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Quantum dynamics of ultrasmall tunnel junctions: Real-time analysis
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We present a real-time path-integral analysis of the quantum dynamics of an ultrasmall tunnel junc-
tion interacting with an arbitrary external impedance. For a normal junction, we derive a quasiclassical
Langevin equation for the phase variable and calculate the I-V curve beyond perturbation theory for the
junction conductance. In the superconducting case, we develop a nonperturbative calculation of the
time-dependent expectation value of the voltage operator and voltage-voltage correlation functions.
Provided that dissipation is small enough, both of these quantities show damped oscillations and a
power-law decay in the low-temperature limit. We also analyze the effect of resonant voltage steps on
the I-V curve of an ac-driven tunnel junction and evaluate the linewidth of Bloch oscillations in the
quantum limit.

I. INTRODUCTION

It was understood quite early on that the phase
difference y and the charge Q of a Josephson tunnel junc-
tion are to be treated as macroscopic quantum conjugate
variables with the associated uncertainty relation
5Q 5p ~ e. ' For small capacitance junctions at low tem-
perature, the Coulomb interaction effectively suppresses
the charge fluctuations 5Q and accordingly leads to
strong quantum fluctuations of the phase y. Under these
conditions, a discrete charge-transfer mechanism shows
up: The junction charge can be changed only in units of e
due to single-electron tunneling (SET) or in units of 2e
due to Cooper pair tunneling (CPT). For small external
bias V, both SET and CPT are energetically forbidden
and thus no charge transfer across the junction takes
place (Coulomb blockade of tunneling). For larger values
of V, the junction is periodically charged and discharged
due to SET and CPT events. As a result, coherent volt-
age oscillations with fundamental frequencies I/e and
I/2e (so-called SET and Bloch oscillations) occur, where
I is the current across the junction. For a review, we
refer the reader to Refs. 2 and 3.

Modern lithographic techniques allow reliable fabrica-
tion of tunnel junctions with capacitances in the range
C &10 ' —10 ' F, thus opening the possibility to inves-
tigate the above-mentioned effects at temperatures below
T-1 K. Coulomb-blockade effects have been clearly
demonstrated in experiment (see also references cited
in Refs. 2 and 3). SET oscillations of the voltage have
been also observed in chains of Josephson junctions.
Very recently, experimental evidence of Bloch oscilla-
tions has been reported. ' These experimental findings
confirm the main theoretical predictions made in Refs. 2
and 3.

In any real experimental situation, a tunnel junction al-
ways interacts with an external electromagnetic environ-
ment. Though not very important for many-junction sys-
tems, this interaction can play a crucial role in experi-
ments with single junctions (e.g., Refs. 8—10). This prob-

lem has already been discussed in a number of pa-
pers ' '" ' for both normal and superconducting junc-
tions and, in some limiting cases, a coherent theoretical
picture emerged. Nevertheless several important issues
still remain to be clarified. For example, of fundamental
importance is the question about the influence of an arbi-
trary dissipative environment on the Bloch oscillations.
Do these oscillations survive or are they destroyed in the
weak-dissipation limit (as was suggested in Ref. 19)?
What is the role of quantum fluctuations of the charge?
Is it possible to study these problems perturbatively (e.g.,
as in Refs. 2 and 20) or does perturbation theory fail even
for small dissipation?' These and some other problems
will be investigated in this paper.

In Sec. II, we briefly outline a general path-integral for-
malism which we use to describe the quantum dynamics
of both the phase and charge variables of a tunnel junc-
tion shunted by an arbitrary external impedance Zs(co).
In Sec. III we derive a quasiclassical-Langevin equation
for the phase in the presence of two types of noise: junc-
tion shot noise and quantum noise of an external circuit.
Using this approach, we calculate the current-voltage
characteristic of a normal tunnel junction with arbitrary
tunneling resistance R, and arbitrary external impedance
Z, (co). Section IV is devoted to a detailed analysis of the
charge dynamics of a superconducting junction in the
Bloch-oscillation regime. Eliminating the phase variable,
we derive a quasiclassical-Langevin equation for the
charge and evaluate the current-voltage characteristic as
well as the linewidth of Bloch oscillations (in both classi-
cal and quantum limits) for arbitrary Z, (co). For large
Josephson coupling energy, it is possible to go beyond the
quasiclassical approximation and solve the problem ex-
actly. In this limit, we present a direct calculation of the
time-dependent expectation value of the voltage operator
in the Bloch-oscillations regime and evaluate the
voltage-voltage correlation functions. We also describe
the effect of resonances (voltage steps) on the I Vcurve in-
the presence of an external ac signal. The results of this
section are of particular importance in view of recent ex-
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perimental findings. ' In Sec. V we briefly discuss the
main results of this paper and give a comparison with
available experimental data. Some technical details of
our theory are presented in the Appendix.

II. GENERAL FORMALISM
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We shall consider a Josephson tunnel junction shunted
by an external impedance Z, (to). Depending on the ex-
perimental conditions, either the voltage source V„[Fig.
1(a)] or the current source I„[Fig. 1(b)] configuration
might be relevant. We shall describe below both
configurations within the same formalism. As in Ref. 3,
we start from the microscopic Hamiltonian for the
"junction+environment" system. After taking a trace
over the electron degrees of freedom (see Ref. 3 for de-
tails), we arrive at an expression for the reduced density
matrix in the phase representation, p(g„y2, t). 'Within
the Feynman-Vernon path-integral formalism, ' we intro-
duce the phase variables y, and q2 related, respectively,
to forward and backward time contours (it is necessary to
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FIG. 1. Voltage source (a) and current source (b)
configurations.

introduce two y variables, instead of one, because we are
dealing with the density matrix rather than the ampli-
tude) and get for the configuration of Fig. 1(b) (see e.g. ,
Ref. 3),

p qf )=fdq J(t&'Pf&q& )P(0&q;)& qf pIf q2f qI g f& q2j

J(t,yf, y, )=fDp, Dy2exp(i {Sp[&p,] Sp[q&2]+ W[p& q&p]+ W[cos(p&/2), cos(y2/2)]+ W[sin(qr&/2), sin(yz/2)]] ),
(2)

where

I„+EJcosg+ p d1
2e

(3)

W[X~&gq]= 2 f g+g dr+ '
z f

'deaf

'dsy (v')G(w —s)y (s),
Rre' o 2R, e

dc@6 (t) =f cpcoth exp( i tot )—
2T 2'

7r Tt
sinh(n. Tt )

1d 1

ddt t
—

1 +
W[q&„y2]= —f dr f ds Zs '(r —s) +—f d~f ds G(r —s) +

o o 2e 2e 2 o o 2e 2e

(t)= f exp( itpt), —G(t)= f Re coth exp( itpt) . —dco 1 dco CO CO

2n Z (cp)
'

2m Zs(tp) 2T

(5)

Here we set t =1, introduce y+ =(y, +y2)/2, y =y, —
y2 and an implied analogous definition for any other "mixed"

variable here and below. The term Sp[q&] [Eq. (3)] represents the contribution from a Josephson junction that interacts
with a current source I„. Due to the presence of an external circuit, the junction charge changes continuously and thus
the phase q& has to be treated as an extended variable. ' This variable is linked to the voltage V(t) across the junction
by the usual relation jp=2eV(t), C and EJ are, respectively, the capacitance and the Josephson coupling energy of the
junction. The nonlocal terms W [Eq. (4)] and W [Eq. (5)] represent contributions, respectively, from single-electron tun-
neling across the junction and continuous charge flow in the external circuit. Both these terms come from integration
over the electron degrees of freedom either localized in the vicinity of a junction (in which case, the term
W[cosq&, /2, cos&pz/2]+ W[siny, /2, sinq&2/2] follows) or belonging to the external leads (yielding the term W[q&&, qr2] ),
both describe dissipation and noise (shot noise for W and Gaussian noise for W). For a normal junction, the quantity
R, is equal to the normal-state tunneling resistance. For a superconducting junction at frequencies well below the su-

perconducting gap and at low temperature, R, coincides with the junction subgap resistance.
To decouple the phase variables y& and y2 on forward and backward time contours, we introduce additional path in-

tegrals over new variables, q, U, and tp and rewrite (2) in the form
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J ( t, yf, y; ) =fdqf dq; dvf dv; dwf dw; fD q Dv Dw D qp exp(i A [y,q, v, w] ),
A [y,q, v, w]=S[y„q&,v„w, ]—S[y2, q2, u2, w2]+ V„q (r)dr+ W~[qi qz]+R, IV[u„v2]+R, W[w„w2],

0

W [qi, q2]= f dr f ds[ —
q (r)2, (r s)—q (s)+ —

q (r)Gq(r s)—q (s)],

2,(t)= fZ, (co)exp( ic—ot), 6 (t)= f cucoth Re[Z, (co)]exp( ice—t)dco CO dco

2m
' 2T 277

'

'2

(6)

(8)

S[y,q, u, w]= f jp

0 2 2e
V W+EJcosy+ y+ —cos +—sin — dc,

2e e 2 e 2

where we define V„(t)=f 2, (t s)I„—(s)ds, set

q+(0)=q (t)=0, q+(t)=qf, and q (0)=q;, and adopt
analogous boundary conditions for the variables v and w.
Then evaluation of the path integrals over the phase vari-
ables can be fulfilled separately for y& and qz. Further-
more, bearing in mind a representation for the kernel of
the evolution operator,

Dqr exp(iS[y, q, v, w])

I

junction, provided that we can neglect both Zener tunnel-
ing and thermal activation to higher zones and confine
our description to the lowest Brillouin zone. In this case,
we can integrate out the q variables and reduce the prob-
lem to that of the quantum dynamics of charge variables

q, u, and w. This analysis is presented in the Appendix.

III. NORMAL JUNCTION: QUANTUM
LANGEVIN EQUATION FOR THE PHASE

exp —i q, o, w dv q;, 9
0

we can reduce each of these integrations to a quantum-
mechanical problem with the Hamiltonian

8[q, v, w] =80——cos ~ ——sin
V w q(r)y
e 2 e 2 2e

(10)

where

1 8
EJcosp2C B(y/2e)

is the Hamiltonian of a quantum-mechanical particle q in
a 2~-periodic potential, —EJcosq. It leads to the usual
picture of Bloch states g (y) =u (y)exp(iqy/2n. ),
u~(y+2m. )=u (y), and 2e-periodic bands. The terms
—(u/e )cos(p/2) and —(w/e )sin(p/2) represent the
contribution to the potential energy from the SET pro-
cess, where v and w are stochastic collective variables
describing this process (the corresponding correlation
functions will be defined below). These terms are 4m

periodic in y and thus the corresponding Brillouin zones
are e periodic. The last term, —qy/2e, describes the in-
teraction of the phase y with a current q in the external
circuit. It violates the translational in variance
p~y+2m of the Hamiltonian (11).

Note that Eqs. (6)—(11) describe both configurations of
Figs. 1(a) and 2(b). The variable q describing the current
across the external impedance Zs(co) of Fig. 1(a) is linked
to the analogous variable q

' for the configuration of Fig.
1(b) by an obvious relation q=I„+q '. Below, we shall
switch freely our analysis between these two
configurations.

Reformulation of our problem in terms of the
Schrodinger equation with the Hamiltonian (10) and (11)
is particularly useful in the case of a superconducting

To describe the quantum dynamics of a normal tunnel
junction it is convenient for us to start from Eqs. (6)—(8),
where we set EJ=0. Provided that the voltage,
V=(tu/2e, across the junction is large enough, the phase
dynamics is nearly classical. In this case, we can evaluate
the path integral over y within the classical approxima-
tion. Proceeding in much the same way as in Ref. 23, we
assume fluctuations of y =y& —

y2 to be small. Then we
g«(q'= q)—
5A q). . . g)= —C +q —

U sin +w cos
5p 2e 2 2

=0. (12)

This equation regulates the balance of currents in our cir-
cuit. Integrals over the charge variables are Gaussian
and can be handled without problem. As a result, we ob-
tain

5A dco qH co)
exp( icut) ituZ—,(m)q(co)+iso

$q 2m 2e

=gq(t), (13a)

5A = —R, U+ ' sin
2e 2

=g„(t), (13b)

5A
Rf w — cos

5w 2e 2
=g (t), (13c)

(14b)

where g„g, and g are Gaussian stochastic variables,
with

(g'„(ti)g„(t2))=(g (ti)g (t, ))=R,G(t, t, ), (14a—)

(g, (ti)g, (t, ))

dco CO
cocoth Re[Z, (co)]exp[ ice(ti t2—)] . —
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Combining (12) and (13), we arrive at the quasiclassical-
Langevin equation for the phase

C ~ + ' ~ + 2 -'(t —r) ~"d-
2e R, 2e ' 2e Z, (0)

( (s(r ) )gs(t2 ) )

g„(r)
sin

t

g (r)+ cos ~ +g(t),
R, 2

~

~

d co co CO
coth Re exp[ i'—(t, t2—)] .2' 2T Zz co

The first two terms in the right-hand side of (15) describe
the shot noise of a tunnel junction (see also Ref. 24),
while the last term describes the Gaussian noise of an
external circuit. Averaging Eq. (15), over all possible
realizations of g„(t), g (t), and g, (t) we arrive at the
current-voltage characteristic

for all values t ~2m/eV, R =~/2e =6.5 kQ. Combin-
ing Eq. (16) with inequality (17), one can easily derive the
I-V characteristic of a normal tunnel junction shunted by
an arbitrary external impedance Z, (co),

VI=
R, f E(t)[mT/sinh(irTt)] sin(eVt)dt,

mR- ot

(18)

where

K(t) =i exp(

idiot

—)
Z (co) . dc'
CO+l0 2K

(19)

Calculating the second derivative d I/dV at T=0 we
can rewrite the result (18) and (19) in a particularly sim-
ple form

d2I e2
z

= Re[Z(eV)] . (20)
dV2 ~R) V

In the limit of large voltages

I= [ V—([g„sin(y/2)+g cos(y/2)]) ],1

I'

(16) Re Z m «R
eV CO

where I and V are, respectively, the current and the volt-
age across the junction.

The average in (16) can be easily calculated, provided
that we can treat the noise terms perturbatively. This
can be done if the phase diffusion is slow enough, i.e., if
the average deviation of the phase from its deterministic
value for the period of order 5t -(eV) ' is much smaller
than 1. Accordingly, the total impedance Z (c0) given by

1 1 . 1—imC+
Z(co) R, Zs(co)

should obey the condition

we obtain the following asymptotic form of the I-V curve

I= V

R,
P fZ(co)

t 2m

1 eV—
R, 2C ff

(21)

where we denote C,s=C+lim „[i/coZ, (co)]. Equa-
tion (21) shows that for any R, and Z, (co) [provided that
1/Z, (co) ~ co", v & 1] there is a universal offset (Coulomb
gap) D, V=e/2C, tr on the I Vcurve for -large V. This re-
sult can be used for a reliable experimental estimation of
the effective capacitance C,ff.

Let us briefly discuss several special choices for the
external impedance Z, (co). For a purely inductive im-

pedance Z, (co)= icoL at—T=O and R, C& V'LC/2, we

get, from (21),

I= V

R,
e

m'Rr Cy

y+eV eV+y y —eV eV —
y x (eV —y) +x

arctan + arctan +—ln
2 x 2 (eV+y) +x

(22)

where we define x =1/2R, C, y =Qcoi —x . Criterion
(17) for result (22) reads E, «co, . In the limit R, ))R,
Eq. (22) reduces to IR, = V ea/2C, w—here a=eV/y for
0 & e V &y and v = 1 for e V )y (cf., Ref. 14)]. The physi-
cal reason for the sharp crossover at eV=y is transpar-
ent: For e V &y, an environmental mode co& cannot be ex-
cited by a tunneling electron and therefore only elastic
SET takes place, while for e V )y, this electron can create
a quantum co, and SET process becomes inelastic. For
smaller values of R, ~R, this crossover is smoothened
(see Fig. 2) because of intensive virtual electron tunneling
across the junction.

For a purely Ohmic impedance, Z, (co ) =R„we get,
from (18) and (19),

K(t) =Ra(1 —exp( —t/RDC)), 1/Ra=1/R, +1/R, .

After a proper translation between current and voltage
source con6gurations, this result practically coincides
with that derived by Odintsov' within the framework of
a different technique. However, in some cases the criteria
for (18) and (23) differ from those obtained in Ref. 12. To
derive these conditions, one has to combine inequality
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eIRt/E, :

2.00—

1.50—

troyed by quantum fluctuations of the charge and the
junction effective resistance is very high in this regime.
For a, &&1, there is an additional parameter region,
6, ~ eV &&6,/a„ in which the system shows SET oscil-
lations. The corresponding part of the I-V curve has
been derived in Ref. 18. For higher voltages,
5, /a, eV E„ the renormalization-group analysis of
Ref. 18 yields, with logarithmic accuracy,

1.00— I= 1+V

2a„
1 —4ao eV

ln
C

q
R'" R+R, (26)

0.50—

0.00 s

0.00 1.00 2.00 Y/E

The analysis presented here clearly illustrates the quali-
tatively different roles of Ohmic and tunneling conduc-
tances in our problem. Indeed, in the limit a, »1 quan-
tum fluctuations of y are strongly suppressed and the I-V
curve is described by the quasiclassical result (24) for

e V »(a, &+a, )E,exp[ —2(a, &+a, ) ]
FIG. 2. The I-V curves for a normal tunnel junction coupled

to an inductive external impedance Z, (co)= —icuL. The curves
correspond to a, = 1.3 (a), a, =0.5 (b), and a, =0.1 (c).

(17) with the criterion for the quasiclassical-Langevin-
equation approach developed here. We analyze the latter
condition, making use of the results of Ref. 18. Let us
consider the case T =0 in which (23) reduces to'

I= 1—V 1 1
ln 1+

R, 4(a, +a„) e VROC

2E,
arctan(eVRoC) ',

~eV
(24)

where we have defined a, =Rv/R, and a, &

=n a, /4=R /Rv, For a. , i&1, both criteria coincide
and yield eV»E, =e /2C for a, & 1 and
eV»a, E,exp( —2a, ) for a, »1. For lower voltages,
the I-V curve deviates from (24) and (at least for u, & 1)
shows the Coulomb-blockade feature (see Ref. 14 to re-
cover the complete I-V curve in the limit a,

&
«1). For

a, »1, the criterion for the Langevin-equation approach
is more stringent than that defined by (17). By corre-
sponding nonperturbative analysis that has been made in
Ref. 18, there is a metal-insulator phase transition in our
system that takes place at a, =a„=1/[4 —I/a, &)]. For
a, &a„=1/4 and small voltages, the junction behaves
like an Ohmic resistance, which (in the main approxima-
tion in 1/a, i ) is equal to R, :

I= V/R, .

In this regime, Coulomb blockade is completely des-
troyed by charge fluctuations in the Ohmic shunt. Equa-
tion (25) holds for V satisfying

and by Eq. (25) for smaller values of V. On the other
hand, for a, &1 the quasiclassical approach (15) is ade-

quate only for large voltages eV&E„however large tt, i

may be. For eV &&E„amore sophisticated technique'
is needed to describe nontrivial effects of quantum fluc-
tuations of the phase.

IV. SUPERCONDUCTING JUNCTION:
THE QUANTUM DYNAMICS OF THE CHARGE

In the preceding section we analyzed the quantum dy-
namics of a normal tunnel junction within the quasiclassi-
cal approximation for the phase and derived the corre-
sponding Langevin equation for y. In the case of a super-
conducting junction, we are mostly interested in the re-
gime of strong quantum fluctuations of y. Therefore we
make use of a difFerent approximation and consider the
quantum dynamics of the charge restricted to the lowest
Brillouin zone. Provided that we neglect both Zener tun-
neling and thermal activation to higher zones, it becomes
possible to integrate out the phase variable and reformu-
late the problem in terms of charges (see Appendix for
details).

A. Quantum Laugevin equation for the charge,
I-V curves and linewidth of Bloch oscillations

Let us first neglect SET effects and set a, =0. Then the
y-dependent part of the problem reduces to that of a
quantum-mechanical particle g in a tilted 2m-periodic po-
tential —EJcosy —jq/2e. The solution of the corre-
sponding Schrodinger equation with the Hamiltonian (10)
and (11) with v =w =0 becomes trivial and we get (see
also the Appendix)

c, (t)=exp —i f Eo(q(~)}d~, cz(t)=0 .

eV& (a„+a,)E,exp[ —2(a„+a, )]

while result (24) is valid for larger values of V. For
a, & a„ the junction behavior is entirely different. As has
been shown in Ref. 18 for eV&b, , —a~tE, exp( —2a, &),

Coulomb blockade takes place. It is only partially des-

Here Eo(q) is the ground-state energy of the Hamiltonian
(11) and c, z are the amplitudes of the Bloch states
P~"(q&)=g~(tp), g~ '(tp)=P~+, (p), gz(p)=exp(ikq&/
2e)uk(y), uk(y)=uk(y+2m), and p(t)=k+q(t) —q(0).
Then we immediately arrive at a simplified version of the
equation for the voltage
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dEO
&V(t))= f dq f(q, t),

dq

f (q t}=f dq, ] dq;2po(q;]. q, 2} Dq] Dq2 exp(i~[q] q21)
qi l /&2

~[q],q2]= f [ —E(q, )+E(q2)+V q ]dr+ f deaf ds[ —
q (r)2', (r s)—q (s)+ ,'iq —(r)G(r s—)q (s)].

(27)

(28)

(29)

Note that Eq. (29) again recovers the duality between the charge and the phase representations of the effective ac-
tion. ' This property of our problem becomes particularly clear if we set Z, (co)=R, i c—oL

To proceed further we shall treat quantum fluctuations of the charge q within the quasiclassical approximation.
Again after a slight generalization of the analysis we get

dEO COf 2, (t r)q—(~)dr+ = V„+g(t), & ~g( co}~')= ce[Z, ( co)]c oth
(I] dq 2T

(30)

This is a quantum Langevin equation for the charge [not the phase —cf., Eq. (15)] variable. In a special case
Z, (co)=R, i coL—Eq. (3) reads'

dEO
Lq+R, q+ = V„+g(t) .

dq
(30a)

In this case the r Vcurves w-ere analyzed in Refs. 20 (for L =0) and 17 (for L+0). Here we derive the current-voltage
characteristic directly from Eq. (30). For V„(V, = (dEO ldq), „Coulomb blockade of tunneling takes place and

r=&q) =0, v= v„. (31}

For V„)V„ the charge q moves in a tilted periodic potential Eo(q) —V„(q) and the junction voltage oscillates in time
(Bloch-oscillation regime). In the limit V„))V, and/or T ))eV„one can treat the nonlinear term dEoldq perturba-
tively. In doing so, we substitute the solution of Eq. (30)

2 dEO
q(t) =qo+ t+2 f [k, (t r) k, (——r)] —g(r)—Z(0) n2 —~ ' '

dq

k, (t}=in. exp( icot) dco—

Z, (co)(co+i0) 2n

into the expression for the I-V curve

V„ 1 dEO

Z, (0) Z, (0) dq

and expand it in powers of dEO/dq. Making use of the equation

exp 2( f [k(( —x) —k,,(e—xl]t(x)dx
)

=exp[ —e f, (( —e)],

(32)

(33)

where
2

f, (t) = — f Re coth
e 2n' Z~ co

1 cos(cot )—
(34)

after straightforward algebraic manipulations, we get

V
r = — g f exp[ —m ~f, (t}]k,(t)sin t dt

Z(0) Z(0), e o
' ' eZ(0}

(35a)

for a voltage source configuration [Fig. 1(a)] and

&m Qm nI„m
V= g f exp[ —m f, (t)]k, (t)sin

m=& e

the Founer coe%cients:

Eo(q) = g a cos
mm

e

(35b)

for a current source configuration [Fig. 1(b)]. Here a are
In the limit of a large external impedance and low tem-
perature
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where the sum g' is taken over all k%0 and
(36)

mI„
f,(t)«1, 1/t)cob=

e
g(t)=

2 f
deaf

ds(5q(~)5q(s)) .
2e

Here So(co} is the low-frequency part of S„(co)and Sk(co)
represents the contribution from the kth harmonics of
Bloch oscillations. For large cob )&eV„we can drop the
potential energy in (30) and, after straightforward calcu-
lation, we get

((5. (z)
iZ, (co) i'(37a)

or roughly ReZ, ( co & cob ) &)R, T« e V„Eq. (35b} yields

~m a 1
(37)

2e'~b Z, (m cob)
'

with further simplifications for both small and large
values of EJ

2e ~ 1 R
7rC cob =i m Zg(mcob)

Ez «E„Eo(q)=min q 2e—n )

n

Obviously, Eq. (37) can be also used to describe the inter-
mediate case EJ-E„which is of particular experimental
interest. ' According to (37) the main contribution to
the I- V curve comes from an external impedance Z, (co }at
a frequency equal to co=cob (and to several higher har-
monics of cob in the limit EJ «E, }. This conclusion
turns out to be important for a quantitative analysis of
the experimental data (see below).

Now let us analyze the effect of quantum noise g(t) and
calculate the spectral function

S„(co)=f exp(icot)[(V(to+t)V(to}) —(V)] dt, (38}

where the average over realizations of g(t} and the time
average are denoted, respectively, by angular brackets
and an overbar. We then denote the solution of Eq. (30)
as q(t) =qo(t)+5q(t), where qo(t) is the solution of (30)
with g(t)=0, which obeys the condition
qo(t +2m /cob ) =qo(t). Proceeding perturbatively in g(t)
we obtain

V(t)=( V) —Z, (0) g bkexp[ ik[cobt+5q(t)—]], (39)
k

where bk are the Fourier coefficients for qo(t). Then sub-
stituting (39) into (38) we find

S„(co)=SO(co)+g' ~bkZ, (0)
~

Sk(co kcob ), —
k

Sk(co)= f exp( kg(t)+icot)dt, — (40)

V= Re, Ez »E„EO(q)=icos
2e cob Z, (cob) e

(37b)

Combining the last two equations, we find that g (t) coin-
cides with f, (t) Eq. (34): g(t)=f, (t).

It is reasonable to define the linewidth of Bloch oscilla-
tions I by the equation f,(1/I ) =1. Making use of Eq.
(34) for Z, (co)=R, in the limit cob « co, we obtain

r

c . nT
2a, ln sinh

KT
(41)

I =co,exp
1 m ico/

C

(42)

i.e., in accordance with Ref. 17, the linewidth of Bloch
oscillations remains finite even at T =0. Note, however,
that the expression for I Eq. (42), does not coincide with
that for 5cob /cob evaluated in Ref. 17: 5cob /cob
~ a, ln(co, /cob ). This is a consequence of a "non-
Lorentzian" form of Si(co) at T~O.

As we already pointed out, the analysis presented here
is adequate, provided that both Zener tunneling and
thermal activation to higher Brillouin zones can be
neglected. For EJ «E, and Z, (co}=R„the correspond-
ing limitations are ' '

where co, is the effective cutoff frequency. For EJ &&E,
we put co, =coo=+8EJE,. Further specification of the
problem is needed to define co, in the opposite limit

E~&&E,. For example, for Z, (co)=R, icoL we —have
co, -R, /L.

For a high-temperature limit T» T the function S,(co)
is of a Lorentz form S, (co)=2I /(co~+I ~), and we repro-
duce the well-known result ' I =2ma, T. In the oppo-
site limit T &(I we get

e(2a E T/7f) T &)a,E,

while for EJ )&E„we have max(I/e, T) «coo. Note that the above expression for the current I,'„(Ref. 26), at which
the crossover between charge dynamics in the lowest Brillouin zone and its dissipative motion in higher zones takes
place, difFers significantly from the analogous expression I„-e+a,Ez derived in Ref. 27 for the case of quasiparticle
tunneling (see Ref. 26 for details}. This fact might be important for the analysis of experimental data. ' Another valid-
ity condition for our analysis I «cob yields 2a, « 1/ln(co, /cob ) and T «cob/a, . Similar conditions can be formulated
for a non-Ohmic case.
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B. Bloch oscillations in the small bandwidth limit: Charge dynamics and correlation functions

In the limit of large EJ ))E„our analysis allows a complete description of the charge dynamics for arbitrary values
of a, and external impedance Z, (co). Making use of the equation

{Pq ~
[Ucos(y/2)+ wsin(y/2)]

~ Pq+, & =i

one can drop the variable w from Eqs. (A10) and rewrite these equations in the form

ic, =ED(q (t))c, —(v(t)/e )c, ,

ic2 = —(U(t)/e )c, +Eo(q (t) )c2,

(43)

(44)

exp{ f(t—))A (t)+ 8 f exp( —f(t))sin(k(r))sin(tobe)dr
e o

(V(t)&=—
e

+ f exp[ —f, (r) —2f, (t) —2f, (t —r)+f, (r)]sin[k, (r) —k, (r)]C(2t r)dq. ,
—

{45)

where we put Eo(q) =6 cos(qrq/e ). Substituting the solution of (44) into the expression for the expectation value of the
voltage operator (Al 1) (see Appendix) and expanding in powers of 5, after straightforward algebraic manipulations we

get, for t ))coo
' and not very small cob,

f, (t)= f coth
e R,

1 cos(—tot) de 2i f exp( itot) —de
k, (t)=

co 277 e g co+ lO 2'
where integration is taken over the frequencies within the interval ~co~ %coo and we define f(t)=f, (t)+f, (t},
k(t)=k, (t)+k, (t). As is shown in the Appendix, the quantities A (t) and C(t) depend on the initial density matrix.
For a particular case, p(0, k„k2)=5[(k

~ + k2)/2], the Eqs. (A12) and (A14) yield A (t)=C (t) =sin(tobt ). The parame-
ter 8 coincides with the trace of the density matrix (A13), i.e., here we have 8 = 1. Nevertheless, we keep this parame-
ter for further calculation of the voltage-voltage correlation function (see below).

Equations (45) describe the voltage dynamics for an arbitrary external impedance Z, (co). Calculating the time aver-

age of (45) ( V &, we arrive at the current-voltage characteristic

Q2
{V(I„)&

= f exp( f(t) )sin(k—(t})sin(tobt )dt,
e 0

(46)

which coincides with our previous result (37) in the limit (36). For a special case of an Ohmic shunt Z, (co) =R, at T =0
and large t, Eq. (45) yields

2a +2a —
1s

b2+2
(V(t)&=

2eP2a, +2a, ) .+ a~
C

2ar 2as
(toot) ' 'sin(tobt)+ sin(qra, +qta, )

e b

sin(tob r )f qrg2 sin(qra, na, ) ~—, sin(2tobt tobr )

2a, +2a, e 2a, +2a, p, —, a,
coo'f COp

'I', t —~j
(47)

The integrals in (47) can be expressed in terms of hyper-
geometric functions. Here we drop this expression for
simplicity. The result (47) shows that for nonzero a„os-
cillating terms decay in time and for large t the voltage
{V(t) & tends to the constant value {V&. For a, ~0,
however, terms that oscillate with a frequency co=2cob
survive even at t ~ ~. For a, =0 and T =0 we get

2a —1
r2+2

& V(t}&=
2e I (2a, )

C

x [1+d,cos(2tob t )+d2sin(2tob t )], (48)

where the constants d, and d2 depend on the initial state.
The existence of coherent voltage oscillations (48) for
a, =O is a result of a superposition of SET and CPT
effects: SET leads to an effective e-periodic Brillouin
zone (and therefore to the frequency of oscillations 2cob

instead of cob), while the current across the junction is
transferred by CPT (i.e., by the mechanism that does not
destroy voltage coherence) and thus voltage oscillations
(48) do not decay in time.

Our analysis also allows us to calculate the voltage-
voltage correlation function S,(t), the definition of which
is now slightly different from (38). As before, in this sec-
tion one should bear in mind that now ( V & is the expec-
tation value of the voltage operator rather than the aver-

age over realizations of the stochastic variable [as in Eq.
(38)]. Besides to exclude the dependence of S,(t) on the
initial state, one has to take the limit tp~ ao. Therefore,
we define

S„(t)=(Re(V(t, +t) V(t, ) &
—( V&2)~,

( V(t, +t) V(t, ) & =tr( f'(t)Vp(t, )) .
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S„(t)=52S2(t)+ b4S4(t) . (49)

We can evaluate the correlation function
(V(to+t)V(to)) by means of Eq. (All) for ( V(t)) if we
substitute the kernel of the operator P'p(to) instead of the
initial density matrix. Expanding in powers of 6, we get

2
2a —1

CObm 1

2 2e I (2a, )
C

to result (51). Dropping these terms, we get, for a, =0
and T~O,

After a simple calculation, we obtain a general expression
for the leading term in (49),

X [5(a) 2—cob )+5(co+2tob )] . (52)

'2

S2(t) =—— exp( —f(t) )cos(k, (t) )cos(tobt ) .1 m
(50)

For Ohmic dissipation Z, ( to)=R, and t »1/too Eq. (50)
yields

2 2a, +2a,
7r 2' TS2(t}= cos(na, )
2e o

Xexp[ 2m(a—, +a, )Tt]cos(tobt), t »1/T,
(soa)

S2(t)=
2 exp[ —2y(a, +a, )]

2e

cos(cob t )
X cos(ma,),t « 1/T,

(coot )

(50b)

where y=0. 577 is the Euler constant. Note that for
a, «1 and a, =0, result (50a) coincides with that ob-
tained in Ref. 28 perturbatively in a, . On the other hand,
result (50b} demonstrates that perturbation theory of Ref.
28 fails in the low-temperature limit and a power-law
(rather than exponential) decay of the correlation func-
tion takes place at T =0. For a, +a, & 1/2, the Fourier
transform of S2 reads

t

'Ir Ir
S2(to) =—

4 e
1

I (2a, +2a, )cos(ma, )

!
2(a, +, )

—(

X
CO CO

2(a +a, )

c

!2(a +u, )—(

+ 2(a +a, )

c

(51)

while, for a, +a, & 1/2, peaks at co=+cob disappear and
S2(co) monotonically decreases with increasing co. Note
that, in the limit a, =0, the power-law dependence

2a, —1

S,(to) ~!co+cob! ' has been also derived in Ref. 15 on
the basis of duality arguments. For a, AO, these argu-
ments are insuScient to obtain result (51).

It is also interesting to analyze the next-order term,
S4(t), in (49). The general expression for S4(t} is quite
complicated and we will not specify it here. In the case
of Ohmic external impedance a,+0 the function S4(t}
decays in time, showing damped oscillations with fre-
quency 2cob. In the limit a, =0, the Fourier transform of
S4(t) contains narrow peaks at frequencies +2cob plus
uninteresting regular terms that give a small correction

In the presence of an external ac drive

I„(t)=I„+Iocos(Qt ),
V„(t)= Jk, (t r)I„(r)—dr

=Z, (0)I„+!Z, (Q)!Iocos[Qt+argZ, (Q }],
resonances between Bloch oscillations and the external ac
signal occur, leading to peculiarities (voltage steps) on the
I-V curves in the vicinity of the points ncob=kQ. ' '

This effect is a subject of a substantial experimental ac-
tivity because it might serve as a convincing demonstra-
tion of the existence of Bloch oscillations (see, e.g., Refs.
8 and 9)].

Proceeding naively one can treat the effect of voltage
steps within the framework of a perturbation theory. For
example, for EJ »E, one can make use of the expression
for ( V(t) ) derived perturbatively in 6 and get

mIo
( V(I„(t))) = g Jk V I„—

eQ
(53)

where Jk(x) are the Bessel functions and ( V(I„)) was
defined in (46). For a, =0, Z, ( )t=oR„and large T, this
result was previously discussed by Odintsov. Below we
shall see that the corresponding validity condition for
(53) reads

T »b„-b, (E/too) ' *, b, =b,J k(BIO/eQ) . .

For lower temperatures T& E„expression (53) describes
the I-V curve not very close to the resonant points
!tob —kQ! & a, b,„. In the vicinity of these points, pertur-
bation theory fails and one should use a different tech-
nique to recover the whole I-V curve. For example, in
the limit of a high external impedance, a quasiclassical-
Langevin equation for the quasicharge (30) can be applied
to this problem in the same spirit as it has been done in
Ref. 30 for the phase variable of "classical" Josephson
junctions. Here we develop another technique that is not
based on a quasiclassical approximation for q (t).

Let us take a, =O for simplicity. It is convenient to
make a shift of the variable q,

me Io
q ~q+ Qt+ sin(Qt )

mn 0

In complete agreement with Eq. (48), result (52) demon-
strates that, in the absence of Ohmic dissipation and at
T=0, phase correlation of Bloch oscillations with a fre-

quency ~=2cob survives even as t ~ ~ and when the cor-
responding linewidth is equal to zero.

C. Voltage steps
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in Eqs. (27)—(29). Then making use of the identity

cos(x+zsinp)= g J ~(z)cos{x—pp),

we rewrite the ground-state energy Eo in the form
e

ke Io
Eo q+ Qt + sin(Qt )

m.n 0

coefBcients a still give a nonvanishing contribution. In
the limit EJ &&E, it is m,„=n =1. In the opposite limit
Ez(&E, we have a ~1/I and thus again essential
values of m are of order one. Provided the condition (55)
is fulfilled the terms with p/m&k/n in the expression
for Eo Eq. (54) oscillate with frequencies that exceed
0, /m, „. Therefore, in the main approximation, these
terms can be neglected and, we get

00 00
mma J m cos qeQ e

ke Io .f Eo q+ Qr+ sin(Qr} dr= f E,tt(q)dr
o ~n 0 0

(56)

+ —p Qt
km

n
00 m'Io

E", s(q)= g a „J z mn cos
eQ

%Itin
q (57)

(54)

Let us now fix the numbers n and k and assume the new
(shifted) variable q to be slow enough to describe the
problem within the adiabatic approximation. The corre-
sponding condition reads q/e «Q/m, „or, equivalent-

ly,

Substituting (56) and (57) into (29) and splitting dEoldq
as

dEOIdq =dE",ttldq+(dEoldq dE",ttl—dq ),
we present the expectation value ( V(t) ) in the vicinity of
the points n cob =k Q as a sum of two terms

~a)i, (k!—n)Q~ &&Q/m (55) ( V(I, (t)) ) = Vk„(t)+ V'(t), {58)

m, „ is the maximal number for which the Fourier

dEkn
Vk„(t)= f dq

' f,tt(q, t),

f,tt(q, t)= f dq, ,dq, ~o(q»q;z) D qD qe xp(iS, s[q, , q, ]),
e

S,s[q„q2]= E",tt(q, )+E",~(q—2)+Z, (0) I„— Q q d'r
0 mn

(59)

+ f 'dr f 'ds —
q (r)2, (r s)q +(s)+——'q (r)G (r—s)q (s)

0 0
S q

(60)

and V'(t) is the contribution of the term ((dEoldq dE,ttldq) ). Af—ter a direct comparison between Eqs. (27)—(29)
and Eqs. (58)—(60), we can conclude that Vk„(t) coincides with the expectation value of the voltage operator for a fixed
external bias V„=Z,(0)(I„keQ/~—n ) and the ground-state energy Ectt(q}. Therefore, the tiine average Vk„represents
the corresponding dc I-V curve with the origin shifted to the point I„=keQ/mn Making u.se of the results (31) and
(37) in the limit (36) we find

V„„=Z,(0)(I„keQ/n—n }, ~I„keQ/nn~ &—V,""/Z,.(0),
ri. m n a~„J~k(nIomn leQ) 1

Vi. = X Re, ~I„keQIn n
~

&&—V,""/Z, (0),
2e3(nabob —kQ) Z, (mn cob —kme Q )

(61a)

(61b)

with further simplifications as in Eqs. (37a) and 37(b).
Here we denote V,""=(dE",ttldq), „. For EJ »E, one
can also go beyond the limit T «eV,"", ReZ, »r (36).
In this case we have n =1 and Vki is given by Eq. (61a)
for

for

e

~Io
Vk~=Jk

eQ
V I„—keQ

)
(61c)

keQlnn
~

&b,, /Z, (0), T «b, „

and by the equation

max(Z, (0)(I„keQ/~n ~,
—T) &&6„.

The term V' describe the tails of the steps n'cob =k'0,
k'/n'Akn Provided condit. ion (55) is fulfilled, this term
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is small and can be neglected. Within this accuracy one
can describe the whole I-V curve as a linear combination
of independent contributions from all steps and get

(62}
all

steps

where ( V(I„)) is the I Vcu-rve for ID=0. Equations (61)
allow to estimate the effective "size" of each step 5Vk„.
At T~0 we estimate 5V„„-2V,

""and 5Ik„-5V„„/Z,(0)
and get 5Vk& —6„ for EJ ))E, and

5Vk„(e-/Cn )J k(mIon leQ) for EJ «E, .

We see that in both cases EJ »E, and EJ «E, the step
amplitudes are proportional to J k(mIon/eQ) reaching
their maximum at Io eQ-/n At. T&eV,"" the steps can
cross the axis V =0 and thus zero-voltage states can be
realized in the vicinity of the points

nabob

=k Q.
It is also possible to include the case a, PO into con-

sideration. For finite Z, (co}, no new effects arise. For
I/Z, (co)~0 and a, AO, an additional set of infinitely

sharp horizontal voltage spikes appear at frequencies
2cob=kQ (see, e.g. , Ref. 3). These spikes correspond to
resonances between the external radiation and coherent
voltage oscillations (48).

V. DISCUSSION AND CONCLUSIONS

1 e

R, 2Ce~
C,s=C+ lim [i/coZ, (co)] .

In the case of superconducting junctions, we have
mostly concentrated on the Bloch-oscillation regime. We
have evaluated the junction current-voltage characteristic
for an arbitrary Z, (co). It reads

Making use of real-time path-integral technique, we

have developed a detailed analysis of quantum dynamics
of both phase and charge variables of an ultrasmall tun-

nel junction, which interacts with an arbitrary external
impedance Z, (co}. For normal junctions, our analysis en-

ables us to go beyond the perturbation theory in a,
developed in Refs. 11, 13, and 14 and to study the effect
on the phase dynamics of both the junction shot noise
and Gaussian fluctuations of the charge in the external
circuit. Within the quasiclassical approximation for the
phase y, we calculate the junction current-voltage
characteristics for various types of external impedance
[see Eqs. (18)—(24)]. At low T, the offset on the I-V curve
is equal to the universal value AV=e/2C, e for any R,
and practically all reasonable Z, (co),

2e "
1

zRe, Ez «E, ; V= Re, Ez »E, .
1 1

nC cob =, m Z, (mcob)
'

2e cob Z, cob

These equations show that, for both EJ «E, and
EJ )&E„ the impedance at frequencies co —cob gives the
main contribution to the I-V curve, while substantially
higher frequencies (e.g., of order of the band gap 5-EJ
for Ez «E, and 5-coo for EJ »E, ) are unimportant in

the Bloch-oscillation regime I &max(I,'„,I,'„). We have
also presented a direct nonperturbative calculation for
the time-dependent excitation value of the voltage opera-
tor [Eqs. (45)—(48)] and voltage-voltage correlation func-
tions. This calculation shows that a simple perturbative
in a approach, which leads to an exponential decay of
correlation functions [Eq. (50a)] is applicable except for
the case T~0. At T =0, perturbation theory is
insu5cient to describe the long-time properties of the sys-
tem for nonzero a, and a, . For a,+0 and a, WO and at
T=0, the main term S2(t) in the expression for the
voltage-voltage correlation function shows damped oscil-
lations with the frequency co =co„(apower-law decay)

S2(t) ~ t cos(cobt },
where a=a, +a, for EJ &)E, and a=a, for EJ «E, .
This corresponds to an effective line width of order
I =cooexp( —1/2a). For a, =0, the next-order term,
S4(t), of the spectral function contains 5-shaped peaks
co=+2cob (52}, correspond to coherent voltage oscilla-
tions with I =0.

The expression for the expectation value of the voltage
operator ( V(t) ), derived here illustrates similar features.

I

It also provides information about the effect of voltage
steps on the I-V curve of an ac-driven junction. These
steps take place in the vicinity of the points nub =kQ.
Each of them repeats the I-V curve of a dc-biased junc-
tion with an effective Brillouin zone E,s(q) (54). The am-
plitudes of these steps are proportional to

5Vk, J k(~Ion /eQ)-
Note that here we describe the quantum dynamics of a

Josephson junction, provided that both Zener tunneling
and thermal activation to higher zones can be neglected.
For EJ & E„however, the process of Zener tunneling can
play an important role. ' As has been shown in Ref.
26, it restricts the regime of Bloch oscillations to currents

I &I,', -(a,EJ ) max[T' ~, (a,E, )'~ ]

and contributes to the expression for the linewidth I,
I =I „„„,„„,+(I/2e)exp( neEJ/8IE, ) . —

In the limit T~O, the last term in this expression dom-
inates in the interesting parameter region a, «Ez /E, .

Results (61) and (62) of our paper are of particular im-
portance in view of recent experimental observations of
peculiarities on the I-V curve in the vicinity of the points
cob =kQ. ' The authors of Refs. 8 and 9 estimated the
effective impedance of external leads as that of an RC
line: Z, (co) =R, for co « 1/R, C, and
Z, (co)-QR, /icoC, for co»1/R, C, . Making use of
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typical experimental values of the parameters R& C],
and I,„, ' we can conclude that, for I &I,'„ important
frequencies co-cob are smaller than 1/R, C, and thus the
effective constant a, should be estimated as
a, =Rq/R, =0.07 (but not a, =0.3 as in Ref. 8). This in
turn allows us to proceed with a comparison of theoreti-
cal predictions with experimental data. ' For two sam-
ples with V, = 1 peV and EJ ~ E„our estimation of the
amplitude 6 yields 5=3 peV and thus we have 6 & T.
Then we can use a high-temperature result,
5I=2eI /n =4ea, T, and find 5I=0.42 nA (Pb) and
5I =0.24 nA (Al). For both samples the measured value
5I (Refs. 8 and 9) is approximately twice as large as the
theoretical one. For the Pb sample with V, =9 peV and

EJ & E„we have T & e V, . Making use of the low-
temperature result (61a), we estimate the effective
"width" of the main step (n =k = 1} as
5I & 2V, /Z, (0)=0.19 nA. This value is in a good agree-
ment with the experimental result of 5I,„,=0.21 nA.
The value of I,'„(Ref. 26) for the samples with EJ &E,
also agrees with the results of measurements. ' Further
experimental investigations are needed to provide more
detailed verification of theoretical predictions. However,
even available experimental data ' clearly demonstrate
the existence of Bloch steps (61) and (62) on the I-V curve
of an ac-driven Josephson junction.

We believe that the whole scope of results derived here
as well as experimental findings ' leave no room for
doubts' in the validity of the general picture of Bloch os-
cillations given in Ref. 20 within the framework of a per-
turbation theory in a. Indeed in the limit T~0 (but not
for T»h as was suggested in Ref. 19) perturbation
theory does not work even for a «1. However, this fact
results only in a slower than exponential decay of correla-
tion functions at T=O and does not inAuence any of the
theoretical predictions. '

After this work had been completed, we became aware

f(t,„,) =2(a, +a, )ln si hn(n. Tt,„~, ) & 1

is fulfilled, where t,„~, is the experimental time. For typi-
cal values T-10—100 mK and t,„,—1 sec one can hard-
ly hope to achieve dissipation of order
a ~ 1/2m. Tt,„~,

—10 ' —10 " in any real experiment.
Thus for u, AO there is only one type of voltage steps (16)
and (62) with amplitudes proportional to
5V „kJok(nIon/eQ) at low T and 5Vk o- Ji, (nIo/eA)
at T&&b, and EJ)&E,.
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of the paper by Nazarov and Odintsov ' in which steps
(53) were interpreted as a result of resonant interaction
between external irradiation and incoherent tunneling of
the phase variable y. The authors ' considered this reso-
nant effect as an alternative mechanism for voltage steps.
On the contrary, we believe that this is simply an alterna-
tive language to describe the same phenomenon of Bloch
steps in the limit EJ &)E,. Indeed the interpretation of
Ref. 31 works only for EJ »E„while Eqs. (61) and (62)
are valid also for EJ ~E„ i.e., in the region where the
picture of incoherent tunneling in the phase space be-
comes inadequate. Neither do we share the opinion of
the authors ' about the existence of another type of steps,
which (according to Ref. 31) might be a result of phase
coherence at very small T and a, . We would like to em-
phasize in this context that, for I & V, /Z, (0), phase
coherence does not exist even at T =0 and for arbitrary
small a, . Horizontal voltage steps at ~b =kA could be
seen only if the condition

APPENDIX

Let us substitute the kernel J(t;ipf, ip; ) Eqs. (6)—(8) into (1}. Then, we get

p(t Ipif Ip2f ) fdqfdq; dv, dvf dw; dwf fDq Dv Dwp( t, qr, f, tp2f, q, v, w)exp(iS )

where

S=f V„q (r)dr+ Wq[qi, qz]+R, W[vi, v2]+R, W[wi, wz]
0

and p(t) is the kernel of the operator

(A 1)

(A2}

I w
p(t)= T exp i B[q,—, v, , w, ]dr p(0) ~ T exp i H[q—2, v2, w2]dr

0 0
(A3)

(A4)

The Hamiltonian 8[q, v, w] was defined in Eqs. (10) and (11). Similarly to Ref. 16, we shall describe the junction dy-

namics in the adiabatic limit, i.e, we assume that q, U, and m are "slow" variables and neglect both Zener tunneling and
thermal activation to higher zones. This allows to confine our consideration to the lowest Brillouin zone. The corre-
sponding eigenfunctions of the Hamiltonian 80 (Eq. 11) are gk(p)=exp(iky/2e)uk(y), uk(y)=uk(y+2m'), and
—e &k &e. The Hamiltonian 8[q, v, w] contains the 4m-periodic terms ( ve/)c so(y 2/) and (w/e)sin(y/2). Therefore,
the functions P~z"(y) =gk(y), gik '(y) =Pk+, (q ) with —e/2 & k & e/2 form the complete basis for our problem and the
initial density matrix can be written in the form

p(0 qi q2}=fp;, (0 ki k2}4',(qi, )A, (q2;)dkidk2 .
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Here and below it is convenient for us to extend the interval of integration from —e /2 & k & e/2 to —co & k & 00. Ac-
cordingly, we define the kernel p;. (as well as the kernel of any other operator) outside the interval —e /2 & k & e /2 as

p; (O, k), kz)=o "p, (O", k& =en, kz+em }o

where cr =(,0). The matrix p; also obeys the condition

f tr(p, , (k, k))dk=1 .

The density matrix of the final state is

p(tsqp»sqpzf )=fp(Osk&skz)f(tqk»y, f )f*(tskzsq)zf }dk,dkz s

where gk(t, q)) is the solution of the Schrodinger equation

d
i fk(—t;q)=P[q, v, w]gk(t;0'), fk(0, %')=pk((p) .

(A5)

(A6)

(A7)

(AS)

This solution can be written as

pk(t) =ci(t)QI, '(', )+cz(t)1i'I)~',),

qPqq )cs

where p (t)k+q(t) q(0)—and the amplitudes c, and cz satisfy the equations

ic, =Eo(p(t))c, —
g~ cos + + sin

v(t) w(t)

(A9)

(A 10)

ics ———
( , qqqccs + + s(c ~

qpq)c, +Ec(p(q)+e)cs,l}(t) w(t)

with the initial conditions c& (0)= 1, cz(0)=0. Here Eo(p) is the ground-state energy for the Hamiltonian 80 (11).
Making use of the expression for the voltage operator in the q-representation P'=dEc/dq and combining (Al), (A7),

and (A9) we get

dE()(q}
( V(t) ) =f dq o 1(t,q) +o z(t, q)

dEO(q +e)

dq

Uf p Wf
o, z(t, q)= f dk, dkzdv, dvfdw, dwf f Dq, f Dqz f Dv f Dv+ f Dw f Dw+ exp(iS[q, v, w])Y, z,
Y, =[c,(t;1)c;(t;2)p»(0;k»kz)+cz (t;1)c,(t;2)pzz(0;k, ,k, )],
Yz=[cz(t;1)cz (t;2)p&&(0;k»kz)+c f(t;I) c&( t 2) pzz(0; k» kz)] .

(A 1 1)

In the limit EJ »E, one can simplify Eqs. (A10) reducing them to (44). Expanding the solution of Eqs. (44) in powers
of b, and then substituting it into (Al 1) we arrive at the result (45) where the parameters 2 (t), B, and C(t) depend on
the initial density matrix:

A(t)= —. exp i wbt+ p Oq+ E(EE))q — IC(~) dq
1 . mq

21 b 2e
'

2e
e

n.qexp —i w t+b p 0 q
— E(ix)) q+ K(()0) dq

2e
'

we
(A12)

8 =
p&& O, q, q +p22 O, q, q dq,

C(t)= —. exp i wbt+
1 27Tq

21 b p+ O, q+ IC(00 ),q
— I(:(—oo ) dq-

e e

(A13)

27Tq
exp —i w t+b p+ 0 q

— Ip:(0() ) q+ —K((E—) ) dq
e e

(A14)

p+ =p»+pzzs p =p» —pzz. As it was already pointed out, one can also use the expressions (45) and (A12)—(A14) for
calculation of the voltage-voltage correlation function if one substitutes

p, , ~( 0'p(to)), ,
= — ( —1)'sin

e

n.q;
pii(to qi qz} .

e
(A15)
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