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The variational density-matrix approach introduced by Campbell, Kurten, Ristig, and Senger
[Phys. Rev. B 30, 3728 (1984)), to study finite-temperature Bose fiuids is reformulated to avoid
dealing directly with the entropy of the trial density matrix. We obtain exact expressions for the
Euler-Lagrange equations for a Gnite-temperature trial statistical density matrix, which is the sim-
plest finite-temperature generalization of a Jastrow trial ground-state wave function. A multicompo-
nent hypernetted-chain method is developed to solve approximately these Euler-Lagrange equations
at low temperatures. In leading order the results are shown to be equivalent to those obtained
by Campbell et OL The current formalism provides a scheme to improve results of the previous
approach.

I. INTRODUCTION

Campbell, Kiirten, Ristig, and Senger1 (CKRS) devel-
oped a variational density-matrix approach to study the
finite-temperature properties of Bose fluids in the liquid-
gas portion of the thermodynamic phase diagram, and
applied it to liquid He. Using as input the experimen-
tally measured, temperature-dependent structure func-
tion S(k, T) of Robkoff and Hallockz and Svensson,
Sears, Woods, and Martel, s they calculated the isother-
mal sound velocity for temperatures up to 4 K. Their re-
sults agree well with the experimentally determined val-
ues of Cowley and Woods. 4

Following this work, Senger, Ristig, Kiirten, and
Campbell, calculated the temperature and density de-
pendence of the Helmholtz free energy, entropy, struc-
ture function, pressure, and chemical potential. Their
approach is distinguished by the fact that it is a first-
principles calculation which accurately determines the
liquid-gas critical point and a large portion of the spin-
odal line for a quantum fluid. This formalism has been
extended to include binarys and inhomogeneousr Bose
fluids.

On the other hand, certain approximations are in-
troduced into their analysis which limit the applicabil-
ity of their results, invalidating them when the number
of thermally excited collective modes are comparable to
the number of bare particles, which corresponds in the
case of 4He to the locus of the spinodal line in the low-
temperature, low-density corner of the phase diagram. 5

The approximation which causes this problem, referred
to as the separabiltity approximation for the entropy,
does not have an obvious means for improvement. Our
present efforts are motivated in part by this difhculty,
and by an interest in gaining a deeper understanding of
the variational formulation of the statistical mechanics of

quantum Quids.
In this paper we reformulate the CKRS derivation of

the variational Euler-Lagrange equations for the trial sts
tistical density matrix so that we might avoid dealing
directly with the entropy. This enables us to focus on
a set of distribution functions which are susceptible to
a hypernetted-chain analysis. As the first step in this
analysis we show how one recovers the results of CKRS
with a simple approximation. As a consequence, this
work gives some insight into their analysis, and points
to a method for developing possible improvements upon
the previous results. We begin by briefly reviewing the
essential theory of the variational approach to quantum
statistical mechanics, including a discussion of the space
of trial density matrices considered in this work.

Since real quantum fluids invariably have strong short-
range correlations because of the strong interparticle re-
pulsion, quantitatively successful theories are generally
formulated in coordinate space. Some important features
of the coordinate-state representation of the density ma-
trix for an N-body quantum fluid were established in
Refs. 1 and 5. Most importantly, it may be written in
the form1

where the incoherence factor Q provides a nonsepara-
ble connection between the primed and unprimed coor-
dinates except at zero temperature, and @and Q are each
temperature dependent. In boson systems, Q and Q are
real, non-negative functions which are symmetric under
the exchange of particle coordinates (which for Q means
the exchange of particles within the primed set and sep-
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j.
Fp & Fg ——tr(Hp~) + —tr(pglnpq) (1.2)

where P = 1/k~T and pq is a suitable trial density ma-

arately within the unprimed coordinates). ~ At zero tem-
perature Q is unity and @ is the ground-state wave func-
tion. In the high-temperature limit, g becomes a product
of two-body functions (the square root of the Boltzmann
factor in the infinite temperature limit), and Q becomes a
permanent (or determinant for a fermion system) of two-
body functions I'(r, —r ) (Dirac 6 functions at infinite
temperature). s In the low-temperature limit in boson sys-
tems, Q becomes the ground-state wave function multi-
plied by a product of temperature-dependent two-body
functions, Q,& exp[zu„(~ r, —r~ ~)], and the incoherence
factor Q becomes a product of temperature-dependent
one-body ogj'-diagonal functions g, exp[~~ur„(~ r, —r ~)],
where u„and u„are temperature dependent and are de-
termined only by the velocity of sound in the fluid.

To extend this theory to temperatures beyond the low-
temperature limit, it was proposed by CKRS to use the
Gibbs-Delbruck-Moliere minimum principle to determine
@ and Q variationally. This principle states that the trial
Helmholtz free energy F& is bounded from below by the
true free energy Fo and is given by

trix. The first and second terms are the trial internal
energy and trial entropy, respectively. The Hamiltonian,
H, is given by

Here m is the bare mass of the particle and v(r) is a
two-body interaction potential. Thus for a trial density
matrix of the form of Eq. (1.1), the formal equations for

Q and Q are

(1.4)

subject to the constraint on Qq that p& is a proper density
matrix, In particular, the eigenvalues of pq must be real
and non-negative, and it must be normalized.

It was argued in CKRS that the simplest trial density
matrix which is sufficiently flexible to account for both
the short-range correlations, due to the repulsive cores
typical of dense fluids, and the long-range correlations
needed to support the phononic elementary excitations
of the superfluid phase, has the coordinate space repre-
sentation

u(l r;-rj I) ~&~(lr, —r~ I) &z&(l r, -rj l)» 1 ''' NJ )
4 4 ~ 4 4 ~i(j

where Z~ is the normalization integral:

I

Lagrange equations [Eq. (1.4)] for Q and Q become a
set of coupled equations for the functions u(r) and ~(r):

I 4 4

i(j
bFg bF)

6u(r)
'

b~(r)
(1.9)

(1.6)

This density matrix has the same structure as the
low-temperature density matrix derived by Reatto and
Chesters (discussed above) if one replaces their ground-
state wave function by the optimum Jastrow trial ground-
state wave function:

uo(lr; -rj I)
)

~ 4 4 4

i(j
where u = no + u„ is the low-temperature limit. It is
also the structure of the density matrix of a set of non-
interacting harmonic oscillators, derived by Penrose,
with complex collective coordinates pg being identified
as the density fluctuation operators

(1.8)

For these reasons it is appropriate that a trial density
matrix of the form of Eq. (1.5) be referred to as a Penrose-
Reatto-Chester- Jastrow (PRCJ) density matrix. ~~'

With this choice of trial density matrix, the Euler-

The constraint that p& is a density matrix is satisfied by
requiring ~(r) to have a non-negative Fourier transform. ~

It should be noted that the functions u(r) and u(r) do not
have an explicit temperature dependence, instead gain-
ing their temperature dependence through the temper-
ature factor multiplying the trial entropy in Eq. (1.2).
At zero temperature u(r) vanishes and u(r) becomes the
optimal ground-state Jastrow function, which has been
widely studied and gives a reasonably good account of
the ground-state properties of liquid 4He. s

It should be expected that the PRCJ density matrix
will give low-temperature results with accuracy compara-
ble to those obtained for the ground state from the Jas-
trow theory. However, the entropy imposes difficulties
which require additional analysis. The approximations
used in previous work to deal with the entropy appear to
be cruder than those used for ground-state calculations,
making the results somewhat more uncertain. Methods
for improving the trial density matrix, similar to those
which have been successful for the trial ground state,
are discussed in Sec. V.

An important shortcoming of the PRCJ density ma-
trix needs to be acknowledged at the outset: it fails to
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evolve into the exact high-temperature limit discussed
below Eq. (1.1).s ii Moreover, it is the fact that I'(r) is a
short-range function of r which destroys the off-diagonal
long-range order (ODLRO) at high temperatures in the
exact density matrix. In fact, the PCIU density ma-
trix has ODLRO at all temperatures in three dimensions,
and quasi-ODLRO at all temperatures in two dimen-
sions. This is closely related to the fact that, in two and
three dimensions, Jastrow-type wave functions will al-
ways yield a nonzero condensate. i4 Thus the PRCJ den-
sity matrix cannot have a A transition. This makes the
liquid-gas phase diagram obtained in Ref. 5 somewhat
less interesting in the vicinity of the critical point and in
the normal Bose gas region of the phase diagram, since
in this trial density matrix the physics is being driven
by collective modes of a superfluid and does not include
single-particle modes. Nevertheless the model is appli-
cable in the low-temperature portion of the phase dia-
gram near the liquid densities, and, e.g. , the spinodal
line obtained from this theory should be described cor-
rectly in this region. Moreover, the PRCJ density ma-
trix is the simplest imaginable density matrix for a bo-
son system containing both short- and long-range corre-
lations, and thus is an interesting and useful ansatz for
studying the difficulties presented by the entropy in the
variational statistical mechanics of quantum fluids. The
high-temperature structure of the exact density matrix
suggests a richer ansatz, particularly when it is realized
that an infinite-range I'(r) will produce ODLRO. s ii But
the entropy problem is even more severe for that ansatz;
recent progress on this problem in the normal phase is
reported elsewhere. is

In Refs. 1 and 5 an explicit form for the trial entropy
was sought, thus requiring the introduction of the sepa-
rability approximation, which amounts to a decoupling
of the entropy due to Bijl-Feynman excitations. The
Euler-Lagrange equations followed upon functional dif-
ferentiation of the internal energy and the resulting ap-
proximate entropy expression. The primary difference
between the analysis just summarized and the present
work is that we never require a closed form expression
for the entropy. Rather, we work directly with the func-
tional derivatives of tr(pt, lnpq). In this way, we obtain
formally exact expressions for the Euler-Lagrange equa-
tions in terms of derivatives of multicomponent distribu-
tion functions before it is necessary to introduce approx-
imations. This derivation is given in Sec. II. Section III
contains the hypernetted-chain (HNC) analysis of the in-
ternal energy, which can be calculated with only a slight
modification of the methods used for Jastrow ground-
state calculations. In Sec. IV we invoke the multicom-
ponent hypernetted-chain equations to approximate the
distribution functions, necessitated by the entropy, by
an expansion in the relative density of thermally popu-
lated elementary excitations. To leading order we obtain
the results of Refs. 1 and 5. The excitation spectrum
is introduced by using a single-resonance approximation
to describe the dynamic structure function. We close
Sec. IV by showing that the leading order expression for
the entropy is that given by the Bose liquid form obtained
in the separability approximation in the earlier work. In

Sec. V, further discussions on this approach are given and
we indicate directions for future work.

II. EULER-LAGRANGE EQUATIONS

To obtain the Euler-Lagrange equations [Eq. (1.9)]
from Eq. (1.2), we first require expressions for the trial
internal energy, Uq, corresponding to the PRCJ density
matrix. Following CKRS a closed form expression for
the internal energy can be obtained from the Jackson-
Feenberg form for the kinetic energy. The result is

Uq ——tr(Hp&) = dr v'(r)g(r)Np

+ s dk ~p(k)p(k).
N

27I p
(2.1)

Here, p is the number density (p = N/V), and v'(r) is
defined by

v'(r) = v(r) — V [u(r) + 2ur(r)],
4m

(2.2)

Sg = —kQ tr(p& ln pq)
—= k~ —intr(—p, )

tT=1
(2.4)

where tr(p, ) is the operator pt, raised to the power cr

The main challenge of the present theory is to deter-
mine the o-dependent functional derivatives of the en-
tropy. In principle the o' dependence of the entropy is
not very complicated, since it is equivalent to the tem-
perature dependence of the entropy for a model Hamil-
tonian Hq which would have p~ for its density matrix:
pq ——[exp( —PHq)]/Zq. Then it is seen that the replica
definition of the entropy is nothing more than the ther-
modynamic definition of the entropy for Ht by the P
derivative of the free energy. Moreover, the dependence
of the entropy on o is analytic unless the model system
described by H& has a phase transition at a tempera-
ture T/o. When one uses a model Hamiltonian to define
the density matrix and varies the Hamiltonian to find
the optimum density matrix, it is equivalent to replacing
the Gibbs-Delbruck-Moliere minimum principle by the
Gibbs-Bogoliubov minimum principle.

It is a straightforward matter to deal with the cr de-
pendence of the quantities of interest at integer values
of o. E g , the tra.ce. in Eq. (2.4) can be expressed as a
3o.N-fold integral:

where the V'~ term in (2.2) and the last term in (2.1) are
the kinetic energy terms, cp(k) = h k /2m, g(r) is the
radial distribution function

N(N —1)
g(r) = d(rs, . . . , rN)

P
x p&(ri, . . . , rN, ri, . . . , ry), (2.3)

S(k) is the liquid structure function corresponding to
g(r) [defined below in Eq. (2.15)], and p(k) is the Fourier
transform of u(r)

As discussed in the Introduction, we do not attempt
to derive a closed form expression for the trial entropy,
8&. Rather, we work directly with the functional deriva-
tives of Sq. This is achieved by first invoking the replica
identity:
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1
tr(pt ) = Z. I ~ I

n=1
3 d(ri„, . . . , rN„)

~ h h h

&n&jn
e (Ir,„—r,. l) ~(l'- „+I}) (2.5)

In this equation the indices obey the cyclic condition
r~„= r~ for n & o. Note that, aside from the denomi-
nator Zf, this quantity is equivalent to the configuration
integral of a o.-component classical fluid where the Quid
components are identical to one another, and a particle
in one component "interacts" only with other particles
in that component [through u(r)] and with particles in
the components on either side of it [through u(r)] in the
cyclic numbering system; i.e., particles in the nth replica
"interact" with particles in replica n 1 and —n+1, where
the cycle is completed by the prescription o + 1 = 1. It
is not so easy to write a coordinate space representation
for tr(p, ) for noninteger o. Nevertheless, as we indi-
cated above, it is a well-behaved function of o since pt
is a density matrix, and thus can in principle be brought
to diagonal form with eigenvalues lying between zero and
one.

We make use of these observations to recast the Euler-

l,agrange equations [Eq. (1.9)] by introducing two auxil-
iary functions gp(r; o) and gi(r; o) defined by

intr(p, ) = (go(r; o) —g(r)), (2 6)

6

R)(r)
ln tr(pt ) = Nap(gi (r; a) —g(r) ), (2 7)

where g(r) is the radial distribution function defined in
Eq. (2.3). This notation is motivated by the fact that,
for integer values of o, gp(r;o) is the intraspecies ra-
dial distribution function for the fictitious o-component
classical fluid, and similarly gi(r;o) is the correspond-
ing radial distribution function between two particles in
"adjacent" replicas. To be more specific, the array of ra-
dial distribution functions for the o-component fictitious
classical fluid is defined by

N(N —6 p)
g~e(l ». —», I a) =

P
d(rl ~ ~ ~ rN ) pt(rl ~ ~ ~ rN rl + ~ ~ ~ N + )) (2.8)

6 pNkgT d

6() t —
2 dgo(, )

b
Ut ——pNk~T gi(r; o)

6(u r dCT

(2 9)

(2.io)

where the trial internal energy Ut is given in Eq. (2.1),
and the right-hand sides come from the entropy term
under the assumption that we may interchange the func-
tional derivatives with the o derivative.

The method for the evaluation of the functional deriva-
tives of U& on the left-hand side of these two equations is
well understood from the Jastrow —Euler-Lagrange theory
of the optimum Jastrow ground-state wave function; the
finite-temperature version needs only to take additional

where the prime on the volume elements signifies the
omission of ri and rq~ from the integration. The
kronecker 6 function obeys the cyclic condition that
6~ p(a) = 6tt,p+~(a). Since g~p depends only on the
shortest distance between n and P on the cycle 1, . . . , a,
the subscript o.P is conveniently replaced by this dis-
tance, and in particular gp and gi are the first two mem-
bers of this array ordered by this distance. [Note that
gp(r; a = 1) = gi(r; o = 1) = g(r), and thus the func-
tional derivatives in Eqs. (2.6) and (2.7) vanish at o = 1,
as they must. ]

With these definitions, the exact Euler-Lagrange equa-
tions for the optimal density matrix within the space of
PCRJ density matrices become

'7 g(r) + g'(r) = k~T —gp(r; o)
4 de

where

, 6g(r')'(r)—: dr 'v'(r')
6u(r)

'

can=1

(2.ii)

(2.12)

while Eq. (2.10) can be combined with Eq. (2.9) and
Fourier transformed to give

1
&o(k) = ——[So(k; o) —Si(k; a)]

P do
(2.13)

The Fourier transformation of Eq. (2.11) is the paired-
phonon form of the Euler-Lagrange equation: ~

f2 kz dS (k) = [1 —S(k)] —kBT Sp(k; a)
4m dO

(2.i4)

where the liquid structure function S(k) is given by

S(k) = —( Ipkl )= 1+p dre'"'[g(r) —1], (2.15)
N

and So, S1, and S' are defined through the Fourier trans-
forms of the corresponding g functions in the obvious gen-
eralization of Eq. (2.15). Equation (2.14) differs from the

account of the u dependence when it does not appear in
the combination u + 2~. Equation (2.9) can then be
rewritten as
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corresponding ground-state equationis i~ by the second
term on the right-hand side.

Equations (2.11)—(2.13) are the exact equations for the
optimum PRC J density matrix. The mathematical prob-
lem posed by these equations is the determination of the
dependence of the radial distribution function g(r) upon
u+ 2m and the dependence of the two auxiliary functions

gp and gi upon u, (o, and o, which is the subject of the
next section.

An equivalent form of the Euler-Lagr ange equa-
tions is the finite-temperature generalization of the
Siemens-Lantto form, is which is obtained by chang-
ing independent functional variables from [u(r), (6)(r)] to
[V'g(r), ~(r)]:

Wp(r) = V [lng(r) —u(r) —2'(r)]
4m s, 6[lng(r') —u(r') —2u(r')]+ r gr

bg(r)
(2.17)

and the new, explicitly temperature-dependent part of
the induced potential

WT (r) = k~T dr' gp(r', o)
d, bu(r')

do' i bg r (2.18)

Equation (2.16) difFers from the T = 0 result by the pres-
ence of the term WT, and by the fact that u(r) + 2u(r)
appears in place of u(r) in Wp(r). Moreover, Eq. (2.16)
must be solved simultaneously with Eq. (2.13) or an
equivalent second equation.

V + v(T) + Wp(T) + Wp(T)) gg(T) = 0, (216)
m

which has the form of a Schrodinger equation for the two-
body amplitude gg(r), with induced potential W(r) =
Wp(r) + WT(r) given by

III. HYPERNETTED-CHAIN ANALYSIS

Long experience with the Jastrow —Euler-Lagrange the-
ory of the ground state of liquid He has taught us that
the hypernetted-chain formulation of the relationship be-
tween the radial distribution function and the Jastrow
pseudopotential is the most useful route to a manage-
able theory. A deeper understanding of the implica-
tions of this resummation and the reasons for its success
was gained by Jackson et aL, who showed that the sim-

plest approximation to the hypernetted-chain equations
(the HNC/0 approximation), when used in the Jastrow-
Euler-Lagrange theory of the ground-state wave function
(i.e., T = 0), is equivalent to a self-consistent resumma-
tion of ring and ladder diagrams in diagrammatic per-
turbation theory, and thus includes both long-range and
short-range correlations in a correct and self-consistent
manner.

The generalization of the HNC analysis to finite tem-
peratures to find the u and a dependence is straight-
forward, and will be reviewed in the remainder of this
section. The main subject of this paper is a hypernetted-
chain analysis of the o dependence, which we deal with
in the next section.

In the present case, the hypernet equation for g(r) is

( ) egg(g)+2&g(r)+N(r)+E(r) (3.1)

where E(r) is the so-called bridge or elementary func-

tion, which is a well-defined functional of g(r), and the
nodal function N(r) is defined by the solution of the chain
equation 1;„., [S(k) —1]z

(2s.)s)p S(k)
(3.2)

These equations are exact when the exact definition of
E(r) is included. zP The hypernet equation can be used
to simplify the Siemens-Lantto induced potential W(r) =
Wp(r) + W~(r) [Eqs. (2.17) and (2.18)] into the form

and

Wp(r) = (7 [N(r) + E(r)] + dr'[V' g(r')]-4 4m bg(r)

W ( )
kgyT d

( ) —k T d ' d
(

'
)

6[N(r')+E(r')]

(3.3)

(3.4)

With regard to the paired-phonon formulation of the
Euler-Lagrange equations [Eq. (2.11)or (2.14)], the HNC
equations permit a simple evaluation of the functional
derivative bg(r')/bu(r) in Eq. (2.12).zi

The commonly used hypernetted-chain approximation,
often referred to as HNC/0 to distinguish it from the ex-
act HNC equations, is obtained by setting E(r) = 0.
As noted above, it is not necessary to go beyond this
approximation to obtain qualitatively and semiquantita-

tively correct results for He; quantitative improvements
are straightforward through more elaborate approxima-
tions for E(r) such as the HNC/4 approximation.

Within the HNC/0 approximation, the Euler-Lagrange
equations simplify still further because of the simplic-
ity of the dependence of N(r) upon g or 8, as is seen
in Eq. (3.2). E.g. , the finite-temperature version of
the Siemens-Lantto induced potential W(r) = Wp(r) +
WT(r) is given by
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1
( ) =-2(2 ),

[S(k) —
l ( S(")+ ]

S(k)2 (3.5)

and

kgyT d
Wz (r) = g()(r; o)] g

—k~T
g r do 270 p

S(k)2 —1 d
dk '" " „—„Sp(k; ) (3 6)

Moreover, since al/ HNC/n approximations preserve
the symmetry of the functional derivative bg(r')/bu(r)
with respect to interchange of r' with r, the equation for
S'(k) can be written as a linear integral equation which
is trivial to solve by matrix inversion methods. ~~

In summary, in this section we have reviewed the man-
ner in which the HNC analysis previously developed for
the optimum Jastrow ground-state wave function can be
applied directly to the internal energy portion of the
Euler-Lagrange equations for the optimum PCRJ density
matrix. In the next section we focus on the remainder of
the Euler-Lagrange analysis that must be included at fi-

nite temperatures, which requires the evaluation of the cr

derivatives of Sp and Sq which appear on the right-hand
side of Eqs. (2.13) and (2.14).

I

and the chain equation

S p(k;o) —b p(o) =+) X (k;(r)S„s(k;cr), (4.2)

where in the present analysis,

+ )3(r'~) = (u(r) + 2~(r)]b,p((r) +~ p(r'~)

p(r; e) = u(r)(b, p+q(o) + b~~q, p(o) —2b, p(o)].

(4 3)

(4.4)

The multicomponent nodal functions N p(r; cr) and non-
nodal functions (direct correlation functions) X p(r; o)
are related by the second term on the right-hand side of
Eq. (4.2):

IV. SOLUTIONS TO THE EULER-LAGRANGE
EQUATIONS

(~. q M p(r;cr)+N p(r;cr)
&OPs~i +i = ~ (4.1)

In this section we determine approximate expressions
for Sp(k; o) and Sq (k; cr) which have analytic continua-
tions to noninteger (r. In turn, these expressions provide
formal solutions to the Euler-Lagrange equations given
by Eqs. (2.11)—(2.14). We now show that the multi-
component HNC/0 equations for a o-component system
can provide suitable expressions. The multicomponent
HNC/0 equations comprise the hypernet equations2

S p(k;o) —b p((r) = X )3(k;cr) +N p(k;cr). (4.5)

The important point is that for o = 2, 3, 4, . . . and o, g P
the hypernet equation couples only to u(r) and powers
of (off-diagonal) 1 —g~p(r; o). Consequently it is useful
to rewrite the hypernet equation in the form

X p(r;o) =M p(r;a)+) ' . (4.6)
. [1 —g p(r;o)]"

A=2

Equations (4.2) and (4.6) can be expressed in terms
of S~p(k;o') and p~p(k;0) [the Fourier transform of
~ p(r;(r)]. The chain equation can then be used to re-

move the X (k;o) dependence. The result is

+ s S,g(k;o)) dq S „(q;(r)S „(~ k —q ~;o) S p(k;o) — ' ' ' +S, (k;o)S p(k;o) (4.7)

Here, an effective structure function, S,g(k;(r), has
been introduced:

1 1 Sg(k)(r)
S,e(k; o) Sp(k; o) Sp(k, o)

(4.8)

Equation (4.7) should be viewed as the expression
which relates the off-diagonal S p(k; o) to Sp(k;0) and

p(k). In terms of the diagonal elements, Eq. (4.7) is

simply an identity for o. = 2, 3, 4. . . . For cr = 1,
the solution of Eq. (4.7) is precisely the condition that

Sq(k; 1) = Sp(k; 1). Recall that this is the condition im-

posed by Eq. (2.7).
The terms on the right-hand side of the equality in

Eq. (4.7) have been collected in powers of 1 —g p(r; cr),
for cs g p and o' & 1. The first and second terms arise
from truncating the ofF-diagonal hypernet equation after
the ~ p(r) and [1 gp(r; o)]~/2 te—rms, respectively We.
now assert that [1 —g~p(r; o & 1)] may be regarded as
a smallness function. Our assertion follows directly from
the HNC/0 representation of g p(r; cr & 1). In par-
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(4 9)

The resulting equation may then be solved algebraically
to yield

ticular, it is evident from Eq. (4.1) that g~p(r;o ) 1)
(a g P) couples directly to the incoherence function,
a(r), and only weakly, through the off-diagonal nodal
diagrams, to the effective hard-core function u(r). It fol-
lows that [1 —g~p(r; o)] /2 is of order ~z. The assertion
then follows by noting that at zero temperature u(r) is
identically zero and much less than unity for low temper-
atures. Consequently, Eq. (4.7) represents an expansion
valid at low temperatures. More specifically, it is an ex-
pansion in the off-diagonal uniform limit for g p, which
depends for its validity upon density and/or temperature
in the present case.~3

We now show that the leading term in Eq. (4.7) can
be put into a closed form which expresses Sp(k; o), for
A ) 1, in terms of p(k) and Sc(k;o). This expression
follows by diagonalizing the matrix p~p(k;n) with the
unitary transformation

2mecxP/n1p= e

function of order u(r), our smallness function. Similarly,
expressing the o derivative of gq (r; o) as the finite differ-
ence gq(&;2) —gq(r; I) = gq(r;2) go(—r;1) yields a func-
tion which depends directly on the hard-core function,
u(r). Terms depending directly on u(r) should always be
retained. Thus, to leading order we set dSs(k; cr)/der [

identically equal to zero. From Eqs. (4.12) and (4.13), it
follows that

(4.14)

where P(k) is evaluated at 0 = 1. Substituting this result
into Eq. (2.13) yields

S(k) = coth
i

(4.15)
P(k) 2

Finally, we introduce an effective elementary excita-
tion energy, e(k), into our formalism by following the
comment in Ref. 1 that a single-resonance approxima-
tion produces a temperature-dependent structure func-
tion with the same form as Eq. (4.15) but with

S,g(k; o)

2n ~(a—P}v/o
X

, 1+4'(k)S,g(k, a) sin (—") (4.10)

e(k)—:k~TQ(k),

so that

sp(k) t Pc(k) )

(4.16)

(4.17)

The diagonalization process couples the off-diagonal S~p
to the diagonal S . Consequently, it is meaningful to
evaluate the o. = P case. This can be done by contour
integration, ~2 with the result

coi (q)
(4.11)Sp(k;o) =

2p(k) sinh P
'

where P = P(k; u) and is defined through the relation

1+2p(k) Sg(k; 0)
2p(k)SO(k;o)

Finally, the solution of the inhomogeneous equation (n g
P) can be expressed in terms of hyperbolic functions:

Sq(k; o) = . coth
~ ~

cosh(QA)
1 (oPl

2p sinh (2 j
—sixth(iiA)). (4.13)

This is the desired expression which relates the off-
diagonal Sg(k;o) to Sc(k;cr) and p(k).

We now make the assumption that Sp(k; cr) given in
Eq. (4.13) is valid for all cr, i.e., these expressions pro-
vide the analytic continuations to noninteger o. We may
thus proceed to evaluate the o derivatives as required by
Eqs. (2.11), (2.13), and (2.14). First, we estimate the
magnitudes of those derivatives. Due to a lack of a more
rigorous means, a simple finite difference argument will
have to suffice. As was done above, the estimate is most
easily obtained by invoking the HNC/0 representation
of g p(r;o') [Eq. (4.1)]. Expressing the cr derivative of
go(r; o), evaluated at 0 = 1, as gc(r; 2) —go(r; 1) yields a

The interpretation of e(k) as an effective elementary
excitation spectrum is given some support by examining
the expression for the entropy. Defining the occupation
number of the effective elementary excitation by

1
n(k) =

p (4.18)

it is easy to show that, for o = 1, Eq. (4.12) reduces to

p(k)S(k) = n(k) [n(k) + 1]. (4.19)

(4.21)

This expression can be viewed as a Bose liquid expression
for the entropy, in analogy to Fermi liquid theory, since it
has the form of a free Bose gas, but with a temperature-
dependent excitation energy. This result was previously
obtained in Ref. 1 by calculating the entropy in the sepa-

From Eqs. (2.4), (2.7), and the approximation
dSs(k; o)/do [ q = 0, one immediately finds

b Nk g (P(k) )
p(~(k)S(k)) (27r)3~4 ) l 2 l ( o)

Equation (4.12) (with cr = 1) can now be used to re-
move the pS dependence. The resulting expression can
easily be (functionally) integrated, making use of the fact
that the entropy vanishes when the function ~ identically
vanishes, which corresponds to the vanishing of P. The
result can be expressed in terms of n(k) rather than P(k)
by using P(k) = ln "ii~&& . The result is

8& ——k~ ) ([n(k) + 1] ln[n(k) + 1] —n(k) inn(k)).
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rability approximation, and then using Eq. (4.19) as the
definition of n(k).

V. DISCUSSION

We begin this section by clarifying the relationship be-
tween the present work and that of Refs. 1 and 5. The
earlier work is appealing because it leads, in a natural
way, to a Bose liquid expression for the entropy and to
the corresponding temperature-dependent Bijl-Feynman
excitation spectrum, while the present work, though ar-
riving at the same results in lowest approximation, re-
quires a somewhat more contorted analysis to do so. The
primary approximation in the earlier work —the separa-
bility approximation —was used to cast the trial entropy
in a closed form expression. The separability approxi-
mation stems from the so-called paired-phonon analysis,
which was employed as a tool to solve the Euler-I agrange
equation for the optimum Jastrow ground-state wave
function. i7 In the context of the paired-phonon analy-
sis, the separability approximation amounts to a decou-
pling of elementary excitations characterized by momen-
tum pairs (k, —k) from other momenta pairs. In that
analysis, it was used as an iterative tool and does not
afFect the final results. In the context of Refs. 1 and 5,
the separability approximation is equivalent to suppress-
ing the entropy fluctuations which connect the different
paired-phonon spaces. It amounts to a first iteration.
However, because of the difficulties in calculating the en-
tropy outside of this approximation, no successive itera-
tion scheme has been realized which would rid the theory
of the effects of the separability assumption, in contrast
to the ground-state situation.

Since the separability approximation has been exten-
sively studied in the paired-phonon analysis its properties
are well understood. The separability approximation is
reliable when the number of excitations are few relative
to the particle number. In turn, this occurs in the high-
density and low-temperature regime of the fiuid phase,
which includes the higher-density portion of the spinodal
line below the A temperature. Shortcomings resulting
from using the separability approximation at lower den-
sities are evident in Ref. 5. There it was observed that
the spinodal line for 4He gas extrapolated to a finite value
of temperature at zero density. This same shortcoming is
apparent in Ref. 6 where improper behavior is observed
in the zero concentration limit of one of the components
of the binary mixture.

In the previous two sections we have shown how the
variational formulation proposed by Campbell et al. can
be cast into the form of an off-diagonal uniform limit
expansion together with an HNC analysis of the on-
diagonal correlations. We showed that the results of
CKRS are consistent with the leading term of our ex-
pansion. The condition that leads to a rapid convergence
of this uniform limit expansion is that the temperature
be sufficiently low for a fixed density, specifically that
the total number density of thermally occupied excited
states be small compared to the particle density. This
is the same condition for which the separability approxi-
mation is valid. Thus an approach such as the one which

we have developed in the present work should have prac-
tical applications to the improvement of this low-density
regime when carried out to higher order. (Of course the
present analysis does not eliminate the problem that the
low-density gas portion of the phase diagram is still Bose
condensed in the PRCJ density matrix. )

From our analysis it is clearly possible to obtain results
beyond those reported here simply by using Eq. (4.13) as
an iterant in the second term of the perturbation series,
Eq. (4.7). This calculation has been completed. That
work was focussed on the generalization of the finite-
temperature elementary excitation energy in order to re-
tain the Bose liquid formulation of the final results. Al-
though the results are promising, the complexity of the
resulting expression required very crude further approx-
imations in order that such an excitation spectrum be
incorporated by the same scheme used at the end of the
previous section of the present analysis.

We close this section with a discussion of other routes
to follow to remove further deficiencies of the variational
approach. In particular, we mention the shortcomings of
the PRCJ density matrix, and emphasize the need for a
rigorous means of incorporating the excitation spectrum
into this method.

The PRCJ density matrix is known to have several lim-
itations which we review here briefly. First, we noted in
the Introduction that Reatto's conclusion that Jastrow-
type wave functions always have a nonzero condensate'4
can be extended to PRCJ density matrices at all temper-
atures. Thus, a Bose Quid described by the PRCJ den-
sity matrix will never undergo a A transition, in direct
contradiction to experiment. A consequence of this fea-
ture is readily apparent in the temperature dependence of
the static structure function, S(k), calculated in CKRS.
There it was observed that, in the relevant temperature
regime, the first diffraction peak of S(k) increases con-
tinuously with increasing temperature. The experimental
S(k) for 4He exhibits this behavior up to the A transition
temperature, but as the temperature increases above the
A transition, the fluid behaves as a normal fiuid and the
peak decreases as one expects in a classical fiuid where
the increasing temperature reduces the spatial order.
This evidently signifies an increase in spatial order as the
off-diagonal order decreases with increasing temperature
below the A transition, but returning to the classical fluid
behavior above the A transition, where the increasing
temperature decreases the spatial order. 24 Blendowske
and Fliessbach have recently shown that this qualitative
behavior of S(k, T) is obtained by using, for the inco-
herence factor Q, the high-temperature form of the ideal
Bose gas density matrix. For this case, Q is a permanent
of Gaussians suitably modified to incorporate the effects
of the A transition. 2s (Alternatively, Gaglione et al. ex-
plained the decrease by roton lifetime effects, which are
presumably related to the appearance of single-particle
modes above the A transition, and thus related to the
explanation in terms of the density matrix. )

Secondly, it has been well established that the quanti-
tative inaccuracy of the optimum Jastrow wave function
as a trial function for the ground state of liquid He can
be nearly completely removed by the inclusion of three-
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body factors, of the form g,.&.&z exp[us(r;, rs, r~)]/2
in the ground-state trial function. s Similarly, it has
been shown that the closely related process of one Bijl-
Feynman phonon decaying to two (and the inverse pro-
cess) accounts for the backflow correctionssr to the Bijl-
Feynman phonon-roton curve, gives the correct density
dependence of the roton region, 2s and gives the cor-
rect transition from anomalous to normal phonon disper-
sion with increasing density. ss The PRCJ density matrix
also neglects the higher particle number correlation fac-
tors exp[Zus(r;, rz, rlc) + Zu4(r;, rz, rg, rs) + ] and the
closely related factors in the coherence factor, e.g. , the
backflow factor exp[aii, s(r;, rs, ri, )]. The importance of
such factors in including backflow effects at finite tem-
peratures has been stressed by Battaini and Reatto. so

Backflow effects are of increasing importance at elevated
temperatures (T ) 0.5 K for 4He) where the roton states
become increasingly populated due to their high density
of states.

The inclusion of the thr==-body correlation factors in
the ground state increases the binding energy per particle
by O(1 K) and similarly improves the agreement between
the calculated and experimental equilibrium density. is

Since the liquid-gas critical point should roughly scale
with the binding energy, a density matrix neglecting

three-body correlations should lead to an underestimate
of the critical temperature, T,. We note that this is also
consistent with the findings of Ref. 5 where a T, of 4.3
K was calculated and the experimental T, is known to
be 5.2 K. Recently, three-body correlations have been
incorporated into the PRCJ density matrix and will be
reported elsewhere. si

Most of the deficiencies discussed above stem primar-
ily from computational limitations. The final deficiency
that we mention is a consequence of a lack of a rigorous
means for relating the elementary excitation spectrum,
e(k), to the input functions u(r) and ar(r) Th. e present
analysis also has this problem when one goes beyond the
lowest-order approximation. i~ It would be a significant
conceptual and practical contribution to the understand-
ing of the statistical mechanics of quantum fluids if a
formal procedure were established which relates the en-

tropy to statistical excitations.
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