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Several scaling relations are inferred from magnetization data taken in fields up to 20 T on single crys-

tal YBa2Cu3 „Ni„07 where O~x ~0.03. A Bean-like critical state exists in the samples at high fields

{-20 T) and low temperatures (4.2 K) regardless of x. Strong systematics are also displayed in the tem-

perature dependent data: it is found that beyond an applied field breakpoint, which itself scales with

temperature as {1—T/T, )', all the scaled hysteresis loops decrease in a universal manner. This univer-

sal behavior of the normalized magnetization is well described as a hyperbolic function of the normal-

ized applied field. A quantitative study of the dependence of the measured magnetization as a function

of the sweep rate of the applied field is also presented. The measured magnetization is found to depend

logarithmically on the sweep rate. The simplest diffusion models are inadequate to explain the data.

I. INTRODUCTION II. MATERIALS AND EXPERIMENTAL PROCEDURE

Historically, magnetization measurements have played
an important role in determining superconducting prop-
erties of new materials especially by providing an alterna-
tive method to transport measurements for determining
critical current densities. Unfortunately, most of the
magnetic studies performed on the high-temperature su-

perconductors have been made over a limited applied
field range (typically -5 T). This paper presents a sys-
tematic study of the hysteresis loops of high-quality,
single-crystal YBa2Cu 307, in both its pure and Ni-

substituted forms, made over a wide temperature
(1.4 K & T & T, ) and field (poH & 20 T) range.

The organization of the paper is as follows. A descrip-
tion of the materials and experiments is given in Sec. II.
Section III focuses on low-temperature hysteresis loops
made on many different samples with various nickel-
substitution levels. It is found that the low-temperature
hysteresis loops scale in a Bean-like manner and that this
scaling indicates the data of different pure and Ni-
substituted single-crystal samples can be compared
directly. The temperature dependence of the hysteresis
loops is examined in Sec. IV and a universal scaling is
found between the normalized magnetization and the
normalized applied field. Measurements also reveal that
the magnetization is sensitive to the sweep rate of the ap-
plied field in a systematic, quantifiable manner. This new

result, and the related idea of dynamic magnetization, is

presented in Sec. V. Finally, the theoretical implications
of the data and the scaling rules developed are considered
in Sec. VI.

The data presented here were taken on single-crystal
YBa2Cu3 „Ni,07 where x varied from 0.0 (a pure sam-

ple) to 0.03. The samples were produced at ATILT Bell
Laboratories and were grown from a partially melted
CuO-BaO- Y203 mixture' with the addition of small

amounts of NiO. The crystals were then annealed 30—90
days in 02 in order to attain a homogeneous oxygen con-
tent. The best experimental evidence indicates that, for
low substitutional concentrations in polycrystalline ma-
terial, the nickel will go nearly uniformly onto both the
Cu(1) (chain) and the Cu(2) (plane) sites. Materials
analysis, such as electron microprobe, revealed a macros-
copically uniform nickel content throughout each of our
samples. Thus far it has not been possible to make single
crystals with nickel substitution x )0.03 due to the solu-

bility limit of Ni in the material.
The single crystals used in this study were approxi-

mately 1 mm X0.04 mm with the c axis perpendicular to
the square face of the sample. Furthermore, the crystals
contained the usual twinned boundaries in the 8-b plane.
In zero field, T, ranged from 88 to 76 K for x =0.0 and
0.03, respectively. All zero-field resistive transitions were
sharp with the 10—90% transition widths less than 1 K
suggesting high-quality material. The transport prop-
erties of these materials, measured in a magnetic field,
were discussed previously. '

The magnetization measurements discussed here are
made using a vibrating sample magnetometer (VSM) in

dc magnetic fields up to 20 T in water-cooled Bitter Inag-
nets at the Francis Bitter National Magnet Laboratory
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facility. The system used allows one to measure total mo-
ments as small as 5X10 A-m (5X10 emu) in fields

to 30 T. The flat, platelike single-crystal samples are
mounted on the end of the VSM driving rod and thus are
oriented with the applied field parallel to the c axis. Bulk
properties are relatively insensitive to alignment prob-
lems because of the weak angular dependence in this
orientation. For some of the measurements, the test sam-

ple is immersed in liquid helium. By pumping on the
helium bath, the temperature could be lowered to ap-
proximately 1.4 K. Elevated temperatures are reached
by using a variable temperature dewar. In our arrange-
ment, a small, steady stream of helium gas is heated by a
set of heating coils which surround both the sample and
the detection coils. The heated gas flows over the sample
maintaining its temperature. The current in the heater
coils is set using a carbon-glass thermometer and stabi-
lized in the field using a capacitance thermometer. Tem-
peratures in this system are stable to within 0.1 K during
the measurement of a single hysteresis loop.

The data are obtained by cycling the Bitter magnet
from 0 to 20 T, thus generating a hysteresis loop. The
sample is centered between the detection coils by maxim-
izing the detected signal in a small applied field before an
actual hysteresis loop is generated. As a result, there is
always some trapped flux pinned within the supercon-
ducting sample before actual data are taken. The magne-
tization effects of the trapped flux, however, are des-
troyed by the time the applied field is at 2 or 3 T (or even
lower for elevated temperatures) and thus do not
influence the high-field data. Typically, the ramp rate
used is 66.7 mT/s (4 T/min); unless otherwise specified
this rate may be assumed.

The VSM is calibrated against the saturation moment
of a known nickel standard at 4.2 K. The sample mass
(typically between 100 and 1000 )ug) and density (assumed
to be approximately 6.4 g/cm regardless of Ni-
substitution level) are used to convert the measured sam-

ple moment to a magnetization per unit volume.

III. LOW-TEMPERATURE BEAN-LIKE SCALING

Before discussing the data, the differences between the
local electromagnetic (microscopic), average electromag-
netic (mesoscopic), and thermodynamic (macroscopic)
fields must be distinguished. The thermodynamic field
gf is defined as the average of the microscopic field H
over the entire body. In this paper, the thermodynamic
fields will be independent of space within the body in
question. When looking at the general behavior of fields
inside a type-II superconductor without focusing on the
granularity associated with fluxoid quantization, the
mesoscopic field is the relevant quantity. This field H is
the average of the microscopic field H over distances
large compared to the penetration depth (the electromag-
netic size of the fiuxoid) but small compared to the mac-
roscopic scale, and thus can vary within the supercon-
ducting material. Similar quantities can be defined for
the current density J, flux density B, and magnetization
M. It should be noted that the measured magnetization
JM, is the bulk magnetization and should not be confused

where ~ is the (field-independent) width of the hys-
teresis loop. The factor l represents a geometrical scaling
associated with the sample size; in other words, it is the
characteristic dimension for the sample. Often 1 is associ-
ated with a specific sample dimension, such as the thick-
ness of a slab or radius of a cylinder, but it can also
represent the geometric mean of several dimensions as
well. The factor p represents the scaling associated with

sample topology. For example, a cylindrical plate has a
diS'erent p than a long cylinder although 1 is given by the
radius in both cases. If the critical current density is field

dependent, it is common to use a second model developed

by Kim, Hempstead, and Strnad (KHS). ' Here the
mesoscopic critical current density is given by

J,(r)=
IB(r ) ~+Bo

(2)

where B is the mesoscopic flux density in the material.
The parameters a and Bo are found by fitting this expres-
sion to the hysteresis loop. Typically, the field depen-
dence of the KHS model is considered in regimes where
the applied field is much larger than 80 so that

J, ~1/IB I.
The data obtained from measurements on both pure

and Ni-substituted YBazCu307 single crystals at 4.2 K
appear to be Bean-like (see, for example, Fig. 1). For ap-
plied fields greater than a few tesla, the hysteresis loop
displays only a weak-field dependence. Indeed, it is not
possible to get a satisfactory fit to this data using the
KHS model. We consequently assume that the Bean
model is valid for higher magnetic fields (J, is indepen-

5
4
3

E 2
I-

0
-1-

b 2
w3

-4-
I I

0 2 4

I I I I I

I I I I I I I

6 8 10 12 14 16 18 20

p, H, (T)

FIG. 1. Scaled magnetization loops at 4.2 K for three

YBa&Cu30& single-crystal samples. These samples are a11 from

batch 2515.

with the local magnetization inside the sample.
Traditionally, critical current densities have been ex-

tracted from hysteresis loops using two models. The first
was developed by Bean ' and is characterized by a hys-
teresis loop whose width does not vary with applied field

once the penetration field H is reached. In general, the
critical current density J, is related to the hysteresis loop
by

p
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dent of field} and treat the deviant low-field peaks as
anomalies.

Equation (1) describes the hysteresis loops under the
Bean model. This suggests a simple procedure for scaling
the experimental data since all the samples are topologi-
cally equivalent (thin plates) and hence have the same P.
If the hysteresis loops are scaled by the effective size of
the sample I all the magnetization loops should be identi-
cal in width for samples of identical stoichiometry.

This quantity I is related to all of the various dimen-
sions of the sample. Although some of our samples were
square or rectangular plates, most were trapezoidal in
shape or more complicated. %e thus estimate I by ap-
proximating a trapezoidal shape as a rectangle of some-
what reduced dimensions and defining l as the geometric
mean of the two resulting sides. Although critical
current densities, as deduced from hysteresis loops of su-
perconducting samples of various geometries, have been
calculated from the early 1960s (see, for example, Ref.
10), such analytical expressions are not practical here.

The effects of the YBa2Cu307 anisotropy in the 8-b
plane also should be included in the Bean model. " There
are two reasons why we neglect these effects here. First,
the &-b anisotropy is small so we approximate the ortho-
rhombic structure with a tetragonal one. Second, be-
cause the & and b axes are rotated as a twin boundary is
crossed, any measured bulk property is necessarily an
average of both these directions.

Figure 1 compares the scaled hysteresis loops taken at
4.2 K for three undoped samples from the same batch.
The values of / for these three samples are 1500, 1180,
and 900 p,m. (This range of 1 is typical for our samples. )

The data scale well despite the different sample shapes;
without this scaling the loop widths vary by a factor of 5.

Similar results are obtained for the YBa2Cu3 „Ni„07
data. For example, the scaled hysteresis loops for four
x =0.01 samples, all from the same batch, are similar in-
dicating that the scaling procedure is appropriate. These
results are also applicable to samples of the same
stoichiometry but from different batches. Figure 2 shows
that the scaled hysteresis loops are insensitive to the Ni-
substitution level as well. Since all the samples have the
same topology (same value of P), this implies that Ni sub-
stitution has little or no eQect on the critical current den-

I I I I

sity as deduced froxn JR at low temperatures. This result
is quite surprising since the single crystals had critical
temperatures that decreased with increasing amounts of
nickel.

Under the Bean model, there is another, self-consistent
way to determine the critical current density from the
hysteresis loops. This method involves the shielding field

H, which is a measure of how much field is required to
fully reverse the critical current density from J, to —J,
everywhere in the sample. As derived in the Appendix,
for a cylindrical plate geometry (radius a, thickness w ),

H,
J,(H, )=

w In(4a/w)
(3)

Because Eq. (3) depends only weakly on the sample size a,
it is essentially an independent way of deducing J, from
the same hysteresis loop that is used to determine J, from

To compare the two methods, we first examine J, as
predicted by the width of the hysteresis loop, denoted
J,(hJR}. For a circular cylinder of diameter /, the Bean
model gives

J,(b JR) =3 (4)

TABLE I. Comparison between the critical current densities
for YBa2Cu3 „Ni„O& single crystals as estimated from magneti-
zation and shielding field data. The values given are for applied
flux densities (parallel to the c axis) of approximately 17 T and
at a temperature of 4.2 K.

in SI units, when the applied field is oriented along the
cylinder's axis. There are two reasons why this topology
is a good estimate here. First, we have chosen to treat
the dimensions of the sample only in an average sense, so
it is self-consistent to smooth out the corners of the actu-
al angled samples. Second, it has earlier been shown that
approximating our Rat platelike samples by a long
cylinder gives valid results. "

The calculated values of J, are given in Table I.
J, (AJK) is determined in each case at 4.2 K and approxi-
mately 17 T. Since the widths of the hysteresis loops are
essentially independent of field, these critical current den-
sity values are valid over a wide field range. As shown in
the table, J,(EAt } is not sensitive to Ni substitution; its
value is approximately 1X 10 A/cm, typical of that ob-
tained by others (Refs. 11—14 and references therein). It
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FIG. 2. Scaled magnetization loops at 4.2 K for
YBa2Cu3 „Ni„O, single crystals.

Sample

25153
2515B
2515C
27242
2724B
2724C
8541 3

26291 A

26291B
26292 3
26292B

0.0
0.0
0.0
0.01
0.01
0.01
0.01
0.015
0.015
0.025
0.025

J,(~At) (A/cm')

0.87 X 10
1.44X10'
0.93 X 10
1.32x 10'
1.02x10'
0.87 X 10
1.61 X 10
1.68x10'
1.50X 10
1.44 x 10
1.38 X 10

J,(H, ) (A/cm')

1.11x10'
1.51x10'
1.02 x10'
2.20x 10'
1.40x10'
1.62 X 10
1.01x10'
0.88 X 10
1.22x10'
0.88 x10'
0.91x10'
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should be emphasized, however, that the measurements
presented here are over an applied field range that is
much greater than those of most other experiments.

The values of J,(H, ) are also presented in Table I. We
again find that the high-field, low-temperature critical
current density is approximately 1 X 10 A/cm regard-
less of the amount of nickel present. Here each sample is
approximated as a circular plate with a diameter 2a =I
and a measured thickness of about 40 p,m.

J, (b,Jkt) and J,(H, ) for each sample generally differ by
less than 60%. Because the Bean model of the critical
state is applicable at high fields and low temperatures, the
depinning force J,B is linearly dependent upon the ap-
plied field. Thus in the low-temperature regime, collec-
tive e8'ects among vortices are important. We also expect
from the Bean model that the flux profile inside the ma-
terial is linear. This is consistent with the flux profile ob-
served in powdered samples of DyBazCu307. '

IV. TEMPERATURE DEPENDENCE OF HYSTERESIS
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experimental data so that the normalized magnetization

FIG. 4. The dependence of At& and Hq on reduced tempera-
ture t =—T/T, for the YBa2Cu307 sample 25158. The fitting pa-
rameters are given in Table II.
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Consider the set of hysteresis loops shown in Fig. 3
taken on a YBa2Cu307 single crystal at various tempera-
tures. The inner loops, taken at temperatures closer to
T„are similar to those found by others. ' ' The tear-
drop shape of these loops is unusual.

We find that the key feature for scaling the curves is
the breakpoint as illustrated in Fig. 3. Both the applied
field H& and the magnetization Ab defining the break-
point will be important. Notice that here it is only possi-
ble to find a breakpoint for the six highest temperature
loops. Both Hb and JR bdis lpyaa power-law dependence
on (1 t) wh—ere t is the reduced temperature t—:T/T, .
This dependence is illustrated in Fig. 4. Although the
points do not span several decades, a power-law fit was
superior to either linear or exponential fits; the specific
fits are given in Table II.

The functional forms are then used to normalize the

can be plotted as a function of the normalized applied
field

P(Capp

P b

(6)

h —ha 0 +
2

2
h, —ho +

2 2(v 2 —1)

1/2

for each temperature. The result is shown in Fig. 5: all
the loops either scale or continue to extrapolate to the
same universal curve. Moreover, the two loops which
had no discernible breakpoint still fit in the scaled pattern
(they are the loops where the applied field never reaches
the breakpoint field). For h, S 0.7, the loops do not scale
in an overlapping fashion but instead are nested with the
highest-temperature loops on the inside.

An analytic expression has been found that quantita-
tively describes the universal portion of the curves. For
h, ) 1 and m )0 the data form a hyperbola with asymp-
totes of slopes —1 and 0 that intersect at (2,0) (assutne
mirror image symmetry for m &0). This hyperbola is de-
scribed by the function

0
O -1-

-2

&3

0 2 4 6 8 10 12 14 16 18 20

lt, Ha» {T)

where ho is the normalized field where the asymptotes in-
tersect (here ho=2) and y is a fitting parameter deter-
mining the eccentricity of the hyperbola. Such an ansatz

TABLE II. Summary of the scaling found for three
YBa2Cu3 „Ni„07single crystals.

FIG. 3. Hysteresis loops of a YBa2Cu307 single crystal (sam-
ple 25158) taken at different temperatures. The widest loop is
measured at a temperature of 12.8 K with progressively smaller
loops measured at temperatures of 22.7, 33.2, 40.0, 45.7, 53.5,
59.6, and 65.3 K, respectively. A breakpoint (Hb, JNb) ~4o K is in-,
dicated by the arrow. The straight lines show how the break-
point is estimated.

ample

T, (K)
PoHb (T)
P~b (T)

ho
r'

25158

0.0
88

31.2(1—t)"
3.3(1-t)'-'

2
8.9X 10-'

27243

0.01
82

9.1(1—t) '
4.5(1—t)"

2
1.2 X 10

262928

0.025
76

15.1(1—
E )'

2 5(1 t)1.6

2
6.4X10 '
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FIG. 5. The same hysteresis loops from Fig. 3 replotted on
the normalized axes h H pp/Hb and Nl JK/JRb The fitted
curve is a hyperbola and accurately describes the decrease in all
the loops.
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FIG. 6. Hysteresis loops of a YBazCu2 99Nio O, O& single crys-
tal (sample 27243 ). (a) Unscaled data: the widest loop is mea-
sured at a temperature of 23.6 K with progressively smaller
loops measured at temperatures of 30.5, 35.8, 39.9, 47.8, and
58.1 K, respectively. (b) Scaled data: the fitted curve is a hyper-
bola and accurately describes the decrease in a11 the loops.

produces an excellent fit; the hyperbolas in Fig. 5 have
the y indicated in Table II. This fit implies that in the
regime 1.0&h, &1.8, m is approximately a linear func-
tion of h, . Under the assumption that a Bean-like model
holds in this region, this functional dependence of m
means that the critical current density (which is propor-
tional to 2m ) decays linearly with applied field. This is a
completely unexpected result and, in fact, it contradicts
references 18 and 16 where the critical current density
(interpreted as the width of the hysteresis loop) is claimed
to fall exponentially with field rather than hyperbolically
as observed here.

The functional form of Eq. (7) is similar to the magne-
tization expression obtained from the KHS model. The
difFerence is that the portion of the magnetization loop

FIG. 7. Hysteresis loops of a YBa2Cu2 975Ni0 02507 single
crystal (sample 26292B). (a) Unscaled data: the widest loop is
measured at a temperature of 20.0 K, with progressively smaller
loops measured at temperatures of 24.8, 29.2, 33.2, 38.9, 44.0,
48.9, 53.4, and 58.0 K, respectively. (b) Scaled data: the fitted
curve is a hyperbola and accurately describes the decrease in a11
the loops.

associated with the second asymptote (the one with finite
slope) is never seen in the KHS model, whereas here its
presence is clearly discernible (for details see Ref. 19).
Whether the similarity in form implies a connection be-
tween the KHS model and the data here or is merely
coincidence is still not known.

In Sec. III, we saw that the qualitative loop charac-
teristics of samples with difFerent Ni-substitution levels
were essentially the same at low temperatures. Here, the
higher-temperature scaling and fitting procedure also ap-
plies to the Ni-substituted single crystals as can be seen
from Figs. 6 and 7. The relevant parameters are given in
Table II.

V. SWEEP RATE DEPENDENCE OF HYSTERESIS

It is well established that the phenomenon of flux creep
in a constant field for conventional type-II superconduc-
tors creates a temporal decay in the bulk magnetization
that is proportional to lnt. This decay has been ob-
served in the high-temperature superconductors as well
(see, for example, Ref. 21 and references therein). It is
not surprising then that early VSM investigations
demonstrated convincingly that the measured magnetiza-
tion could be significantly affected ( —20%) by altering
the applied field sweep rate. Here, we present a quantita-
tive study of the sweep rate dependence of the hysteresis
made on single-crystal samples.

The previously discussed magnetization data were tak-
en at a constant sweep rate of 66.7 mT/s. Figure 8(a)
shows the sweep rate dependence of the data. Each
notch in the hysteresis loop is obtained by stepping the
sweep rate from its nominal value of 66.7 to 33.3 mT/s
and then to 16.7, 6.7, and finally 3.3 mT/s after which the
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rate is returned to 66.7 mT/s. [An expanded view of a
typical notch is shown in Fig. 8(b).] At each step in the
sweep rate, the trace responded "instantaneously" ( (1
s). In other words, the response was limited by the natu-
ral time constants associated with the Bitter magnet sys-
tem and the recording device. The rate dependence ob-
tained from various notches is shown in Fig. 9. These
data are fit by

JR=Jkf,o(H»p, T) 1+C(H, , T) ln (8)

1 I

At Bint

whereas from Eq. (8) we find

(9)

=C. (10)

Equation (10) is not a result of Eq. (9) and this can be

I I I I I I I I I

2-

0 ~

-10

(a)-
3 I I I I I I I I I

0 2 4 6 8 101214161820
)L~H» (T)

where Afo is the magnetization associated with the sweep
rate Ho (here Ho—=66.7 mT/s). The data taken were
insufficient to determine precisely the functional form of
C(H»~, T) although our data show a reasonably linear
dependence on applied field (see inset to Fig. 9).

Equation (8) describes unexpected vortex dynamics
despite its similarity to the conventional flux creep forma-
tion. Specifically, we expect from flux creep that

0.8,

~~ 0.6»

041
I

0.2—

0

~-13.5 T

~ -15.5 T
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-2.5 -2

0 5 10 15

PoHapp(T)
I I

-0.5 0-1.5
In(A, /H, )

FIG. 9. The scaled magnetization vs the logarithm of the
sweep rate. (Ap is the magnetization at the sweep rate
Hp =66.7 mT/s. ) The data is taken on the YBa2Cu2»&Nip p»07
sample 262928 at 20 K. Inset: the values of C =8 lnAt/8 lnH, pp

deduced from the data; the dependence with respect to applied
field is roughly linear.

demonstrated experimentally as follows. Complete hys-
teresis loops were taken at the same temperature but with
the constant sweep rates 66.7 and 16.7 mT/s. These
complete loops match those portions of the notched loop
in the regions where the sweep rate was the same even
though there was a different time (measured from the
start of each set of data) at which the same field magni-
tude was applied [see Fig. 8(b)].

Further evidence for this novel response comes from
examining the shielding field at different sweep rates.
Figure 10 shows the response of the shielding field H, at
4.2 K for two different sweep rates 66.7 and 3.3 mT/s.
This data implies that J,(H, ) is approximately the same
value regardless of the sweep rate (note the expanded
scale for poH, ), but that J,(~) is larger for faster
sweep rates. This is consistent with our observation that
the rate-dependent vortex dynamics happen on an "in-

p -1.5

-2.5
10

I I

105 11

V,H»p (T)

11.5 12

2-

0-
0

FIG. 8. A typical hysteresis loop showing the dependence of
A on various sweep rates. The data are taken on the
YBa&Cu2 975Nip p»07 sample 26292B at 20 K. (a) The notched
loop. (b) An expanded view of the notch at approximately 11 T.
At approximately 10.6 T, the sweep rate is stepped from its
nominal value of 66.7 to 33.3 mT/s. The rate is subsequently
stepped to 16.7 mT/s at approximately 10.9 T, then to 6.7 rn T/s
at approximately 11.2 T, to 3.3 mT/s at approximately 11.3 T,
and finally returned to 66.7 mT/s at approximately 11.4 T.
Each notch in the complete loop is obtained in a similar
manner. Smoothed data taken at the constant sweep rates 66.7
(dotted line} and 16.7 mT/s (dash-dotted line) are superimposed.

@AM-4-
5 I

18.5
I I I I

19 19.5
p,,H» (T)

FIG. 10. The expanded portions of two hysteresis loops.
These data were taken on the YBa&Cup975Nipp»07 sample

262928 at a temperature of 4.2 K. The larger loop was taken at
a rate of 66.7 mT/s, the smaller loop at a rate of 3.3 mT/s. The
vertical arrows indicated the rate-dependent width of the hys-

teresis loops. In contrast, the shielding field (roughly the hor-

izontal width of the data shown) is nearly independent of sweep

rate.
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stantaneous" time scale and are different from the Aux

creep dynamics.
This series of experiments suggests that the magnetiza-

tion is given by

Ai =JK,(H, T ) +Jkf. q (H, H, T),
where Afq, is the quasiequilibrium magnetization associ-

ated with vortex motion similar to conventional Aux

creep and JR& is the dynamic magnetization intimately

dependent on the sweep rate. This new dynamics should

invalidate our previous estimates of the critical current
densities made using the width of the hysteresis loop
since the dynamic magnetization is not in a critical state,
at least within the time scales studied. However, at lower

temperatures (4.2 K},A& is at most about 20%%uo of the to-

tal magnetization A, . Consequently, this difference is on

the same order as other approximations made and will

not significantly affect the previous discussion. Also, it
should be pointed out that the quasiequilibrium state does

nat provide the expected Bean-like or KHS-like shape to
the hysteresis loop. At whatever sweep rate was used, the

hysteresis loop had a teardrop shape for sufficiently high

temperatures. This behavior is not expected from any of
the classical models.

VI. DISCUSSION

A summary of the experimental results is as follows.

(1) There is no qualitative difFerence in the magnetiza-

tion data among the single-crystal samples of
YBazCu3 „Ni„07 examined here. In addition, there is

no systematic quantitative difference as a function of the
nickel-substitution level either.

(2) At low temperatures T « T, the measured magne-

tization can be understood in terms of the Bean model as

evidenced by the shape of the hysteresis loops and the

self-consistency of J, (EAt) and J,(H, ).
(3) For T & T„ the magnetization Af is composed of

two parts: a quasiequilibrium portion JR, and a dynamic

portion A,„.
(4) In high fields, W at various temperatures can be

scaled accurately with a hyperbolic functional form [see

Eq. (7)].
(5) The magnetization increases as the logarithm of the

applied field sweep rate [see Eq. (8)].
The rest of this section will examine some possible

ways of interpreting these results.
Table II summarizes the temperature dependence of

the scaling of the magnetization: all the field breakpoints

Hb scale approximately as

Do B
Bx

(13)

where Do is the diffusion constant, independent of both

space and time. If we are referring to classical magnetic
diffusion, Do= I /(@000) where o 0 is the conductivity of
the material. The solution to Eq. (13}is well known (see,

for example, Ref. 25). For an infinite slab of thickness 2a,
the response of the slab to an applied ramped field H

pp

parallel to its surface is

4w„
B =p,oH, t—

07T
( 1 )(g —])/p n1r x

2 a

—
(, t/~„)X(1—e ") (14)

where the time constant associated with each mode is

defined as r„=4a /Don nTh—e mag. n. etization in the

slab can be expressed as

p~(t )= J B dx poH, t, — (15)

where the first term on the right-hand side is the thermo-

dynamic flux density 8 and the second term is the ther-

modynamic field %. From Eq. (14), we therefore find

p(yR(t)= —g 2poH, r„(—1}'"
n odd

&PP & 2

materials showed this dependence as well ' ). This depen-

dence also holds for Ni-substituted samples, agreeing
with earlier reports. Thus, the breakpoint field Hb may

signify a phase boundary in the H-T plane. Indeed, the

scaling worked well for applied fields larger than Hb and

this is the same regime which displayed the hyperbolic
functional form of the magnetization.

As already noted, the quasiequilibrium portion of the
magnetization has an unexpected teardrop shape. Inter-
pretation of these magnetization loops of the high-

temperature superconductors in terms of a simple

diffusion model does not apply to these data as will now

be demonstrated.
A model geometry for this analysis is a superconduct-

ing slab of thickness 2a centered about the y-z plane. The
applied field and vortices will all point along the z direc-
tion. Because this geometry is one dimensional, we can
treat the fields as scalar quantities. We start with the as-

sumption that the observed magnetization is a result of
simple diffusion, so the mesoscopic fiux density behaves

as

Hb ~(1 r)— (12) X(1—e "), (16}

As discussed in Ref. 24, a characteristic field with this

temperature dependence has been associated with an ir-

reversibility line whose existence has been linked to a
variety of mechanisms, e.g., the vortex glass, giant fiux

creep, and vortex lattice melting. Equation (12} always

seems to describe a characteristic field in single- and

oriented-crystal YBazCu307 regardless of the measure-

ment technique (transport measurements made on these

which is the expected magnetization for an applied ramp

if the dominant response is simple diffusion.
The meaning of Eq. (16) can be better appreciated by

approximating the expression. The time dependence of
the first term (~] ) is nearly an order of magnitude slower

than the next largest term (r3) and will thus dominate the

time response. We therefore approximate the magnetiza-

tion by the first term alone,
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(17)
The proportionality constant between the velocity and
the driving term is the mobility p, defined here as

and find that the magnetic response to an applied field
ramp is diamagnetic reaching its final value in a time of
order ~&. It is significant that for t ~&, At is independent
of time in this model. Equation (17) thus provides a
means to estimate ~, . If BAN, is , the approximate change
in magnetization after the system reaches its time-
independent final state, then

~2 Pph&, ,
7 ] 8 P&app

Consequently, we estimate that for the standard sweep
rate of 66.7 mT/s, a change in magnetization of 1 T takes
about 18.5 s, much longer than actually observed. More-
over, the essential feature of the diffusion response to a
ramp, the final time-independent state, is not seen. Re-
call that at higher fields (where experimentally JKq,
&(ad ), the magnetization decreases hyperbolically. We
have therefore shown that the simple diffusion model (Do
is a constant) is not useful in examining the data.

If a diffusionlike equation provides an adequate phe-
nomenological model, the next step is to make the
diffusion coefficient depend, at least implicitly, on space
and time (see, for example, Ref. 26 and references
therein). The basic premise is to look at the mesoscopic
field in terms of the individual fluxoids and then apply
standard Boltzmann transport ideas to the particles. In
other words, we begin by defining the density of fluxoids
as n =B/4p where 4p is the quantum unit of flux associ-
ated with a fluxoid. We write the flux of flux, I, as

I'=@on v —4oD Vn, (19)

where the first term represents drift of the fluxoids and
the second term represents diffusion. As with classical
electron transport, we now describe the drift term as a
function of a mobility by examining the force balance on
an individual fluxoid. The first assumption is to neglect
the fluxoid inertia because in all known-type-II su-
perconductors, inertial forces are negligible to damping
forces. The resulting force balance yields

JX@p—tv=0, (20)

4pi X4p= — VB
Pp

(21)

since B only points along i, . As a result, the velocity can
be expressed as

where the first term is the Lorentz-like driving force and
the second term is the damping or drag force, quantified
by the damping coefficient g. Because the problem is two
dimensional, all the flux lines are normal to the plane of
motion and so 4 p=C pi, where i, is normal to the plane.
From Ampere's law, the Lorentz-like force term can be
rewritten as

Pm=
Po'9

(23}

From Eq. (22), we see that in this model nonlinearities
in the flux distribution are unavoidable: both the fluxoid
concentration and the fluxoid velocity depend on B. In
fact, conservation of fluxoid particles demands that

(24)

which can be written in terms of the mesoscopic field as

—B=V ([p B+D]VB) . (25)

Writing the Bardeen-Stephen viscosity coefficient in
terms of the upper critical field,

(26)

(where o o is the normal state conductivity), we therefore
find

+D VB
Boo'o P&cz

(27)

This expression is suggestive of the fact that there may be
two types of diffusive processes: a "field diffusion, "
analogous to magnetic diffusion, and a "particle
diffusion, "analogous to thermal creep of fluxoids as orig-
inally suggested by Anderson ' and augmented by Beas-
ley, Labusch, and Webb and, more recently, by others
(see, for example, Ref. 32}. Since it is associated with the
particle diffusion, we speculate that D is associated with
the temporal decay of the quasiequilibrium portion of the
magnetization.

We now show that the field diffusion term itself con-
tains enough physics to explain qualitatively the unusual
hysteresis data. In this case, we have the nonlinear
diffusion equation

1 B
poo'o po0~2

(28)

(29)

which must be solved numerically. (The Boltzmann-
Matano analytical method uses experimental data to
determine a concentration-dependent diffusion coeffi-
cient, which here is known to vary linearly. ) Moreover,
the numerical solution must include the constraint that
~VB

~

&pP, if we assume that the material remains su-
perconducting on a mesoscopic scale.

Nevertheless, several important qualitative observa-
tions can be made by looking at the linearized form of
Eq. (28}. Since by definition the spatial average of the
mesoscopic field is %, we can write

4p
VB .

Pp'g
(22}

where b' is the rnesoscopic perturbation from the aver-
age. Using this relation, the nonlinear diffusion equation
becomes
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1

Boo'o p& z

where we have assumed that

(30)
nonlinear viscosity (similar to the stress-strain relation-
ship in a viscoelastic material).
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at at

(31)

Equation (30) is a simple diffusion expression again, but
in terms of the perturbation field. We see that as S grows
monotonically, the diffusion constant grows, and so the
time associated with the diffusion decreases. Consequent-
ly, we find that the nonlinear diffusion equation qualita-
tively provides the correct type of behavior; the higher
the magnetic field the smaller the magnetization. This
expression also qualitatively supports the rate-dependent
observations since the slower sweep rates allow the
diffusion to catch up to the equilibrium distribution fas-
ter. Qualitatively, we see that the flux distribution is
"stiffer" at lower applied fields and "softer" at higher
ones which allows for the magnetization to grow when
ramping down from very high fields. To quantitatively
test these ideas requires a full numerical study of Eq. (27).

VII. CONCLUSIONS

Three different scalings of the magnetization data of
YBa2Cu3 Ni„07 single crystals have been developed.
The first is a Bean-like scaling that is valid at low temper-
atures. In this regime, the nickel-substitution levels ex-
amined do not change J, . The second is a temperature-
dependent scaling. Beyond a breakpoint field Hb which
scales as (1—T/T, ) ~, the magnetization varies hyper-
bolically with the applied field. The third is a dynamic
rate-dependent scaling. Experiments demonstrate that
the magnetization is proportional to the logarithm of the
applied field sweep rate.

These scaling laws are motivated by two observations.
First, the shapes of the hysteresis loops at higher temper-
atures do not follow the classical shapes as expected from
traditional theory. Second, the loops indicate that there
is both quasiequilibrium and dynamic Auxoid behavior.
Consequently, additional high-field magnetization mea-
surements are warranted. For example, magnetic mea-
surements should be taken on untwinned single crystals
to ensure that the dynamic effects are not the result of
twin boundaries.

A numerical study should also be made of the non-
linear "field" diffusion relation Eq. (28) that is consistent
with the flux limiting condition

~
VB

~ p,P, . The
thermal "particle" diffusion term should be put into the
model as well. Indeed, it is tempting to speculate that the
"field" and "particle" diffusion map onto the dynamic
and quasiequilibrium magnetizations, respectively. Addi-
tional work also needs to be done concerning the hyper-
bolic dependence of the total magnetization on the ap-
plied field, Eq. (7). It is not clear whether or not it is
coincidence that the classical KHS model also has a mag-
netization which is hyperbolically dependent on the ap-
plied field. It is also possible that the dynamics of the
magnetization is best described phenomenologically by a

APPENDIX: THE SHIELDING FIELD
INTERPRETATION OF J,

To find the relationship between J, and the shielding
field H„consider a thin washerlike disk of superconduct-
ing material with outer radius a, inner radius b, and
thickness to. (A washerlike geometry is used for conveni-
ence only and the limit b/a ~0 will be taken at the end
of the calculation. ) If we assume that the disk is in a
Bean-like critical state, that is, a spatially independent J,
Rows everywhere in the sample, then the Biot-Savart law
can be used to find the total magnetic field at the center
of the coordinate system that is associated with such a
current distribution:

~ ~

HJ(p, g, z)= ' f dP f dz f pdp z, (Al)

where r is the coordinate of the observer, (0,0,0) here, r'
is the coordinate of the source, and i„„ is the directed
vector from r' to r. Since the observer is always at the
center of the system,

2+ z ~ Q 2+ 2
(A2)

and

/r' r/'=p'+z—' . (A3)

Integration therefore yields

J,w
HJ(0, 0, 0)= ln

1+[1+(w /2a ) ]'~

(b/a)+ [(b/a )'+(to/2a )z]'~'

(A4)

I I IH I

2-
t-

0~ -2-

-4—
H+

0 2 4 6 8 10 12 14 16 18 20

p, H, {T}

FIG. 11. Details of a hysteresis loop showing how the shield-

ing field H, is deduced. The shielding field is given by
H, =H+ —H
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HJ(0, 0,0)=
JN 4g

ln
2 w

(AS)

Suppose the externally applied magnetic field is swept
well beyond the penetration field until H+ is reached as
shown in Fig. 11. Because the currents exclude the ap-
plied field, H(0, 0, 0)=H+ —Hs(0, 0,0) (since all fields are
in axially directed, we can suppress the subscript z).
Next the applied field is lowered until H is reached.
This is a special field since it represents the point where
all the induced supercurrents maintain the field distribu-

We wish to examine this expression for thin, solid super-
conducting disks. Thus we first take the limit b/a~0,
which can be done exactly, and then linearize the result-
ing expression consistent with m «a. Consequently,

H,
J,=

to ln(4a /to )
(A6)

where Eq. (AS) has been used.

tion inside the superconductor against the decreasing ap-
plied field. In fact, at H the field at the center is
H(0, 0,0)=H +HJ(0, 0,0). From the critical state
model, the local field at the center of the superconductor
remains the same during the entire interval H
&H,~&&H+ and so equating the two expressions for
H(0, 0,0), we find H+ H—=2HJ. Notice that the left-
hand side of this expression is our definition of the shield-
ing field H, . We thus find that for a cylindrical plate
geometry
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