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Collective modes of the extended Hubbard model with negative U and arbitrary electron density
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By use of a diagrammatic method we determine the density-density response functions in the random-

phase approximation {RPA) and the collective-excitation spectrum for the extended Hubbard model

with on-site attraction and arbitrary electron density, in the superconducting ground state. The energy
of the collective modes, given by the poles of these response functions, is found to be a linear function of
the wave vector {for small k and short-range intersite interaction) with the velocity interpolating smooth-

ly between the weak- ( & 2zt, [ Uf ((2zt) and strong-coupling ( & zt I( Uf, f Uf »2zt) limits. The latter
agrees with the results obtained from an effective pseudospin Hamiltonian valid in the strong-coupling
limit. The numerical analysis for a two-dimensional {2D)square lattice shows the occurrence of a roton-
like minima near the zone boundary. In the weak-coupling regime we find that apart from a commensu-

rate charge-density-wave {CD%) instability, an increase in the intersite Coulomb repulsion can give rise
to a CDW incommensurate with the lattice period, away from half-filling. The resulting phase diagram
for the 2D square lattice, including a singlet superconducting ground state, electronic-droplet formation,
and CD& s, is determined. Finally, the effects of a long-range Coulomb interaction are analyzed briefly

and it is shown that the energy of collective excitations evolves smoothly from the weak- to the strong-

coupling limit for a 2D lattice.

I. INTRODUCTION

Presently known high-temperature superconductors
are comprised of three groups of materials: the cuprates,
doped bismuthates, and fullerenes. All of these materials
generally exhibit low carrier density, a small value of the
Fermi energy ( ~0.1-0.3 eV), short coherence length go,
and they are strong type-II superconductors. The esti-
mates based on the Fermi-liquid theory yield gokF ~ 5—10
(for 1:2:3cuprates and fullerenes) which indicates that, in
contrast to a weak-coupling BCS theory, the size of a pair
is of the order of interparticle distance and that all car-
riers are practically involved in the pairing. Moreover,
for high-T, cuprates T, ~ n im' for low n (m ' being the
effective mass and n the carrier density). These features
of high-T, materials strongly support the models with
short-range, nonretarded attraction [see Ref. 1(a) for a re-
view].

One of the simplest models of general interest is the ex-
tended Hubbard model with on-site attractive
interaction. "' It is a nontrivial model of fermions on
the lattice which describes the transition from weak-
coupling BCS-like superconductivity to the strong-
coupling superconductor where the superconductivity re-
sults from the condensation of hard-core composite
charged bosons and is similar to the superfluidity of He
II."""' Such a model has been considered as an
effective model of superconductivity in Cu02
planes, """' "of doped BaBi03, ' ' ' and fullerenes.

With the help of a canonical transformation, the ex-
tended negative-U Hubbard model can also be exactly
mapped onto the positive-U half-filled band extended
Hubbard model in an effective magnetic field. "" This
attraction-repulsion transformation holds for the case of
near-neighbor hopping on bipartite lattices and for any

electron density.
In this paper we determine the collective excitation

spectrum of the extended Hubbard model over the super-
conducting ground state for arbitrary electron concentra-
tion. These collective modes are related to fluctuations of
electron density and the phase of the superconducting or-
der parameter. We will use the diagrammatic perturba-
tion theory to calculate the density-density response func-
tion in the random-phase approximation (RPA). The col-
lective excitations at T=O K are analyzed in both the
weak-coupling and strong-coupling limits and it is shown
that they smoothly interpolate between the limits. Our
numerical analysis is performed mainly for the two-
dimensional (2D) square lattice and for nearest-neighbor
Coulomb interaction. Finally, the effects of a long-range
Coulomb interaction are discussed.

II. GENERAL RESULTS
OF RANDOM-PHASE APPROXIMATION

FOR RESPONSE FUNCTIONS

The extended one-band Hubbard model we study here
is defined by the Hamiltonian:

pN= +t c c—+Urn tn l
jm o. J

+ g W~m nj~nm~ pgn

which takes the following form in k space:

&—)MN =Q(ea —p)ca cq
ko.

+ g (5 .U+8'q)1

S kpqcro'

XC ko.Ck+ qcr C po'C p
—qo
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II(q, t)= —i8(t)g([p (t),p ]),
0 Cr'

(3)

where p denotes the Fourier component of the electron
density operator with spin cr. In the superconducting
state, electron density oscillations are coupled to oscilla-
tions of phase and amplitude of a superconducting order
parameter, which can be described by the operators 4
and A q, respectively:

4q =Pq Pq (4)

+Aq=pq +pq

where pz+ (p q) denotes the Fourier transfortn of a pair
creation (annihilation) operator:

In the above t. and 8'~ denote the hopping integral
and intersite density-density interaction, respectively, be-
tween sites j and m; U is the on-site (attractive, U (0)
Hubbard interaction; p is the chemical potential; and E
and Xz are the number of electrons and lattice sites, re-
spectively.

Energies of collective modes related to electron density
oscillations are given by poles of the density-density
response function:

1 0
0 0

0 0
0 —1

0 1

+ 0 0
0 0
1 0

[We use matrices defined by Eq. (8) rather than more
commonly used Pauli ones because, in our case, the in-
teraction term ( U) is the spin-dependent one. ]

In this work we calculate the response functions by
means of the diagrammatic method. For that purpose we
define two-particle Matsubara Green functions corre-
sponding to the retarded Green functions defined by Eq.
(&):

II ~(q, r)

2 Q( T,[+1t(r)7 Vk+q(r)+p7p+p q]) . (9)
N

as well as the Fourier transforms of Eq. (9), i.e.,
II ~(q, ice). The original response functions can be ob-
tained from the Matsubara functions by analytical con-
tinuation of II ~(q, ice) to real frequencies. The perturba-
tion expansion for the Matsubara function, II ~(q, iso),
with respect to U+ 8' interactions leads to the follow-
ing, formally exact equation:

II~~(U+ W )11q

+ — 1 ~ t t — + t
PP

=
N Xc ~+q1C1rt, P& =(Pq )

~ kyar

+ y 11-W II' (10)

In order to account for this coupling we define a general
response function in the form

II ~(q, t)

i8(t)—
2 P([%'1,(t)7 41,+q(t), %p'TP% p q]), (7)

Nq gp

where %'k and %'& denote two-component field operators
in the Nambu representation, ~ are 2 X 2 matrices which
form the following set:

where II ~ denotes an (irreducible) polarization part:

II ~(q) =g tr[Q(k +q)7 Q(k)I'~(k, q)] . (11)
k

In the above, Q(k)=Q(k, ice) denotes the one-particle
Green function in the matrix Nambu representation,
I ~(k, q) is a full vertex part (defined here as the sum of all
diagrams which are connected with the rest of a diagram
with one interaction and two-particle lines and which
cannot be cut into two by intersecting an interaction
line). In Eq. (11) and in what follows gk ——( I /Ns )g1, ,

Equation (10) can be formally solved to give

rr'~qi =n.~(qi

[U+ W~
—U(U+2W~)II" 1(q)][II s(q}II (q}+II1s(q}II'(q}]+[W~+ U(U+2W}II (q}][11"~(q}II (q)+II ~(q}II' (q)]

[1—U[11""(q}—II 1(q)]][1—(U+2Wq)[II~ "(q)+II" (q)]]

(12)

11(q)= II(q)
1 —

( U/2+ 8'q )II(q)
(13)

which, in the particular case of the density-density
response function, yields

Subsequent analysis of Eqs. (12) and (13) requires
knowledge of the vertex part, I ~(k, q), and the one-
particle Green functions which determine the polariza-
tion part [see Eq. (11)]. Here we calculate the polariza-
tion part in the RPA which leads to the following matrix
integral equation for the vertex part:

11(q)=yiI
o.a' I t'(q) =7~ Ug7 .Q(p) I ~(q) &—(p +q)r. . (14)
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In Eg (14) we neglected the infiuence of the intersite term
on I (q). This is consistent with the fact that we neglect
the k dependence of the gap parameter, 6k, assuming
that the effect of U &0 is dominant in forming the super-
conducting state. The validity of this approximation for
larger values of Wq (both repulsive and attractive) needs,
however, more thorough examination which we left for
our future work.

Following the RPA for the vertex part, we calculate a
matrix self-energy X(k) of the one-particle Green func-
tion Q(k) in the (generalized) Hartree-Fock approxima-
tion (HFA):

X(k}=g(5 U+ Wo) tr[7 Q(k)]V ~

1«q ~)=
2N X«k-q/2Ek+q/2

S

+A,k /2A, k+ /2)Pk (Ctl)

k —q/2 k+q/2

2Ns k Ek q/2 Ek+q/2

1
X 2 2 7

(Ek q/2+Ek+q/2)

Q2
D(q, ro)= — QPk (co),

S

where

(19a)

(20a)

+ UQV Q(k)7 (15)
Pk q(~) = 1 1

Ek—q/2 Ek+ q/2
In order to obtain results consistent with Eq. (14},we had
to omit in the Fock term of X(k) both the normal and
"anomalous" parts related to the intersite interaction W.
A strategy based on the set of approximations, Eqs. (14)
and (15), leads, in general, to results fulfilling conserva-
tion laws and is crucial for getting any reliable results
concerning collective excitations (for a more complete
discussion we refer the reader to the work of Baym and
Kadanoff and Pines and Nozieres ).

The solution of Eq. (14) after inserting it into Eq. (11)
leads to the following result for II(q):

U 1

2Ns k Ek
(21a)

1
X

2 2
k —q/2 k+q/2 )

Ek=+A,&+5 is a quasiparticle excitation energy,
A,k=ek —p, and the gap parameter b, and the chemical
potential p =p + Un l2+ Won (n =N/Ns) are deter-
mined from a set of HFA self-consistent equations:

11(q)= A (q) D(q)— 1 n=—
S k k

(21b)

[I'( q)B (q)+ I'(q )B—( —q) ]
[1—UC (q) ][1—UC ( —q) ]—U2D2(q)

where I'(q) = [1—UC(q) ]B( q)+ UD (q)B—(q) and

A (q)=gQ„(k+q)Q, )(k),
k

B (q) =gQ„(k +q)92, (k),
k

C(q) =QQ()(k +q)922(k),
k

D( q)=QQ, (2 k+q)Q, (2k) .
k

(16)

(17)

(18)

(20)

As follows from Eqs. (17a)—(20a), the polarization part is
a real quantity provided that co & mink(Ek+Ek+q ), where
the last quantity determines the boundary of a quasiparti-
cle continuum. Below this boundary and for small q, ~,
we may expand the lattice sums (17a)—(20a) in a Taylor
series and insert the result into Eq. (16). We then obtain

b S2(q)(h S +U Sf)
II(q, co) =—q

co(b S +US )— I US ( )S

q=qlql,
where

U 1

N ~E''

~k —q/2~k+q/2)~k, q(~) ~ (17a)

B(q,co)= g(Ak /2+Ak+ /2)pk (co)
4 s

QPk q(~),
cod

S
(18a)

In this paper we analyze the behavior of the collective
modes in the ground state only —for this case Eqs.
(17)—(20} together with Eq. (15) give [we put ico~co+i 5
in Eqs. (17)—(20) prior to taking T +0 K limit]—

1~(q ~)=
2N X«k —q/2Ek+q/2

s k

U
N ~E''

k k

Zk Q(e —P) +Q
where Z denotes the number of nearest neighbors.

(23)

US,(q)=
&s

Note that the lattice sums So and S& can be computed us-
ing a density-of-state (DOS) function, A'(s). As concerns
S2(q), this simplification is possible for alternating hyper-
cubic lattices (ld, 2d sq, 3d sc, bcc). In such a case we
get'
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III. COLLECTIVE MODES IN THE SYSTEM
WITH SHORT-RANGE INTERSITK INTERACTION

t 00

A. Long-wavelength excitations

The energy of the collective modes is given by the pole
of density-density response function [Eq. (13)] and, in the
general case, it cannot be found analytically. In the case
of long-wavelength excitations and a short-range interac-
tion (W'o & oc), the collective modes make a gapless
branch: 0 =~ q with velocity ~ given by

So+( I/2)(1+2Wo/U)(b2U So+S, )
~ =b, S2(q)

U So+S

I3.40

(b)
I

I

1

I

I

The existence of this acoustic branch follows from the
finite range of interaction in the system and the continu-
ous degeneracy of the superconducting ground state and
exemplifies a nonrelativistic Goldstone theorem. ' If we
assume a quadratic dispersion of the one-electron spec-
trum, Eq. (24) leads in the weak-U limit to a result closely
resembling a weak-coupling formula of Anderson for the
BCS superconductor:"

c = —c F[1+(U+2Wo)A'(eF)]z (2&)

(d is the lattice dimension). In the lattice model Eq. (25)
is valid in a low-density limit only, where the quadratic
approximation for ck can be reasonably applied. For
larger values of electron density we can use a constant
DOS function to estimate integrals S . We obtain that
~~4t t/n (2—n)/Z, for U, Wc~0. In general, the ve-

locity of the collective modes, considered as a function of
U, goes smoothly from the value of the order of the band-
width, for ~2Zt/U~ ) 1, to the result of the strong-
coupling theory (Bogoliubov mode) [Ref. 1(a)], which is
based on an effective Heisenberg Hamiltonian exact (for

~
t /U~ && 1) up to terms of order t /~ U~:

1+ n(2 —n)
Z U

(26)

[W is the nearest- neighbor (NN) interaction]. This con-
clusion has been reached analytically in our previous
work (see also Ref. 12) to hold for all alternating lattices.
In Fig. 1(a), we present the numerical results for ~ vs n

for the two-dimensional (2D) nearest-neighbor square (sq)
lattice. The nonmonotonous increase of ~(n) in the
weak-coupling range is the effect of the singularity in the
2D density of states for the NN lattice. For larger values
of U, the particular shape of a DOS becomes less impor-
tant and the ~(n) plot steadily approaches the result of
the perturbation theory [Eq. (26)]. The fact that the RPA
interpolates smoothly between the two limits is related to
an analogous behavior of the Hartree-Fock (BCS) ground
state ' ' above which the collective modes are created in
the present theory. Thus, we conclude that there is no
sharp distinction between the weak- and strong-coupling
superconductivity in the negative-U Hubbard model at
T=O K.

In some cases it may happen that the position of the
Fermi energy coincides with a singularity in the DOS.
Neither Eq. (24) nor the corresponding formula obtained
for a constant DOS can be used then. In the case of a 2D
sq lattice and n =1, E.F lays exactly in the middle of the
band and coincides with a position of logarithmic singu-
larity of JV(E). The integrals S can be calculated using a

logarithmic approximation to JV'( E ):

~(E)=w»116r /E I
(27)

(JV is a normalization constant). Equation (21) then has
the following approximate solution for the gap parameter
5, which is valid in the weak-U limit:

b, =32t exp[ —t/2/JV~ U~+In (4)],
whereas Eq. (24) gives

4[4 ln(2)+ 1]
2 In(32t/b, )

(28)

(29)

Taking into account Eq. (28), ~~ ~U~', i.e., ~—+0 for
U~O. The last conclusion also holds for the bcc lattice
and may also be true in some other cases for n &1 provid-
ed that cF coincides with a position of a strong van Hove
singularity in Ã(E). It is of interest to observe that this
result is in sharp contrast to the case of the lattices with

FIG. l. (a) The velocity of the collective modes (o ) as a func-

tion of the electron density (n) for two values of attraction U
and W =0 (U = —1, open squares; U = —5, solid squares). For
a comparison the result of the strong-coupling theory [Refs. 1(a)
and 2] for U= —5 is shown as a short-dashed line. Long-
dashed lines approaching the solid curves for n —+0 are estima-
tions of ~ for the square DOS for the two values of U. Here and
in the next figures we use

~
2t~ as our energy unit. (b) The veloci-

ty ~ as a function of U ( 8'=0) for n = 1 (solid circles) and

n =0.8 (open circles). The short-dashed line shows the result of
the strong-coupling theory for n =1.
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finite JV(e~) for which c. tends to a finite limit for U —+0
(being the first sound for fermions ).

For n = 1, the negative- U model can be exactly
mapped into the positive-U one while the superconduct-
ing s-wave state is transformed into an antiferromagnetic
(AF} state ordered in the XY plane. "" The energy of
the collective excitations related to oscillations of the
phase of the superconducting order parameter and elec-
tron density in the U &0 Hubbard model will then corre-
spond to the energy of spin-wave excitations in the AF
state. The velocity of the antiferromagnetic spin waves in
the positive-U Hubbard model was calculated by many
authors. ' In particular, our Eq. (24) would be exactly
the same as a corresponding formula for the velocity in
the work of Yamada and Shimizu' [cf. Eqs. (40)—(44) of
their work] if we put It, =S& = W0=0 here. In the same
context, Johansson and Berggren' calculated the velocity
for a 1D chain and noted that the transition between the
strong-U and weak-U limits was continuous. However,
the peculiar behavior of u. in connection with the van
Hove singularity seems to pass unnoticed in these works.

In Fig. 1(b), we present the numerical results for u vs U
for the sq lattice for several values of n showing again the
continuous transition from the weak- to strong-U limit
and the effect of the singular DOS for n = 1.

B. Intermediate- and short-wavelength excitations

For the sake of clarity of the foregoing discussion, we
shall consider first collective modes in the simple Hub-
bard model. The overall q dependence of Qq relies upon
electron band filling. The most prominent feature of the
Qq plot for n = 1 is the complete softening of the collec-
tive excitation branch for q~M=(n. , n. ) for arbitrary U.
This reflects the degeneracy of the superconducting s-
wave state and a commensurate charge-density-wave
(CDW) state which is the exact property of the simple
Hubbard Hamiltonian for the half-filled band. As n
starts to depart from unity, the absolute minimum at
q=M turns to a local one; then, at some critical electron
density (n =1—&3/3 in the strong-~ U~ limit), it changes
to a local maximum. The exact energy of the collective
mode for this particular wave vector can be easily calcu-
lated directly —on the assumption that the superconduct-
ing state is a stable one —using the fact that the pair
creation operator, p~, is an exact eigenoperator of the
Hubbard Hamiltonian for q=M

pM=(U —2p)p

giving 0 =U —2p. This last equality is also strictly
fulfilled by our RPA results provided that we substitute
the exact chemical potential, p, by the approximate HFA
one. This formal agreement between our results and the
exact ones can easily be shown using the complete
equivalence of the diagrammatic formulation of the RPA
with the one based on the equation of motion for the
real-time response functions.

The typical behavior of 0 along the lines of the high
symmetry of the Brillouin zone of the 2D tight-binding
square lattice is shown in Fig. 2 for different values of

, (~)

0.30 —:

0.20-

0.10-

0.00
M

0.40 -.

0.30 —:

0.20—

0.10-

0.00

FIG. 2. (a) The energy of the collective modes (Qq) as a func-
tion of the wave vector (q) along the directions of high symme-
try for the 2D square lattice for U = —1, W =0, and two values
of the electron density (n =1, solid circles; n =0.8, open cir-
cles). The boundary of the one-particle excitation continuum is
shown as a simple solid line for each n. (b) The energy of the
collective modes (Qq) as a function of the wave vector (q) for
U = —5, W =0, and two values of the electron density (n =1,
solid circles; n =0.6; stars). The short-dashed lines show the re-
sults of the strong-coupling theory for each n.

electron density n for values of U corresponding to the
weak-coupling [U= —2~t~, Fig. 2(a)] and the strong-
coupling [U= —10~t~, Fig. 2(b)] ranges. A linear q
dependence of Qq is clearly seen in the small-q range. In
the case of the strong interaction, the dispersion curves
approach values obtained with the help of an effective
pseudospin Hamiltonian, which are given by

2Zt
Qq= Q(1—yq)[1 —yq(2n —4n+1)],

1 'qs
z

(30)

(5 is an elementary unit lattice vector). A maximum
value of the collective excitation energy is then of order
~ ~ t /~ U~, which is far below the boundary of the quasi-
particle excitations continuum, mi zn(E& E+z+q ))2b, =

~
U~. The picture changes in the weak-coupling

limit. The boundary of quasiparticle continuum de-
creases, whereas the maximum value of Q increases with
the decrease of

~ U~, and finally the dispersion curve of 0
sticks to the continuum. As our numerical results show,
the Q& curve does not cross the continuum boundary for
any value of U. Analytically, this is related to the fact
that all lattice sums, Eqs. (17a)—(20a), diverge for
co~min&(E&+Ez+q) making the denominator of the
density-density response function [Eq. (13}]change sign
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in an interval: 0&co&min&(E&+Ek+ ). In efFect, we
find in the energy gap, the collective mode with an
infinite lifetime for arbitrary q, n, U. The importance of
this undamped mode may be limited, however, by a small
value of its spectral weight.

One more striking difference between the weak- and
strong-coupling behavior of the excitation energy is the
existence of an apparent depression on the weak-coupling
curves seen for several wave vectors inside the first Bril-
louin zone. These depressions —resembling rotonlike
minima —evolve from the original minimum at q= M as
n moves from unity. They can be interpreted as incom-
plete soft modes and indicate a tendency towards the for-
mation of an incommensurate CDW. In the simple Hub-
bard model this tendency is not strong enough to stabilize
a long-range incommensurate CDW state, but it can be
greatly enhanced by the repulsive intersite interactions,
as will be discussed in the next section.

C. Instability with respect to CDW

We start our analysis of the inhuence of the intersite
interaction on 0 with an observation that —to a first

q
approximation —8' can be represented as a q-dependent
shift of the intrasite term [cf., Eq. (13)]. In general, there
are some regions of q values in the Brillouin zone (BZ) for
which 8' is negative and effectively enhances U, as well

as regions of 8' &0, where U is reduced by 8' . To be
more specific, we consider first the NN interaction on the
sq lattice:

Wz = Wo/2[cos(k„)+cos(k~ ) ],
with positive Wo. In this case, W is positive inside the
square domain of the BZ defined by four inequalities:

ky ) + k 7T ky & +k +m, which has the I point in its
center. In result 8' enhances 0 within this domain and
reduces outside it—therefore, the velocity of the collec-
tive modes will be increased by intersite repulsion [cf.,
Eqs. (26) and (25)] but the minima of Qz found near the
M point will still be more depressed (see Fig. 3). This
tendency is even more pronounced for larger values of

Wq where representing an intersite term as a mere shift
of U is not well justified. Eventually, for some critical
value of Wz depending upon the

~
U/t~ ratio and the elec-

tron density n, the collective mode energy can soften
completely for some critical wave vector q'. This effect is
most clearly seen in the strong-U limit where ELM goes to
zero first for

2Zt (1 n}—
1 —(1 n—)' (31)

Wq=
1 1

yq II(q, 0)
U
2

(32}

We may thus expect the formation of a new supercon-
ducting state accompanied by an incommensurate CDW
for Wp & 8o. The appearance of the incommensurate
CDW is a feature of the phase diagram of the extended
Hubbard model which has not been previously discussed.
In Fig. 4 we marked the phase boundaries of commensu-
rate and incommensurate CDW's obtained from RPA-
HFA theory for the sq lattice. We note that a similar
effect of softening of the collective excitation energy at

Softening at q'=M means that the simple s-wave state
becomes unstable with respect to the formation of the
commensurate CDW. In the resulting ground state, the
electron charge density alternates along lattice directions,
and the superconducting order parameter is still
nonzero . The situation is, however, different in the
small-U limit where the critical value of the wave vector
depends almost linearly on electron density. From Eq.
(13), Wo can be determined as an absolute minimum in
the BZ of a function:

(?
0:)

nnnn I
I I I T~ i I t I I I I I I I I 1 1 I I

r M

I ! I 1 W1 I I I I I~M 1 I I t I~MT

FIG. 3. The energy for the collective modes (Qq) for U = —1,
n =0.6, and three values of 8'p (this solid lines: 8'p =0,
8'p = 8'p /2, and 8'p = IYp, where Wp denotes a value for which

Qq softens completely for this U and n) . The figure shows the
deepening of the local minimum in the Oq curves in the interval

MX with the increase of Rp. The thin solid line shows the
boundary of the one-particle continuum.

FIG. 4. Boundaries of stability of the s-wave state in the
8 p n parameter plane for three values of U ( U = —S, solid

squares and also a short-dashed line showing the limit of the
strong-coupling theory; U = —1, open squares; U = —0.5, dia-

monds). The s-wave state is stable between the line of droplet
instability (for 8'p &0) and the line of CDW instability (for
8 p & 0) for each U. Between points B and C of the latter
curves, softening of Qq takes place along the MX direction of
the Brillouin zone, between 2 and B it takes place along the
I M direction. In the rest of these curves Qq softens exactly at
the corner of the BZ first. Thin solid lines connecting points 3
and C show where QM goes to zero.
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q'AM was also analyzed in the simple Hubbard model
for the repulsive U(and n%1) by Shulz. ' He determined
the stability of a simple antiferromagnetic state with

respect to an incommensurate spin-density wave (SDW)
and found a SDW with a modulation along the MX
direction of the BZ to always be the most stable one
[X=(m, O)]. However, for the extended Hubbard model
with U (0, we find that the incommensurate CDW with

a periodic modulation of electron density along the I M
direction can be more stable for smaller electron densities
than an analogous CDW with q along the MX direction.

Another type of instability which occurs in the system
for the negative 8'0 is a phase separation or electron-
"droplet" formation. With increasing

~ W0~, the velocity
o decreases then [cf. Eqs. (25) and (26)], and upon reach-
ing a critical value of W0= WD it becomes imaginary, in-

dicating the instability of the superconducting state.
Similarly as in the strong-coupling theory, the supercon-
ductivity disappears for

~ W0~ &
~ Wg and electrons in the

system form a single cluster then (a droplet state).
Our RPA analysis of the energy of Qq allows us to

determine boundaries separating the simple s-wave super-
conducting phase and the other discussed phases in the
whole range of n and ~t/U~. The result of our computa-
tions for the NN sq lattice is shown in Fig. 4. As one can
see, the present results are very close to those obtained
within the strong-coupling theory already for

~
U/2Zt~ = 1.25. In the weak-coupling limit the phase di-

agram is qualitatively improved by including incommens-
urate CDW's as compared to the simple Hartree-Fock
theory of Robaszkiewicz, Micnas, and Chao.

IV. COMMENTS ON THE EFFECTS
OF LONG-RANGE INTERACTIONS

At least since the work of Anderson" it is well known
that, in the long-wavelength limit, the long-range
Coulomb interactions push the collective modes up to a
region of ordinary plasma oscillations. This result is val-
id for isotropic 3D systems and one can easily see from
our general expressions for the response function, Eqs.
(13) and (22), how it comes about. The q divergence of
the Fourier transform of the intersite Coulomb term,
Wq =4me /q, is cancelled by the q term in the numera-
tor of the polarization part [Eq. (22)] leading to a con-
stant term in the denominator of the response function
[Eq. (13)] in the limit ~q~~O. As a consequence, the
response function can have a divergence for a finite value
of co only. In order to determine precisely the value of
this divergence —and hence the plasmon energy —one
has to expand the polarization part [Eq. (16)] in a Taylor
series around q=0 for finite co. The quantitative analysis
of this problem needs a detailed specification of the form
of the long-range interaction and the particular lattice
structure and will be presented in a separate work. Here
we want to point out the qualitative dependence of the
excitation energy on the dimensionality of the lattice
structure. In a strictly 2D system, the divergence of the
Fourier transform of the long-range term weakens and
Wq changes to Wq=2me /~q~, which no longer cancels
the q term in the numerator of Eq. (22). As a result, one

The quadratic one-electron dispersion calculation of S2 is

straightforward and gives, in the 5—+0 limit

Un

km*
(34)

(m ' is an eff'ective electron mass), which, inserted to Eq.
(33), reproduces a familiar result for the 2D interacting
electron gas:

fI =&2nne [q(/m' (35)

(Crandall' ). In the opposite limit of the strong on-site
attraction, b, S2/U can be approximated by
4t n(2 —n)/~U~, and we again rederive the result of the
strong-coupling theory:"'

Qq=+2n'e (q(4t n(2 —n)/~U~ (36)

This extends our conclusion about a continuous transi-
tion between weak- and strong-U limit to the case of the
long-range intersite interactions. Finally, in the particu-
lar case of the NN sq lattice, we can use Eq. (23) to derive
a simple explicit formula for Qq which interpolates be-
tween the two limits:

' 1/2

Qq= (q(ne f de JV(e)
(e, —p) +b,

(37)

Note that, in this case 0 —unlike the short-range in-
teraction case —remains finite for n =1 in the U~ limit
despite the logarithmic singularity in the DOS.

Let us now consider a system of 2D layers with the iso-
tropic long-range Coulomb interaction within the layers
and between them —which is roughly the case of the
copper-oxide superconductors. Now the interaction can
be approximately represented by Wq=4ne /(q~~+qj),
where

q~~
and qj denote components of the wave vector

parallel and perpendicular to the layers, respectively.
For a finite constant value of q~, Wq can be treated as a
q~~-dependent short-range interaction within the layers.
As was noted by Fertig and Das Sarma, ' a branch of col-
lective modes with arbitrary small energy for q~~~0 and
constant qj should exist in the gap in such a case. This
conclusion may change if we allow electrons to hop be-
tween the layers. We expect that there is a critical value
of the interplane to intraplane hopping ratio for which
density oscillations with finite q~ and

q~~
0 would be

pushed out from the gap. This problem can be studied
systematically with the help of our general RPA expres-
sions for the density-density response function, Eqs. (13)
and (22).

V. DISCUSSION

In conclusion, we recall the main points of this paper
and briefly reexamine the validity and significance of our
findings.

(1) Using the method of perturbation expansion, we
calculated the density-density response functions for the

has an "acoustic" plasmon branch with a square-root
dispersion:

(33)
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extended Hubbard model with negative U in the random
phase approximation. The result we obtained [Eqs. (13)
and (16)—(20)] is valid for an arbitrary lattice structure
and electron density both in the normal and in the super-
conducting s-wave state. We also obtained simple expli-
cit formulas for the response functions for the supercon-
ducting ground state as well as their expansion for small
values of co and q. Our results may find a general applica-
tion in the analysis of the electromagnetic properties of
superconductors with local pairing.

A shortcoming of our analysis is that we neglected the
anisotropy of the superconducting order parameter in the
evaluation of the irreducible polarization [cf., Eq. (14)].
This simplification is not important in the limiting case of
the strong coupling or for W« ~U~, but may be more
serious in the intermediate region. Besides, there are
many experiments on the copper-oxide superconductors
(tunneling, ' NMR relaxation ), suggesting that consid-
ering an anisotropy of the gap parameter is necessary to
explain the data. We hope to be able to clarify a possible
role of the gap anisotropy in our future work.

(2) Knowing the poles of the response functions, we
calculated the energy of collective modes related to the
oscillations of the electron density and to the phase and
amplitude of the order parameter in the superconducting
ground state. We found that the energy evolves from the
weak- to strong-coupling limit in a continuous way. This
result holds both for the short- and long-range intersite
Coulomb interactions. Th validity of our conclusion is so
far restricted to the ground state only and an adequate
theory for the finite-temperature region is yet to be

found. We also note that the possible role of nonlinear
solutions, like localized pairing bag excitations in a 2D
lattice, "is beyond the scope of the present RPA ap-
proach.

(3) We performed a numerical analysis of the q-vector
dependence of the collective mode energy and determined
the condition of the stability of the spectrum and, hence,
the s-wave state in the wide range of values of model pa-
rameters and electron densities. For the strong enough
intersite NN interaction W and the 2D sq lattice, the
"pure" s-wave state was found to be unstable with respect
to the formation of either the commensurate or incom-
mensurate charge-density-wave state (for the repulsive
W) or to electron-droplet formation (in the opposite case).
At present we cannot definitely tell whether the incom-
mensurate phases would persist in the isotropic (e.g. , sc)
lattice and an answer to this will require much more nu-
merical effort. As for the possible influence of the long-
range Coulomb interaction on the stability of these
phases, the result will depend on the short-wavelength
dependence of 8' —that is, on details of a considered
model of this term.
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