisen-
berg antiferromagnet with anisotropic first- and second-
nearest-neighbor exchange interactions is given by

N

H=J, g [S;+S;+,+S, S, +, +2p~S,'S,'+, ]

Diagonalizing the matrix obtained from Eq. (3) yields

~, =&a &+ab

as the lowest eigenvalue, and

140=, [%'o+a%)]
( 1+a2)1/2

(10)

N

+Jq g [S;+S;+q+S; S;+~+2pNNSfSf+2],

( &+m;, ; I+; &+m;, ;+il+;+) & (2)

Solving the resulting simultaneous equations gives the en-
ergy of the system to any degree of approximation
desired.

In the modified Lanczos scheme of Gagliano et al. ,
'

we only consider a (2X2) representation of H given by
the basis

HI+0& =moo l+o&+m„l+, &,

Hl+, &=m, o +0&+m»l+, & .

Then,

(3)

(4)

where J, and J2 are the first- and second-nearest-
neighbor coupling; pN and pNN are the corresponding an-
isotropy parameters. In the following we define the rela-
tive coupling j—:J2/J, and relative anisotropy
A. =—pNN/pz. S; is the spin —,' operator at the ith site and

S;+—are the spin raising and lowering operators defined by
S;+=S;"+iSf We .assume a ring of N (even) sites, and
consider periodic boundary conditions with SN+;=S;.
In this study we consider both interactions to be antifer-
romagnetic (J& )0, J2 ~0), thus competing with each
other, and that the anisotropy is of the Heisenberg XY
type (0 ~ X ~ 1).

Our method of calculation is a modification of the
Lanczos tridiagonalization method. The Lanczos equa-
tions are generated by operations with the Hamiltonian
on a normalized initial trial vector, +p, which has a
nonzero overlap with the true ground state 4p of the sys-
tern. This operation yields a set of equations which we
require to be in tridiagonal form:

as its corresponding eigenvector, with a=f —(f—+ 1)'~ .
Obviously e, and $0 are better approximations of the
ground-state energy and wave function than eo=&H&
and $0. Further improvements can be made by interac-
tion; 1(to is now taken to be the trial wave function and a
new lowest eigenvalue, e2, and eigenvector, $0, are gen-
erated. tfo is then taken as the next trial wave function
and so on. Each interaction generates a better estimate
of the ground-state energy and wave function of H. Since
we confine ourselves to the case where J, )0 and J2 0,
we have chosen our initial trial wave function to be the
ordered Neel state (with S, =O in accordance with the
ground-state theorems of Lieb and Mattis '). Thus, the
ground-state energy is given by the lowest eigenvalue of
the matrix for S, =0.

III. RESULTS

The majority of theoretical and computer simulation
studies of purely exchange coupled magnets focus on re-
sults for antiferromagnets because of the experimental
data available for the nearly ideal one-dimensional mag-
net TMMC. ' ' ' In this section we discuss the numeri-
cal results for both the ground-state energy and all two-
spin correlation functions for the 16-site Heisenberg anti-
ferromagnetic lattice. Comparisons are then made with
other works in the appropriate parameter ranges.

In Fig. 1, we have plotted the ground-state energy per
site as a function of the relative coupling j, for various
values of the relative anisotropy X=0, 0.25, 0.50,
0.75,and 1.00. In the isotropic limit, X=1, our results
agree with those of Tonegawa and Harada' and with
Ono. '4
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FIG. 1. Ground-state energy Ep/(XJ&} as a function of the
relative coupling j =J~/J, for various values of the anisotropy
ratio k= p~/pNN and X = 16.
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The two-s in- p' correlation function co(I,N), which is a-
sociated with Neel order, is defined by

co(l, N)=(40(N)ISI'SI'+, I+o(N ) .

In Figs. 3 and 4 we have 1ottep o ed the correlation functions

c0 1 =, as a unction of the relative cou-
ing j or values o relative anisotropy A, =O 0.25 0

again in the isotropic limit A, =1 our re-
sults agree with those of Tonegawa and H d

j=, =0, we reproduce the recen
ara a. For

and Y k
ent results of Betsuyalsu

Hulthen. " So
o ota as well as ththe early work of Bethe' and

u t en. Some exact results are known fo
(I,co, as 00 = —0. 147716, since it is re-

g nd-state energy determinedo e exact limit round-

y u t en [co(1;~)=E ao 6J
Takahashi25

o ao 6J,]. More recently
a a as i has calculated exactl co 2 ao ) o b

e data presented in this stud us-

esche1 have determined analytically that th
co, ts asymptotically given by

This wo ld th
/, where A is the ununknown constant.

one imension since
p y sence of long-range order

'
u enim 1 theab er in

~LRo= lim Ico(I' ao )I

4.1

4.2-

4.3-

4.4-
T

& 4.5-

-0.6-=

c P,

, 0.00

0.25

0.50

0.75

1.00

4.8
0 0.1 0.2 0.3 0.4 0.5 0 6 0.7 08 09 1

J

FIG. 3. Plot of the first-nei hbor two-s
tion co(1) vs f

s -neig or two-spin correlation func-
co vs j or selected values of A, . T"

agrees with Bethe.
T-e point A, =O, j =0

where coLRo is the ion -rg-range-order parameter. Althou h
we have not ex licitl e

oug

p
' '

y extrapolated our results to the
~00 limit, we conclude that the data r

are consistent with L
e ata presented here

wi ut er and Peschel, based on o
agreement with other publ' h d
parameter ranges.

is e work in the appropnate

IV. CONCLUSIONS

Using a modified Lanczos method we have studi

eisen erg model with anisotro i
t e r t ds an next-nearest neighbors. We h
presented our results for th

ors. e have

all two-particle correl t' f
or e ground-state ener a

ie et a . have calculated the ground-state energy



11 136 BRIEF REPORTS

only for the same system studied here. However, their
representation of the Hamiltonian and the regions of pa-
rameter space which they have studied make compar-
isons with our work intractable. In the spirit of Ref. 12,
we have chosen a 2 X 2 truncation of the modified Lanc-
zos equations. Higher-order truncations would ac-
celerate the rate of convergence to the true ground-state

with the price to pay an enormous increase in (symbolici
algebraic manipulation.
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