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Temperature-dependent phase separation within the Emery model

J. Carstensen and K. Dichtel
Institut fiir Theoretische Physik der Uniuersitat Kiel, D 23-00Kiel, Germany

(Received 9 March 1992; revised manuscript received 9 June 1992)

The variational principle of Bogoliubov, combined with a canonical transformation, is used to derive
the thermodynamic functions for the hole-doped two-dimensional Emery model of the copper-oxygen
planes in high-temperature-superconducting (HTSC) materials. A local ansatz and a transformation op-
timized for small values of the ratio of the hopping constant to the Coulomb correlation gives the lowest
free energy in the neutral case and in the case of moderate doping. The regions of thermodynamic insta-

bility in the curves of the chemical potential versus doping, as coexistence regions of phase separation,
are determined numerically with use of a Maxwell construction. In the high-doping regime, the coex-
istence regions are reduced considerably by the condition that the strong-coupling result is the lowest

one, better than, e.g. , the standard Hartree-Fock solution. The phase diagram of paramagnetic, fer-

romagnetic, antiferromagnetic, and separated phases is given. The parameter dependence of the max-

imum temperature of phase separation shows the same tendency as the empirical parameter dependence
of the HTSC transition temperatures.

I. INTRODUCTION

In the years immediately after the discovery of high-
temperature superconductivity' (HTSC), both the still-
unrevealed mechanism of this type of superconductivity
and the unconventional properties of the normal elec-
tronic state have attracted much attention. In particular,
in the low-doping regime of the hole-doped Cu oxide
planes in HTSC materials, the Mott-Hubbard picture of
strong electron correlation, instead of the standard band
scheme, has been invoked to explain the isolating behav-
ior, magnetic properties, and strange temperature depen-
dence of transport properties which differ considerably
from the usual Fermi-liquid behavior. (See Ref. 2 or 3,
e.g., for a review for the latter. ) The standard Hubbard
model and its extension for the Cu-0 planes, the Emery
model, taking into account the large on-site correlations
on the Cu sites, still suffer from a lack of adequate calcu-
lational methods even for the equilibrium properties.
Numerical solutions and variationa1 Monte Carlo
methods as applied by several groups ' are —in spite of
the tremendous numerical effort —of limited accuracy
and in most cases restricted to a few lattice cells, low di-
mensions, small doping values, and temperatures not ap-
proaching zero. Thus expansions of the Hamiltonian for
the infinite on-site correlation limit of the Hubbard mod-
els to the t-J model" ' and analytical methods for this
case of suppressed double occupancies such as the slave-
boson method also are favored. ' ' The advantage of
this relatively simple mathematical treatment, however,
is counterbalanced by the fact that the relation to small
and intermediate values of correlation is completely lost
in these methods; sometimes, even the validity of this
standard strong-coupling limit is questioned. ' So it
seems worthwhile to apply a standard thermodynamic
variational method, which has already been shown to be
suitable for the strong-coupling regime of the neutral
Hubbard model, ' to the doped Emery model. The

most prominent features of the resulting temperature-
and concentration-dependent phase diagrams in this pa-
per are large regions of phase separation. Phase separa-
tion, as proposed by Vischer for the non-neutral Hub-
bard model and suggested by Emery, Kivelson, and Lin
for the t-J model, is assumed to result from competing
tendencies of the carriers in correlated systems between
the formation of antiferromagnetic bonds and of
itinerant-carrier-concentration domains. Several recent
papers confirm the occurrence of phase separation in
correlated models, including ones which treat the one-
dimensional t-J model and others which apply ap-
proximation methods to higher-dimensional mod-
els. ' ' ' ' The occurrence of phase separation in
small lattice-cluster calculations is still unclear as dis-
cussed in Refs. 8 and 30. The advantage of our variation
calculation is the possibility to treat phase separation in
the original Emery model with realistic parameter values.
Of course, the nature of the nonhomogeneous solutions
inside these coexistence regions still remains unknown
and requires additional work. The existence of other in-
homogeneous or incommensurate magnetic phases can-
not be excluded, but the present calculations can serve to
establish the parameter dependence of the region wherein
unconventional electronic properties and probably HTSC
occur.

II. APPROXIMATION METHOD
FOR THE GRAND CANONICAL POTENTIAL

%'e start with the Hamiltonian of the Emery model,

&—Ud&dd —e~„+y%)
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The operator x„'+ creates 3d holes on copper sites n, and
the x„+ operator creates 2p for j=2 and 2p for j=3
holes on nearest-neighbor (n, (m, j) & oxygen sites. The
transfer integral t„[ .

&

takes the values +1 alternatively,
corresponding to the symmetry between the Cu 3d and 0
2p orbitals. In the following we set Ud=1, where Ud

denotes the on-site repulsion between copper holes. The
quantity co denotes the charge-transfer energy between

copper and oxygen holes. Extensions of our calculations
to Hamiltonians including nearest-neighbor and oxygen
correlations are possible.

We use the well-known variational principle of Bogo-
liubov in a form given in Ref. 31 and extended to the
grand canonical potential in

n~n, (e)=n, +(e'ae&, —(m, +pa&,
to get an upper bound for the grand canonical potential.
Qz. is the grand canonical potential of the trial Hamil-
tonian, and JV denotes the total particle-number operator.
e is an arbitrary unitary transformation with [JV,e]=0,
which allows for a larger variety of variational parame-
ters without complicating the calculation of the traces in
the expectation value ( & r.

We choose the local trial Hamiltonian

(e'me&. =(m&. +y'~, +o(y'), (5)

where ( &, denotes the expectation value with
respect to the atomic limit (y =0). The procedure to find
this optimal e is strictly analogous to the one used in
Ref. 21, but slightly more complicated because of the
larger number of operators involved. In the special cases
co=0.5 and 1, results are obtained which simplify the fol-
lowing transformations considerably:

e= exp[ —2y exp(i @&ad )&&exp( in&—dd )]+o(y ) (6)

=exp —
2q& g ~'kzk z/, (7)

k, o.
i =1,2, 3

with

and

&,= [JV„,&, ]

ty of its use), and h„' are antiferromagnetic (ferromagnet-
ic) effective fields. As this Hamiltonian, the atomic limit
in the lattice cell, separates in real space, all traces can be
done analytically.

We choose the arbitrary transformation 6' as to mini-
mize Qo to order y:

C), C3

u
lz 3 C) + CI C3+ C3

Xn, e &n, ~Xn, —~~n, —~
O, n

(9)

with

+ g h„'s, '„—z()Ad —~,
n, c&

(3)
co=1 . (10)

CI I C) + C) CI + C)
z, n p xn, t Xn, t xn, $ xn, J, ) ' (4)

The variational parameters u, , describe effective corre-
1' 3

lations, Zo an effective charge-transfer energy, A, some
variational chemical potential (see Ref. 32 for the necessi-

The three band energies and band operators c'k and zk

respectively, as is well known for the diagonalization of
the hopping term of the Emery model, are defined in Ap-
pendix A, where the transformation from Eq. (6) to (7) is
worked out explicitly.

For a&=0.5 we obtain, with Eq. (5),

(n, (m, j') )

Because of co& 0 and Ud ))0, the following inequalities hold for small doping values:

(12)

(13)

which prove that the transformation e indeed lowers the grand canonical potential Qo with respect to the atomic limit.
In comparison to the Hubbard model, we see that in the Emery model dominant energy lowering is achieved from the
last term, representing the different densities on copper and oxygen places.

In order to adapt our transformation to 6nite values of y and to values co%0.5 or co%1, we now take the "rotation
angle" p in Eq. (7) as an additional variational parameter in e. The operators z/ then transform in a simple way:

e (p)z/ e(q ) =exp( —2g e'k )z/ (14)

We perform the straightforward but lengthy calculation of the expectation value of the completely transformed Hamil-
tonian in Appendix B, where the functions u, , (y), o, , (y), and q, , (qr) and the integrals G (O, c„p) and F, (O, c„y)
are defined, and get
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(Vl (y)&8'(y)&T= g u, , (q&)-,'g((x ' x 'x ' x '
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—
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The result for the grand canonical potential is

cl, a

+—(n (y)&e(lp) &
—y u, , —y (x" x 'x" x"

—gh 's, '+Z g (x'+x'
& +(A, —p) g (x ' x '

& (16)
C) c&,a

For the local expectation values of the hole densities and
spin densities on the lattice sites n, we introduced the no-
tations

and, for the antiferromagnetic fields h ',

0= g2[ —u, , (y)+q, , (q&)]s, '+h '

n'=-,'(( x' +x'&T+(x'+x' &T),

s,'=-,'((x'+x' &T
—(x'+x' &T),

(17)
C3

(ci =1,2, 3) . (24)
(18)

In the ferromagnetic case, the last equation changes to

and

nh
n '= and n =n =0 for nh (1,

2

1 1 nh
—1

n =—and n =n = forn ~1,2 3

2 4 h— (20)

with the total hole density, as given quantity for doped
materials,

(e'we&,
(21)

(w&,
N

=2(n'+n +n ) .nh =

III. VARIATIONAL EQUATIONS

where we dropped the lattice-site index n because of the
translational invariance of %r. In the nonmagnetic case

C)for h„' —=0, all s,' vanish in the trial Hamiltonian (3). At
low temperatures sometimes simple approximation for-
mulas are used:

0= g2[ —u, , (y)+o, , (p)]s, '+h '

C3

(c, =1,2, 3) . (25)

The evaluation of the grand canonical potential Qp has to
be done with the minimal parameter values from these
equations and with the optimized y.

B. Expansions for small values of y

In the following we always get a first insight into the
variational equations by some expansion in q for approxi-
mately half filling before presenting numerical results.
As mentioned above, the leading and numerically dom-
inating terms in Eq. (15) are not the correlation terms,
but the expressions linear in density or better density
difFerences between copper and oxygen sites:

Xa Xa T Xa Xa T
J =2, 3

A. General formulation Thus, minimizing the prefactor of this sum to order y,
Now we perform the complete minimization of the ap-

proximated grand canonical potential in Eq. (16) with
respect to all variational parameters and obtain for u, l~ 3

the equation

h (y)=2soqr +2yp,
which means

2cp

(26)

for cp and A,

0= g2[ —u, , (q)+o, , (q))]n '
C3

yields the first approximation, which shows that small
values of the charge-transfer energy cp produce the same
tendencies in the model as large values of the transfer in-
tegral y. As a first example, we discuss Eq. (23) for the
level renormalization approximatively to order y:

+4y Re[G(O, c&,p)] —2eoF(O, c&,y)+~o5,

+2(A, —p) (c, =1,2, 3) (23)
(so —so)=y . ———(n +n n)+ —,, —4 1 2

co co Ep
(28)
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which shows that for Ep & 0 25 the value of variational
charge transfer is enhanced for all doping values.

An approximation of the optimal y to order y from
Eq. (15) can be given in the same way. With

0.0

-0.2
C3

U

(29)
Cp

we get

Q
3

3(o + —,', )
(30) b)

2
'

I I I

0.8 1.2
I

0.4
I

1.6
-0.6

0.0 2.0

For the values, e.g., y =0.1 and op=0.5, we have

y= —0.081, (31) FIG. 1. Free energy Fo/Ud vs hole concentration n& for
y/U&=0. 05 and e&/U&=0. 5. Atomic limit (curve a), strong-

coupling variational method (curve b), and Hartree-Fock solu-

tion as weak-coupling limit (curve c). Inset, free energy vs

y/Ud for nq=1. Upper curve, Hartree-Fock; lower curve,
strong-coupling method.

which means an error of less than 1% of the numerical
value.

We use this expansion to give approximate values of
the effective correlations:

u I I
=1—3242+ '"'4 +o(p ),

uI 2=4@2—+''44+o(y ),
u22=3244+o(q& ),
u2 3=1644+o(p ),

(32)

(33) satz, whereas the (paramagnetic) HF solution passes
smoothly the neutral concentration. On this energy
scale, with considerable energy differences between the
weak- and strong-coupling free-energy solutions, the
much smaller energy differences between solutions of
different magnetic symmetry are nearly invisible; thus, we
restrict ourselves to the paramagnetic HF solution for
comparison. As the insets for the neutral case in both
figures show, the difference between the HF and our solu-
tion increases with decreasing y and increasing c.p, as al-

ready indicated in the optimal q& in Eq. (26). We also ob-
serve in the latter curve a smooth dependence on cp,

proving the suitability of our solution in the complete in-

terval cp) 0 despite the fact that, as described above, our
transformation was optimized only for op=0.5 and 1. Of
course, the free-energy difference to the atomic limit in-
creases for larger values of the hopping constant y.

Equation (11) shows that our strong-coupling solution
gives the best free energy for half filling, where the
difference

(34}

(35)

with

42=y +2yp and 44=y +4yy (36)

Retaining only the leading second-order terms with
42= —y for op=0.5, e.g., we find an enhancement of the
on-site copper correlation u I I and an effective attractive
copper-oxygen correlation u, z= —y . But we should
remember as well as for the result 'Ep —cp above that these
values are only variational parameters to adjust optimally
the spectrum of the trial Hamiltonian to the real spec-
trum in the energy region of the most important contri-
butions to the thermodynamic quantities.

IV. RESULTS

A. Variational free energy

We pass in the usual way from the grand canonical po-
tential Qp to the free energy as the thermodynamic quan-
tity for fixed hole concentration n&. -0.1

Fo(nz, T ) =Qo(p(ns, T))+ni, p(nz, T) . (37)

-0.3

C)
LL

1

0.0In the following our results are compared with the stan-
dard paramagnetic Hartree-Fock (HF} mean-field (MF)
results for the Emery model as established, e.g., in Refs.
33 and 34 and obtained within our method with a gen-
eralized one-particle trial Hamiltonian. Figures 1 and 2
show the free energy (our method, HF, and atomic limit)
as a function of the doping concentration n& for some
strong-coupling case y=0.05 and for some intermediate
value y =0.1, respectively. One sees that the qualitative
behavior, especially the discontinuities in slope at the
neutral concentration value n& =1 of our curves, resem-
bles those in the atomic limit, as expected from our an-

0.5

C0 IUd

1.0

a)-0.5
b)

-0.7
0.0 0.8 1.2 1.6 2.0

FIG. 2. Same as Fig. 1 for y/Ud =0.1. Inset, free energy vs
charge-transfer energy c0/Ud for n& = 1 ~ Upper curve,
Hartree-Fock; lower curve, strong-coupling method.

TEMPERATURE-DEPENDENT PHASE SEPARATION WITHIN. . .
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1 3.2

C3

11.6

1 0.0
1.00 1.34 1.68 2.02

1Q 'y/U,
2.36 2.70

FIG. 3. Critical concentration nl, as a function of y/Ud {a)
for cp/Ud=0. 5 and {b) for cp/Ud=0. 4. Only in the region
below this curve does phase separation occur.

~+naxn, c,r xm, oxm, cr & T (3g)

-0.90

Lc

has its maximum. Thus our strong-coupling solution
dominates in the small (hole and electron) doping regime,
whereas for larger values of n& the HF curve is lower.
This fact is consistent with the common observation that
the standard band structure and mean-field picture fail in
the low-doping nonmetallic region of HTSC materials.
The (temperature dependent) critical doping concentra-
tion nz* as the separation line between both solution types
is shown in Fig. 3 as a function of the hopping constant y
for two values of so. Only for values of y less some

y,„(so) does an interval of positive carrier concentration
exist, where our method improves the HF solution and
phase separation, as described below, occurs.

The HF solution is only used as a first indication of the
limits of the validity of our solution; better solutions
could further reduce nI,'. Comparison with the numerical
results of other authors is diScult, despite the large num-
ber of existing materials on this topic, because most cal-
culations in the literature are done on the one-band Hub-
bard or t Jmodel. -Only few calculations for the (finite
Ud) Emery model are available such as in Ref. 10. In
Fig. 4 we took the Gutzwiller energy of Fig. 1 in Ref. 10

and plotted our low-temperature free energy for the same
energy scale and parameter values versus co. For small
values of co, the former one is better, whereas with in-
creasing charge-transfer values our (upper bound) gives
lower energies, according to the fact that increasing co
reduces the effective hopping and favors our solution.

and, for the ferromagnetic case,

(Qtx~+x~ Q)r= QF~(O, c„q&)(n '+s~),
C)

(40)

where the upper (lower} sign holds for spin up (down).
As in Eq. (16), these expectation values contain the

temperature-dependent quantities n ' and s, ', which

have to be determined from Qr now with h„'%0. With
the approximations of Eq. (20) and correspondingly

s, '=0 for c&=2,3 for half filling, we see that only the
copper sites (j=l) contribute to the second (antiferro-
magnetic) term in Eq. (39), as expected for antiferromag-
netic order in these materials.

For extreme low temperatures (Ph ' ))1), we have

s,'—= —,'sgn(h') . (41)

As established from numerical calculations, the magnetic
phase transitions are of second order only near to nI,

= 1

and then the only relevant quantity is h, . For antiferro-
magnetic (AF) order and low temperature, the
molecular-field equation then becomes, with Eq. (24),

h '=(u i i
—q» )2s,'= —32@4sgn(hi )

=0.00542 .

B. Magnetic order

We now proceed from the paramagnetic case described
above to magnetic phases with h„@0in the trial Hamil-
tonian (3) and the MF equations (24) and (25). Within
this paper we restrict our trial Hamiltonian to collinear
magnetic phases; generalizations to spiral phases, howev-
er, are possible. As discussed in Ref. 21, expectation
values of physical quantities are to be calculated from the
operators transformed with G because we chose a
transformed Hamiltonian as the trial Hamiltonian. First,
we consider the spin-dependent site occupancies and ob-
tain, with the methods of Appendix B for the antiferro-
magnetic case,

('M x~+x~ G)r= gF (O, c„p)n '+F&(Qj, y)sj
Cl

(39)

-'1 .65
1.0 2.2 2.6

(The numerical value is for e&=0.5 and in units of [Ud ]
confirmed by the complete numerical evaluations. ) In the
same way the ferromagnetic equation becomes, with Eq.
(25) and approximation to order p,

h '=(u, ,
—o, , )2s,'

FIG. 4. Free energy vs charge transfer cp/Ud for compar-
ison: {a) result of Fig. 1 in Ref. 10; {b) our results for same on
site correlation Ud /y = 8 and same energy scale.

=(o, ,
—u, , )sgn(h, )=o(y ), (43}

which shows that to order y' there is no ferromagnetism
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for n/, =1.
For small values of h ' (Ph ' « 1) near to the magnetic

phase transition, we linearize in h . Near half filling we
obtain, with Eq. (20),

-0.05—

-0.25
S 1

Z 4
(44)

and, for the antiferromagnetic case, -0.4-5

or

h '=(u» —q» )2s,'= —324+ (45)
-0.65

0.0 0.6

b)

1.2 1.8 3.0

k~T~= —1644 . (46)

Taking, e.g. , @0=0.5 and y= —y gives the approxima-
tion for the Neel temperature:

k~ TN =48y (47)

Antiferromagnetism appears as a phenomenon in order
y, as expected in superexchange theory. Considering
Eq. (47) as a MF approximation of the Heisenberg AF
model, an exchange constant J,~=48@ results, which
agrees with the standard strong-coupling expansion of
the Emery model given in, e.g., Ref. 19. Taking in Eq.
(46) as the better approximation for y of Eq. (30) for
co=0.5 and y =0.1, we find

TN =29 K/eV,
d

(48)

which is, for Ud =10 eV, in very good agreement with
our numerical results and the experimental value for
La2Cu04.

The free-energy differences for different magnetic
phases are not visible in the scale of Figs. 1 and 2. [The
phase diagram Fig. 7 shows that antiferromagnetism
(without phase separation) is indeed restricted to hole
concentrations less 1.01.] Ferromagnetism occurs in the
phase diagram only for large hole concentrations, as ex-
pected.

C. Phase separation

The most interesting fact from the numerical results is
the occurrence of phase separation. The curve p versus
n& in Fig. 5 shows not only the charge-transfer gap at
nl, =1 (overestimated in this local approximation scheme
compared with Monte Carlo results and spectroscopic ex-
periments), but also large regions of instability, i.e., of
negative slope Bp/BN &0. The inset in Fig. 5 is an en-
larged picture of the nearly constant part of the upper
curve. As is well known, this instability region corre-
sponds to some concave part in the free energy Fo. Re-
placing this part by a common tangent produces the stan-
dard Maxwell construction (see, e.g., Ref. 35 or in an ap-
plication to the one-band Hubbard model' ). The con-
stant values ofp and free energies above are evaluated us-
ing this construction. Tracing back to the origin of the
negative slope nz versus p, we consider Eq. (23), which
connects p and the variational parameter A. in our expan-
sion to order y,

FIG. 5. Chemical potential p/Ud versus nz for co/Ud=0. 5
and y/Ud=0. 1 shows the "charge transfer" discontinuity at
n&=1.0. Atomic limit (curve a), strong-coupling variational
method (curve b), and Hartree-Fock solution as weak-coupling
limit (curve c). Inset, enlarged part of the constant line for
nI, & 1. Both branches can only be connected by a part of nega-
tive slope of p. A Maxwell construction in the free energy
determines p in the coexistence region.

( A,
—p ) = (

—4@&++''4& J n ' 404—~( n +n )

+8y(y —430' )+8eo(qr —3'y ),— (49)

4 1 Bn'
=y 2co qo Bn&

3 4
4 8 1

Eo Eo

17 Bn' 5 B(n +n )

3 Bng 2 Bng

(50)

As our trial Hamiltonian &T describes a system of 5-like
densities of states, passing a spike causes large variations
in nI, for only small variations in A, . Then the extremely
small values of the derivative M/dnl, can (.as the right-
hand side is positive in our parameter range) only be
compensated by some negative Bp/Bn&. Note that phase
separation occurs within this approximation as a conse-
quence of narrow bands in the highly correlated limit,
quite independent of the magnetic-field equations (24) and
(25). Thus we expect the phenomenon to persist even in
calculations including more magnetic phases of different
symmetry. For small temperatures near half filling, we
again use the approximation (19) for the expectation
values with the trial Hamiltonian and see that phase sep-
aration is a phenomenon of second order determined by
the quantity 42 for n& & 1 and of fourth order in y deter-
mined by the quantity 44 for nI, & 1. Differentiating to co
at fixed y, we obtain co, „. ,&=0.5 for nz & 1 and
Fo Opt f 6 for nz & 1. Then it follows that the lower the

with the abbreviations 4z and 44 defined in Eq. (36). In-
serting our first approximation to the optimal y of Eq.
(27) and differentiation with respect to nh leads to

BA, Bp,

Bnh Bnz
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T i
T" 7

0.72
y(U, = 0.15

0.48

0.24

0.00 '

1.0

FIG. 6. Phase diagram of the carrier-separated paramagnetic
states for co/Ud =0.5 and different values of y /Ud. The
(hatched) coexistence region in the phase diagram is bounded to
the right by the "Hartree-Fock limiting curve" at nI,*. A large
coexistence region —perhaps enclosing the region of unconven-
tional electronic properties and HTSC —is a matching process:
for y/Ud too large, ni,

* becomes too small; for y/Ud too small,
only small maximum temperatures are reached.

temperature, the larger y, and in our parameter range the
lower co, the more is the tendency of carriers to separate
into regions of low concentration n

&
and high concentra-

tion n2. For a specimen with given ni„ there are three
possibilities.

(i) nh (n, : One nearly neutral phase exists.
(ii) n, nz n2. Two phases exist whose concentra-

tions n, and n2 for some given temperature T are deter-
mined from the intersection of the line T=const with the
curves in the phase diagrams Fig. 6 or 7, respectively.

(iii) nz ) n2: Only one phase of high concentration ex-
ists.

Figure 6 shows the temperature-dependent coexistence
regions of phase separation between paramagnetic
phases. We see that phase separation does not occur only
between phases of different magnetic order as suggested
by Refs. 23 and 24, but seems to be a phenomenon in-
herent to this type of strong-coupling solution. The coex-
istence regions evaluated numerically for three values of
y are reduced drastically by the "Hartree-Fock limiting
curve, " which means, as shown in Fig. 2, that, for con-
centrations larger than nh*, the Hartree-Fock solution
with one homogeneous phase becomes the better one.
The parts of the coexistence curves on the right-hand side
of the figure then only serve to determine at a given T
and ni, the carrier concentration n2 of the domains with
high concentration (note that n2 ))nI, is possible ).

The reduced coexistence regions (hatched regions in
Figs. 6 and 7) show a strong parameter dependence. If
one expects interesting phenomena such as superconduc-
tivity within these regions, a subtle optimization problem
arises: For y too large, nz* becomes too small, and the
Hartree-Fock line bounding the coexistence region from
the right approaches the coordinate axis of neutral con-
centration. If, on the contrary, y is too small, the max-
imum temperatures reached become too small. The same

T i jl

0.96 '-

'', a)

! F'f I" O.

0.48 I:)

af~
0.00 —~

1 0 / 1 8 2. 2

FIG. 7. Phase diagram for co/Ud=0. 5 and y/Ud =0.1 (a) of
separated states between antiferrornagnetic (paramagnetic for
high temperatures) and ferromagnetic states [the (hatched)
coexistence region is again reduced by the "Hartree-Fock limit-
ing curve"] and (b) for comparison only as in Fig. 6 between
paramagnetic states.

V. CONCLUSIONS

A strong-coupling solution scheme with carrier phase
separation dominates the low-doping regime of copper-
oxygen planes until some critical doping, where the
mean-field Hartree-Fock solution starts to give lower
variational free energies. For lower (higher) tempera-

matching problem holds for 1/c.o.
Figure 7 shows the complete phase diagram including

magnetic order, where the coexistence region is rather
enlarged. A phase-transition line between paramagne-
tism and ferromagnetism meets the top of the phase-
separating region at some critical point. Again, the HF
limiting curve reduces the coexistence region consider-
ably and makes this critical region irrelevant for this pa-
rameter set. If one assumes these phase-separated re-
gions to be a necessary condition for HTSC (regions of
high doping eventually join in some percolative
manner ), then the abrupt change to the HF solution at
nI,

* would give an explanation to the puzzling breakdown
of HTSC at still rising carrier concentration nj„which is
otherwise diScult to understand.

Despite the fact that in the case of phase separation a
theory of inhomogeneous superconductivity would be re-
quired, we compare our maximum attainable temperature
of phase separation T,„with the empirical parameter
dependence of T, in Ref. 37. Figure 3(a) in Ref. 37 shows
that T, increases with decreasing AV~ and Fig. 9 there
shows that T, increases with increasing t. If we identify
the charge-transfer constant AVM =co and, according to
Ref. 38, t =y /co, our results show roughly the same pa-
rameter dependence for T,„. These parameter tenden-
cies are consistent with the fact that the critical concen-
tration nj,

" is in a region where considerable changes in
symmetry and experimental quantities (for the sign of the
Hall coefficient, e.g., see Ref. 3) take place, a hint that
phase separation may be fundamental in HTSC.
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tures, the system separates between antiferromagnetic
(paramagnetic) nearly neutral regions and regions of high
carrier concentration up to some maximum temperature.
Calculations on correlated models in the non-neutral case
should take into account this subtle phenomenon possibly
revealed by the numerical error in Monte Carlo calcula-
tions.

8(k)=[s (k)+s (k)]'i (A10)

El, = iB—(k),
1

zi,',
+ = — [ 8(—k )al,

'+ +seal, ,
+ —s3al, ~ ],28 (k)

(Al 1)

(A12)

Eq. (A8) is diagonalized with eigenvalues Ef and eigen-
vectors z/+ in the following way:
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APPENDIX A: UNITARY TRANSFORMATION

&k=o

2+ 1
z& = (s3aa +sea& ),2+ 3+

eq =iB(k),
1zt+ = [8(k)a„'++szaz+ —s3al,

+ ],&28 (k)

Now we can write

(A13)

(A14)

(A15}

(A16)

We define new operators

a„=exp(inde„)x„e px( in J—Vdd )

or, explicitly,

(Al)

exp(in JVd~ gfzexp( in%—dd )= g e'I, z/, +z/,
k, cr

i =1,2, 3

(A17)

aj =x~, j =2, 3 .

(A2)

(A3)

which shows that Eq. (7) holds. To write the eigenvec-
tors in a short form, we define the unitary transformation
Tk

Since

I+ 1 1+ 1
~n, n~n, ~ Xn, ~&n, ~ ~

holds, this transformation is inverted by

(A4)

(A5)

a] ~
—g T]'zi/ ~

APPENDIX 8: EXPECTATION VALUES

(A18)

a$ =N ' g exp[ ik (R„+R—J}]a~ (A6)

Introducing the standard Fourier-transformed operators The expectation value of the transformed operator
( Q Add'9) r is calculated by expressing %fdd in terms of
zl, , applying Eq. (14), and after all expressing Add in

terms of x„' again. Defining

we can write f, (k, c,y)= g T/ exp(2yez)TI', ', (B1)

exp(in%dd )%zexp( in%zd )—
(t„~ ~a„'+a 1 —H. c. )

(n, ~~,j) &

= g g (+is al,'+a) —H-. c.),
k, o j

(A7)

(AS)

g2(k, c,p)=+is2(k)f2(k, c,q&),

g3(k, c,y}=—is3(k}f3(k,c,q&),

g (k, c,p) =g2(k, c,qr)+g3(k, c,p),

(B2)

(B3)

(B4)

with

k
s- —=2sin J

2
(j =2,3), (A9)

F, (q, c,qr)= —g f;(k, c,qr)f;(k —q, c, —y),1

k

(B5)

the plus sign holds for j=2 and the minus sign holds for
j=3.

Defining

G(q, c,y)= —g f, (k, c,y)g(k —q, c, —y),1

k

we get

(B6)
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1
( Vl &„„Vl) r =

N kl, k~, k3, k4,
Cl &C~yC3~C4~

/1 1, /1 2, n 3, Pl 4

5( ki +kg k3+k4)f i(ki, ci,p)f i(kz, cz, —y)

Xf&(k3,c3,cp)f &(k4, c4, —g}exp[ik&(R„+R '
} ik—z(R„+R ')]

Xexp[ik3(R„+R ') ik—4(R„+R ')]

Antiferromagnetism is introduced here in the standard way by a set of molecular fields h~ (j=1,2,3) alternating from
lattice cell to lattice cell. Defining the vector

Q =(n., vr),

g [F,(q, c„p)F,(q, c3,g&)exp[iq(R ' —R ')]]
C1, C3

Eq. (B7) can be written (equivalent to Ref. 22) in the form

(n'm, „n&,
N

(B8)

2.
+ g F, (O, c„q&)F,(O, c3,y)n 'n '

C1)C3

g F, (Q, c, , y)F, (Q, c3,y)exp[iQ(R ' —R ')]s, 's, ' .
C1, C3

In an equivalent way, we get

(e'w„n), = g [F,(O, c„q)(x~ x~ )T]
C 1,CT

and

t„~ ix„'+xi +H. c.
(n, (m,j) &

(B9)

(B10)

(Bl 1 }

(n, (m,j))
(B12)

leading to

(n'm, n&,
N

= g [G(O,c»p)(x ' x ' )T]+H.c.
Ciao

—4 g, —g [F,(q, ci,y)Gi(q, c3,y)exp[iq(R ' —R ')]]
Cl, C3 q

X —,
' g [(x" x 'x ' x ' )T —(x" x ' )T(x" x ' )T] +H. c.

l' 3

[Fl( cl.p)Gi( c3 qt}n n ] +H c

+4 g [F,(Q, c, , qr)G, (Q, c3,q))exp[iQ(R ' —R ')]s, 's, ']+H. c . (B13)

We define a function u, , (y) summing up all coefficients in ( Vl VfVl ) T /N of the term



46 TEMPERATURE-DEPENDENT PHASE SEPARATION WITHIN. . . 11 049

and get a symmetric function

QC),C3

C), C3 C3, C]
(B14)

In an equivalent way, we de6ne the symmetric function q, , (p) summing up all coefficients of s, 's, ' and the function
1' 3

o, , (p) by summing up all coefficients of n 'n '. With these definitions, we get Eq. (15).
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