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Magnetic impurities in half-integer-spin Heisenberg antiferramagnetic chains
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We study the efFect of an isolated impurity on the low-energy properties of a half-odd-integer-
spin Heisenberg antiferromagnetic chain using both numerical and conformal field theory techniques.
The impurity corresponds to the substitution of a magnetic ion by a difFerent ion with the same or
different spin, or else to the coupling of a magnetic impurity to a single spin on the chain. Depending
on which kind of impurity is present, the low-energy behavior corresponds either to a "healing" of
the defect or else to a severing of the chain at the impurity location. In both cases there is a coupling-
dependent length scale over which magnetic screening takes place. Analogies with the Kondo effect
are elucidated.

I. INTRODUCTION

In this paper, we consider a large variety of types of
magnetic and nonmagnetic defects in a Heisenberg an-
tiferromagnetic chain. The simplest case corresponds to
changing the strength of a single link (see Fig. 1). A more
interesting case corresponds to changing the strengths
of two adjacent links, which remain equal to each other
(see Fig. 2). This could result from substituting another
s =

z ion for a chain ion. The latter case can be gen-
eralized to the substitution of an impurity with s ) z
(Fig. 3). Finally, we consider the coupling of a magnetic
impurity of arbitrary s to a single chain-spin (Fig. 4).
There are several motivations for this work.

Recently, an approach to the Kondo effect has been
developed, based on the separation of charge and spin
degrees of freedom in the one-dimensional (1D) electron
gas. (The Kondo effect is fundamentally one dimen-
sional, since it involves only the s-wave channel. ) The
one-iinpurity Kondo efFect only involves the spin degrees
of freedom of the electron gas; at low energies the charge
degrees of freedom are unaffected by the interaction. The
spin degrees of freedom of the one-dimensional electron
gas at low energies are identical to those of the half-
integer-spin Heisenberg antiferromagnet. Hence it is nat-
ural to look for a "stripped down" version of the Kondo
effect involving a magnetic impurity interacting with the

Heisenberg chain.
The effect of an isolated impurity has been studied

recentlys in integer spin an-tiferromagnetic chains, which
exhibit the Haldane gap, in the bulk excitation spectrum.
It was shown that an open s = 1 chain has efFective s =

z
degrees of freedom at each end, whose mutual coupling
vanishes exponentially with chain length. These excita-
tions are localized within a distance of the order of the
correlation length ( (about 7) from the ends of the chain.

A magnetic impurity iueakly coupled to a long chain of
length I )) ( can be described simply in terms of its
coupling to the effective s = 2i degree of freedom at the
chain end. The half-integer case is much difFerent since
there is no gap for bulk excitations and the correlation
length is infinite. The effect of a magnetic or nonmag-
netic impurity now propagates into the chain a distance
which is determined by the strength of the coupling and
diverges as the coupling goes to zero as in the Kondo
effect.

Some of these problems have been considered pre-
viously and independently in a recent discussion of
tunneling in one-dimensional quantum wires. 45 One-
dimensional spinless fermions are equivalent to the
zzz s =

&
quantum spin chain. The Heisenberg model

corresponds to a particular (repulsive) value of the inter-
action strength. A single altered link corresponds to the
generic tunneling problem. Two adjacent modi6ed links

FIG. 1. A quantum spin chain with one altered nearest-
neighbor link. We also modify the next-nearest-neighbor cou-
plings shown to preserve the ratio J2/ J = 0.24. See discussion
in Sec. III.

FIG. 2. A quantum spin chain with two altered nearest-

neighbor links. We also modify the next-nearest-neighbor

couplings shown to preserve the ratio Jq/J = 0.24. See dis-
cussion in Sec. III.
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FIG. 3. A quantum spin chain with an internal impu-
rity of size s. In this case the impurity has no next-nearest-
neighbor couplings.

correspond to resonant tunneling. Our results provide
numerical evidence for conjectures made in those papers.

Just as in the Kondo effect, the renormalization group
provides the appropriate language for describing these
systems. The scale and conformal invariance of the pure
chain at low energy is broken by the coupling to the im-
purity. This effective coupling may grow or shrink as we
lower the energy scale; eventually, at zero energy, the sys-
tem renormalizes to a stable fixed point. Recent progress
by Cardys in the renormalization-group theory of two-
dimensional critical systems with boundaries has been
used to study quantum impurities. i' Quantum impuri-
ties in spin chains provide a relatively simple illustration
of these techniques. In the simplest version of the Kondo
efFect, the stable fixed point is of the local Fermi-liquid
variety; i.e. , it is equivalent to a simple boundary condi-
tion on otherwise free fermions, corresponding to a z/2
phase shift, with the screened impurity removed from
the low-energy efFective Hamiltonian. In the spin-chain
problems considered here the stable fixed points also cor-
respond to simple boundary conditions on otherwise un-
perturbed chains. The two types of boundary conditions
that occur correspond to having no impurity, i.e., no
boundary, or else to cutting the chain at the impurity
site as would occur with the insertion of a nonmagnetic
impurity into the chain. Low-temperature local proper-
ties, such as the impurity susceptibility, are governed by
the leading irrelevant operator at the stable fixed point,
as in the Kondo effect. The dimensions of these opera-
tors are, in general, different than in the simplest version
of the Kondo effect, so the analogy does not hold in com-
plete detail.

We analyze these problems using two powerful tech-
niques: the renormalization group, and numerical finite-
size scaling. The first approach allows a complete de-
scription of the vicinity of either fixed point (no boundary
or severed chain). A complete description of all opera-
tors and their scaling dimensions is known at these fixed
points. This allows us to determine which types of impu-
rity interactions are relevant or irrelevant. It also permits
us to make educated guesses about the fiow between these
two fixed points, although the crossover regime is beyond
the control of these methods. The second technique is
based on calculating the energies of a few low-lying states

11. BOSONIZATION AND QUANTUM FIELD
THEORY PREDICTIONS

In this section we review how quantum field the-
ory methods are used to describe the low-temperature
physics of the Heisenberg spin-2 chain with periodic or
free boundary conditions. The Hamiltonian is

l—1

H = ) ~

- (8+S,.+, + 8, S++,) + J, S;8;+,
~

(2.1)

for the case of free boundary conditions. (We take J )
Q.) For periodic boundary conditions the tth and first
site are also coupled with the same coupling constants,
J and J,.

A. Bosonization

We can now apply the Jordan-Wigner transformation
by expressing the spin operators in terms of fermion an-
nihilation and creation operators at each site, resulting
in a spinless fermion Harniltonian:

of the system for a range of lengths, l ( 23. The low-

energy spectrum of the continuum model consists of in-
finite towers of states with spacings of order 1/t. This
infinite set of energies is known (up to an overall scale
factor, the spin-wave velocity) at the two fixed points.
Thus we can test whether the spectrum approaches that
of the conjectured stable fixed point, up to corrections
which vanish faster than 1/l. These corrections are pre-
dicted to vanish as 1/I'+~ where d is the dimension of the
leading irreleviint coupling constant, ~ a conjecture which
can also be checked numerically.

The rest of the paper is organized as follows. In the
next section we review the bosonization approach to the
continuum limit of quantum spin-2 chains. This discus-
sion includes the presence of a marginal operator and
a procedure to circumvent the resulting problem of log-
arithmically slow scaling in finite-size numerical work.
We also derive the asymptotic finite-size spectrum for
even or odd length chains with periodic or free boundary
conditions as well as the dimensions of the various rele-
vant and irrelevant operators, which are important in our
study of impurities. In Sec. III we make predictions con-
cerning the efFect on the finite-size spectrum of the var-
ious types of impurities mentioned above and make de-
tailed comparisons with the numerical results. In Sec. IV
we discuss the thermodynamics of these systems. They
provide instructive examples of systems with noninteger
"ground-state degeneracy. "z The impurity specific heat
and susceptibility are determined by the leading irrele-
vant operators as in the Kondo efFect. i4 In Sec. V we
summarize our results and contrast these systems to the
Kondo problem. Some comments are made concerning
the efFect of a finite density of impurities.

FIG. 4. A quantum spin chain with an external impurity
of size s. (2.2)
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S,. = (—1)'Q, exp (2 3) v'4vr R
(2.12)

l —1

& = ) —(gtg, +g+H.c.)
4=1 1+6 1+6

4 1 —6 4

(2.13)

(2.14)

We then restrict the Hamiltonian to low-energy excita-
tions and go to the continuum limit to obtain an effective
low-energy theory, described by a (1+1)-dimensional field
theory Hamiltonian of left- and right-moving fermions.
The S'S~ interaction can be expressed in terms of the
fermion currents JI = Qigl ., I = .L, R and contributes
partly to the free part of the resulting Hamiltonian, be-
cause we can rewrite the derivative terms to first order
as

2

(2.15)

With the help of the Bethe ansatz, the "boson radius" R
as a function of J, can be exactly determined to bes

1 1,J,R = —— cos2z. 2~z J
- 1/2

(2.16)

which agrees to first order in J, with the field theory
calculations (b = 2J, /n J).

0 i—4R=&J~JR
d

R dx (2 5) B. Operators
gt a—Ql, = nJI.JI., —

dx
(2.6)

up to an (infinite) constant. The resulting Hamiltonian
1S

By combining the spin to fermion and fermion to boson
transformations we obtain the continuum limit represen-
tation for the spin operators:

H=v dz Q i QR——Qli —Ql, + 2mbJI, JRt. d t. d

dx dz

=7rv dx[J/JR + Jr, Jr, + 2bJr, JR],

(2 7)

(2 8)

S~ = + (—1)~const cos —,

S = e' " ~
[

const cos —+ (—1)~const ~,

(2.17)

X = — (1 —b)11~+ (1+b)
V Bgl

Bz j (2.10)

Here IIy is the momentum variable conjugate to P; Pi.
and PR are the left- and right-moving parts of P:

where b is a constant of order J, and v is the renormal-
ized "speed of light. " Here all operators which are irrel-
evant at low energies in the limit where J, is small have
been dropped. This model can be transformed using the
Abelian bosonization rules:s

1 ( BP)
~*)'

(
11y+

1

4m ( &)
(2.9)

Q~ oc exp(iv 4vrPR),

gl, oc exp( —iv'4n PL, )

The resulting Hamiltonian is a noninteracting boson the-
ory

where R is given in Eq. (2.16). The boson P must be
thought of as a periodic variable measuring the arc length
on a circle of radius R; i.e.,

P
—= P+ 2~R,

P = /+1/R,
(2.18)

(2.19)

where P is the dual field defined in terms of the left- and
right-moving components of P by

4'=—4L, —4R (2.20)

The periodicity condition on P follows from that on P,
as will be shown in Sec. IIB. Note that these trans-
lations leave the spin-operators invariant. Correlation
functions and the low-energy spectrum predicted by this
theory indeed agree with the calculation from indepen-
dent methods.

There are two important independent discrete symme-
tries of the spin chain which we need to identify in the
continuum limit. The 6rst one is translation by one site,

This appears as a discrete symmetry independent
of translation in the continuum limit. We see from Eq.
(2.17) that it corresponds to

4 =41.+4R (2.11)

The boson operators now have to be transformed by a
canonical transformation to obtain a conventionally nor-
malized theory:

Tr: P ~ P+ ~R, Tr: P ~ P+ 1/2R. (2.21)

The second one is site parity, Pg, i.e., reflection about
a site. Note that this does not interchange even and
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odd sublattices. Thus it must map the spin operators
into themselves. Since parity interchanges left and right,
P and P transform oppositely. We see that the correct
transformation is

(2.17) that the correct boundary conditions on the boson
are aritiperiodic; i.e., 8 and m are half integers. We see
from Eq. (2.17) that 8' is the z component of the total
spin:

Ps. 4 ~ —4, Ps (2.22) Sz ) Sz (2.29)

There is a third discrete symmetry, link parity, Pl„ i.e.,
reflection about a link. However, this is not independent,
but is a product of the other two. It corresponds to

PI, ' p ~ —p+ ~R, Pl, . p ~ p+ 1/2R. (2.23)

In our discussion of impurities we will be interested in
the continuum limit representation for S. 8++i +8+8 +i

S~ 8~+i. The first operator is give

S, S~++, + S,+S,+, = i(—1)'(g~@~ —H.c.), (2.24)

ignoring derivative terms of higher dimension. Using the
bosonization formula of Eq. (2.9) and rescaling the boson
field following Eq. (2.12), we obtain

S S++i+ S+S+i = (—1)~const sin —.
R (2.25)

The most relevant part of S,*S,*+i is also the staggered
part, i.e. , the cross term between the uniform and stag-
gered parts of S'. A typical term is

(2.26)

where we have introduced the lattice spacing a for the
first time. This can be written as a completely normal
ordered four-Fermion operator (which reduces to an ir-
relevant derivative operator as a ~ 0) together with an
additional term from Wick ordering of the form

—2
(2.27)

Combining all such terms together we obtain the same
operator as in Eqs. (2.24) and (2.25), for all values of
R. (While this follows from symmetry at the Heisen-
berg point, it is not a priori obvious in the general case. )
These results can also be obtained by using the bosonic
representation of the spin operators of Eq. (2.17) and the
operator product expansion. The operator sing/R has
dimension d = 1/4mRz; at the Heisenberg point, d ~ —.2'
(This is the so-called spin-Peierls operator which can be
induced in the Hamiltonian by a staggered interaction. )

In Sec. III we will be concerned with spin chains obey-
ing either periodic or free boundary conditions. We need
to uncover the corresponding boundary conditions on the
bosons in the continuum limit. In the periodic case, for
even length l, it is clear from Eq. (2.17) that the bound-
ary conditions on the boson are a1so simply periodic, i.e.,

It is integer or half integer for an even or odd length
chain, respectively, as expected.

The case of free ends is slightly more subtle. One way
of dealing with it is to introduce fermion fields on two ad-
ditional "phantom sites" 0 and l + 1, let the sum in Eq.
(2.1) run from 0 to l, and then impose vanishing bound-
ary conditions on Qo and pi+i. This imposes conditions
on the continuum limit of left- and right-moving Fermion
fields:

&L(0)+@~(0)=o

Qg (l + 1) + (—1)'+ QR(l + 1) = 0.
(2.30)

Using the bosonization formulas of Eq. (2.9) and taking
into account the fact that PL, and PR do not commute,
we conclude that the correct boundary conditions on the
bosons are

P(0) = ~R, P(l) = 2~R(8'+ —,'), (2.31)

where S' is integer or half-odd integer for l even or odd,
respectively.

In Sec. III we will need the continuum represents
tion of the spin operators near a free end. It is im-
portant to realize that the operators have a different
scaling dimension near such a free end than they do in
the bulk. This is an example of "boundary critical phe-
nomena. " In this case we may easily deduce the dimen-
sions from the bosonic representation of Eq. (2.17) after
imposing the boundary conditions P(0, t) = nR. Note
that this implies $1,(0, t) = vrR —$R(0, t) and hence

P(0, t) = 2PL, (0, t) —7rR. Since PI, is a function only
of z —t and PR only of z+ t, we conclude that

pg(z, t) = Pr, ( z, t) + n R—,
— (2.32)

~PL,
bound

j.e. , we may reflect the right-moving field to the negative
z axis where we can regard it as minus the analytic con-
tinuation of the left moving field, shifted by m R. All op-
erators can therefore be expressed in terms of left movers
only.

The boundary operators can be written as

p(l, t) = p(0, &) + 27rRS', 8' = 0, y] ~2
(2.28)

4vriR4 L,
bound

(2.33)

g(l, t) = p(0, t) + m/R, m = 0, +1,+2, . . . .

On the other hand, if the length l is odd, we see from Eq.
These have scaling dimensions d = 1 and d = 27t.R~, re-
spectively. To understand the ineaning of these boundary
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scaling dimensions, it is instructive to consider the stag-
gered part of the spin-spin correlation function at the
Heisenberg point. This is most easily calculated for S
by using

( yqj ~2~&[4L(& ~) QL, ( & ~)I (2.34)

The two-point function for S reduces to a four-point
function for the left-moving factor, giving

(S(t„xi) . S(t2, x2)} oc (—1)*' (2.35)

C. Non-Abelian bosonization
and the marginal operator

The leading irrelevant operator, coming from Umklapp
processes in the fermion representation, is cos(2$/R)
of dimension 1/zR~. This becomes marginal at the

isotropic (Heisenberg) point R = I//2z, leading to a
transition to the Neel ordered phase. A manifestly SU(2)
symmetric continuum limit representation for the Heisen-

berg model is provided by non-Abelian bosonization. We

now introduce an SU(2)-matrix bosonic field, gp. Its
action includes the Wess-Zumino term with coefficient

Ic = 1. g is related to the Abelian boson field P by

e- i42n P te —4/2~/ )
(2.36)

The spin operators are now represented as

S~ —(Jl, + JR) + const i(—l)~tr[go], (2.37)

where JL, ~ are the left and right SU(2) currents (or spin
densities)

where we have set the spin-wave velocity to one and
ti2 =—ti —t2. Note that far from the boundary, when
xix2 » ](xi —xq) —tiz], we recover the bulk correla
tion function oc 1/g(xi —xq) —tiz, corresponding to
a scaling dimension of z for the staggered spin operator.
However, the correlation function near the boundary (i.e.
when ~ti2~ && xi, x2) takes the form oc vt'xi»/~tip~, cor-
responding to a scaling dimension of 1 for the staggered
boundary spin operator.

We will also need the continuum limit form of the spin
dot product S, S,+i at the boundary. It follows from
Eq. (2.33) that this is simply (8PL,/8x)2. This is the
left-moving part of the Hamiltonian density Tq

The boundary spin operators of Eq. (2.33) have a sim-
ple expression in terms of left movers in the non-Abelian
language:

Sbound (x JI' (2.40)

The continuum limit boundary operator corresponding
to S, . S,+g is JL, Jl, (XTg.

The marginal interaction mentioned above is AJI, J~.
[Actually (Jz+ J& + H.c.) corresponds to cos vs''P. The
Jr' JR part of the interaction corresponds to (8$/8t)
(8$/8x)2. ] This is marginally irrelevant for the Heisen-

berg model, corresponding to A ( 0. Since the effective
coupling constant A,a(l) scales to zero logarithmically
slowly with the length scale l, logarithmic corrections
arise. s In particular, it makes an accurate determination
of the critical behavior from finite-size scaling essentially
hopeless unless exponentially large chains can be studied.
Therefore, it is useful to add a next-nearest-neighbor in-

teraction to the Heisenberg model:

H ~ ) (JS, S+i+ JgS, 8+2}. (2.41)

The marginal coupling constant A decreases with increas-
ing J2/ J. It passes through 0 at a critical point which has
been estimated numerically to be approximately 0.24.
For larger J2/J the system is in a spontaneously dimer-
ized phase. (In particular, at J2/ J =

&
the exact ground

states are the nearest-neighbor dimer states. ) Right at
the critical point the marginal operator is absent, and
hence finite-size scaling becomes very accurate even with
chains of modest lengths of order 20, since corrections
drop off at least as fast as 1/l. Therefore, most of the
numerical work reported here has been done at this crit-
ical point. Note that the model with the critical value of
Jq/ J represents the critical point to which the nearest-
neighbor model and all models with Jq less than the crit-
ical value flow logarithmically slowly under renormaliza-
tion. Therefore, we expect the behavior to be the same
for the nearest-neighbor model up to logarithmic correc-
tions.

Jl. —= tr[gt8 ger], J~ = tr[8+ggta].
4 vr

' 4

(2.38)

Translation by one site and site parity act on g simply as

(2.39)

D. Finite-size spectrum

The field theory model can now be used to calculate
the finite-size spectrum of the spin chain at low energies.
We first consider the case of periodic boundary conditions
on a spin chain of even length l. This implies periodic
boundary conditions on P as in Eq. (2.28) and determines
the mode expansion
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OO

t)it(X t) t)IrO + II + Q* + ) e
—(2tgi/L)tg(t —g;)aL + e-(2mi/L)tg(t+x)aR + H C

; &4trn .
(2.42)

This implies that 4t has the mode expansion

OO

y( t) y + g + II* + ) —(2tgi/L)gt(t-g;) L e (2gg—i/L)gt(t+g. )aR + H c
; &4xn .

(2.43)

The aL R's are bosonic annihilation operators. fI and Q
are canonically conjugate to the periodic variables Po and
Po, respectively. Hence their eigenvalues are quantized

fI = m/R, Q = 2trRS, (2.44)

with 8' and m integers. Note that tt(t is also periodic with
radius R = 1/2trR. The resulting excitation spectrum
1s11

I I /gypE= 'Rdx = — 114, + i

o 2 o (»i
v 112 2 2tr+ + ) rt(a a +a a)

gt=1

state parity itself for an even length chain is (—1)'/2.
This follows from the Perron-Froebenius theoreml2 for
the nearest-neighbor model and we find numerically that
it also holds for J2/J = 0.24. At the point Z' = 0,
R = 1/v'4n', this spectrum is simply that of free fermions
with antiperiodic (periodic) boundary conditions for even
(odd) particle number.

If the number of sites l is odd, P and P obey arttiperi-
odic boundary conditions. The mode expansions, spec-
trum, and wave functions are as in Eqs. (2.42), (2.45),
and (2.46) except that now m and 8' are Italf-odd inte-
get3 Parit. y now simply takes m h —m, mL g-h mR. At
the Heisenberg point the spin of left and right movers is
separately conserved and the z components are given by

+ ) n(mL+ mR)
n=1

(2.45)

SL R ——(8' + m) /2.

The energy can then be written as

OO

E= (8L) +(SR) +) n(mL+mR) .
a=1 w

(2.47)

(2.48)

(We have reinserted the spin-wave velocity, v. 8' is the
z component of the total spin. ) The corresponding wave
tunction is

exp z z 2' p + m p aL) m„aRt ~~ 0
fL=1

(2.46)

We see from Eq. (2.23) that link parity takes m ~
—m, mL ~ mR, and multiplies the wave function by
(—1)~ +~. Here and in what follows, we always measure
parity relative to that of the ground state. The ground-

This spectrum has SU(2)L x SU(2)R symmetry for this
value of R. Note, for instance, that for even l the low-
est four excited states have quantum numbers (sL, sR) =
(2, 2), corresponding to a degenerate triplet and singlet
under diagonal SU(2). [The spectrum consists of the
highest weight representations of the BUP)t x BUt2)n
Kac-Moody algebras: (sL, sR) = (0, 0) + (2, 2) for l even
and (0, 2l) + (2l, 0) for l odd. Parity simply interchanges
all left and right quantum numbers and multiplies wave
functions by (—1) in the (2l, 2l) sector. ]

We now turn to the case of free boundary conditions
on the spine, corresponding to fixed boundary conditions
on (tt as in Eq. (2.31). The mode expansion is now

t))(x, t) =2z'R
~

—+8' —~+ ) sin e ' "'/'a„+H. c./1, xl . 1

l);g~n l
(2.49)

with 8' an integer (half-odd integer) for l even (odd).
The spectrum now takes the formls

p = ( 1)+p=o~tp+g+ —( 1)Z,=&~p+(&*)'

(2.51)

E = 2vrR'(8') + ) rtm„
m=1

(2.50) for l even. For l odd, (8') —
4 is even, so we may write

a similar formula:

Note that parity (i.e., x -+ l —x) takes attg -+ (—1) agtg.
It also multiplies wave functions by (—l)~ for l even.
Thus

p ( 1)p~ g ttggtgr+(8') —l/4 (2.52)

At the Heisenberg point this can simply be expressed in
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TABLE I. Spectrum. (States accessible to our algorithm are underlined. )

ta

0
1
2
3
4
5

Even periodic

0+
o~, i-
1+, 1
o+, o-, i+, ~-
2 x (0+), 0, 1+, 2 x (1 ), 2+
2 x (0+), (0 ), 2 x (1+), 3 x (1 ), 2+, 2

Even open

0+
1
o+ ,+

0, 2x(1 )
2 x (0+), 2 x (1+), 2+

2 x (0 ), 4 x (1 ), 2

0

Odd periodic
1+ 1—
2 ' 2

2x(~ ), 2x(2 ), 2x(23 ), 2x(-, )

4 x (-,' ), 4 x (-', ), 3 x (-, ), 3 x (-, )

Odd open
1+
2
1
2
C+ 3+
2 ' 2

(1 )
3

4 x (-,' ), 3 x (23)

terms of the excitation energy

P ( 1)LE,„/em (2.53)

where the ground-state energy of xv/4t, for l odd, is
subtracted from E,„; i.e. , the energy levels are equally
spaced and the parity simply alternates. Again we mea-
sure parity relative to the ground state. It follows from
the Perron-Froebenius theorem that the ground-state site
parity is (—1)'~ or +1 for an even- or odd-length open
chain, respectively. [There is now a single SU(2) sym-

metry at the Heisenberg point corresponding to a single
Kac-Moody algebra with the highest weight representa-
tion s = 0 for l even and s =

2 for t odd. ]
The states of the first six energy levels are given in

Table I for the four cases of even or odd t and periodic
or open chain, indicating total spin and relative parity of
the states.

III. QUANTUM IMPURITIES
AND FINITE-SIZE SCALING

We will now use the theory of the previous section
to predict the effect of various perturbations and impu-

rities on the low-energy spectrum. The scaling dimen-

sion of the perturbing operators in the Hamiltonian is

directly related to the finite-size scaling of the energy cor-
rections to the low-energy spectrum. 7 If the dimension d

of an operator is larger than one (d ) 2 if the opera-
tor is integrated over the whole chain rather than only
appearing at one point), the perturbation is irrelevant
because the corresponding coupling constant will renor-
malize proportional to l ". This means that the energy
corrections scale as l ~ and therefore go to zero faster
than the asymptotic excitation energies, which scale as

l . Coupling constants of operators which have a scaling
dimension which is less than one will again renormalize

proportional to l as long as the coupling constant is

small. Therefore, the corrections to the spectrum will

increase relative to the asymptotic energy spacing, and
the corresponding operator is relevant. Operators with
dimension d = 1 are marginal. Their coupling constant g
will renormalize as g(t) = go/(1 —bgo ln/) go+ bgo ln 1

for small go. It now depends on the sign of the coupling
constant if the perturbation is relevant or irrelevant. In
any case, marginal operators give energy corrections that
scale logarithmically slowly as g(t)/l.

It is now straightforward to test these predictions
numerically. The isotropic Heisenberg model with a
next-nearest-neighbor coupling of 0.24 times the nearest-
neighbor coupling was used in most of the calculations.
The "modified Lanczos" algorithm we used is briefly de-
scribed in the Appendix. It determines the lowest energy
in any sector of given quantum numbers. Since we con-
sider local perturbations that destroy the translational
symmetry of the periodic spin chain, momentum is not
conserved. Thus, at best, we can find the lowest mul-

tiplet of given spin and parity. Furthermore, our algo-
rithm does not keep track of the total spin but only the
s component (see the Appendix). It is always possible
to uniquely group the observed states into multiplets of
definite spin. However, the lowest multiplet of given spin
and parity may become unobservable when it lies higher
in energy than another multiplet of higher spin and the
same parity. (A way around this difficulty exists if one
of the two multiplets has even integer spin and the other
has odd integer spin. They are then distinguished by the
spin-reversal symmetries of their 8' = 0 members. )

A first test of the theory is to reproduce the finite-size
spectrum of the periodic and open spin chains. Figures
5—8 show how well the numerically accessible states fit
the predicted spectrum in Table I. In Table I we have
underlined the multiplets which are accessible to our
modified Lanczos technique. (We can find some addi-
tional states for the periodic chain by using translational
invariance; however, once we include the impurity this
possibility is lost. ) A plot of the lowest-energy gap ver-
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FIG. 5. Scaled numerical low-energy spectrum for a peri-
odic, even-length (20) spin chain. The integer values El/nv
of the numerical accessible states agree with the theoretical
predictions. The velocity vm = 3.69 was used (see Fig. 9).

FIG. 8. Scaled numerical low-energy spectrum for an
open, odd-length (19) spin chain (vx = 3.42).

sus length demonstrates the predicted 1/t dependence of
energy gaps up to higher-order corrections from irrele-
vant operators (Figs. 9 and 10). Since we have tuned
the marginal operator to zero, the lowest dimension bulk
operator is TI,TR of dimension 4. Here Tl, R is the left-

(right) -moving part of the free Hamiltonian:

3

2

0 I I I I W I I I I I I I I I I I I I I I I I I I I I I I I

0 0 ~ 5 1 1.5 2 2 ' 5

SPIN

FIG. 6. Scaled numerical low-energy spectrum for a peri-
odic, odd-length (19) spin chain (ver = 3.69).

This leads to O(1/ts) corrections to energy gaps for the
periodic chain. For the open chain we also have a dimen-
sion 2 boundary operator, Jr, JL, oc Tr, I leading to O(1/l )
corrections to energy gape. This behavior is confirmed in

Figs. 9 and 10.
Perhaps the simplest perturbation to consider is to in-

troduce one weak coupling across the ends of the open
chain (Fig. 1). The corresponding operator can be ex-

pressed as the product of two independent boundary spin
operators. The continuum limit interaction becomes
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FIG. 7. Scaled numerical low-energy spectrum for an
open, even-length (20) spin chain. The efFect of the lead-
ing irrelevant operator Tz, (s boundary energy operator),
which gives l -corrections as indicated in Fig. 10, is simply a
length-dependent renormalization of the velocity. We there-
fore chose to scale with the velocity am = 3.65 —4.6/l 3.42
in Figs. 7 and 8 only.

0 0 ~ 004 0.008 0.01 2
1/Length

0.016

FIG. 9. Finite-size scaling towards an asymptotic spec-
trum for the periodic chain. The lowest excitation gap 0+,1
is fitted to E = a/l + b/l for even lengths. Finite-size cor-
rections to gsps therefore scale as l . (a = 3.69, b = 3.94).
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FIG. 10. Finite-size scaling towards an asymptotic spec-
trum for the open chain. The lowest excitation gap E is fitted
to E = a/l + b/l for both even and odd lengths. Finite-size
corrections to gapa therefore scale as l (a = 3. .65, b = 4.6).

AS S+ocA JL,p Jr, (3.2)

Here 6 represent the left and right sides of the weak
link. (This notation should not be confused with the use
of the superscripts 6 to denote spin raising and lower-

ing operators. ) Assuming that we may regard the two
sides of the link as completely independent in the limit
A -+ 0 for a long chain, the dimension of this product
of boundary operators is simply the sum of the dimen-
sions, i.e. , d = 2. We conclude that this perturbation is
irrelevant, and therefore the open chain is a stable fixed
point under this perturbation. We test this conclusion in
Fig. 11. Here we consider a chain of odd length. For the
open chain fixed point, the spectrum is given in Table I.
The ground state has spin s = z, and the first excited
state (at energy vx/I) also has s =

z with reversed parity.
This lowest excitation energy, given in Fig. 11, shows very

nicely that the corresponding energy corrections flow to
zero with the predicted scaling of t ", ultimately giving
back the open chain spectrum.

Alternatively, we can slightly alter the strength of one
coupling somewhere in the periodic chain. We know from
the previous section that the corresponding operator is

trg, which has scaling dimension d =
2 and is therefore

relevant. Depending on the sign of the initial perturba-
tion, the coupling will therefore increase or decrease more
and more, until a stable fixed point is reached. In the
case of decreasing coupling, this will be the open chain,
while increasing coupling will produce a decoupled sin-

glet together with an open chain with two sites removed.
Figure 12 demonstrates again the predicted scaling l

of the energy corrections at a small coupling constant.
We chose chains of odd length, because, rather remark-

ably, Eqs. (2.48) and (2.49) predict that the excitation
energies are identical for periodic and open even-length
chains for all states accessible to our modified Lanczos
technique; i.e. , the lowest states of specified s and P.
(See Table I.) Fortunately the situation is much better
for odd I. The periodic chain has two degenerate doublet

ground states of opposite parity, 2, whereas the open
chain has a single doublet ground state and a first ex-
cited state which is the reversed parity doublet with a gap
ver/t. Thus we only need consider the two lowest-lying
states. As a summary, Fig. 13 shows the dependence on
the altered coupling of the first excitation energy for two
different lengths, clearly indicating the two fixed points
at coupling 0 and l.

Since our bulk Hamiltonian contains first- and second-
nearest-neighbor couplings we have chosen to maintain
the ratio of second- to first-nearest-neighbor couplings
of 0.24 while modifying the link. The three modified

couplings are shown in Fig. 1. By doing this, we en-

sure that the open and periodic chains occur at zero and
unit coupling, respectively. We also show the results of
the Hamiltonian without the bulk next-nearest-neighbor
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FIG. 11. Renormalization-group Bow towards the open
chain fixed point due to one weak link for au odd-length chain
with 7 & t & 23. The lowest excitation gap 2, 2 is fitted to
E —E»~„——1/(al + bl), exhibiting the predicted l scaling
corrections up to higher order.

FIG. 12. Flow away from the periodic chain fixed point
due to one altered link for an odd-length chain with 7 & t, &

23. The lowest excitation gap ~+, ~ is fitted to E = a/l'~,
which is the predicted scaling. (The parity of the two states
interchanges at ur. it coupling. )
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field theory. The resulting P function for the coupling
constant A is
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FIG. 13. The scaled excitation gap ~, ~ vs the coupling
constant for one altered coupling for two difFerent odd lengths.
The parity of the two states reverses at unit coupling.

~ 5 & t i r I I
i

I I I I i I I I I i I I I I i I I I I
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coupling present [i.e. , Jq ——0 in Eq. (2.41)) in comparison
to our model Jz = 0.24J in Fig. 14. The qualitative be-
havior is the same for both models, but we see that the
approach to the asymptotic behavior is much slower for
the pure nearest-neighbor model because of logarithmic
corrections (see Sec. II C).

A more interesting case involves altering two adjacent
couplings by the same amount (Fig. 2). Starting from
zero coupling, this can be incorporated by coupling an
impurity spin to the two boundary operators at the ends
of the open chain. The dimension at the Heisenberg point
will simply be that of the boundary operators (d = 1),
so we can expect marginal behavior. The perturbation
becomes

&int = &(S- + S+) ' Simp ~ &(Jl+ + JL —) ' Simp.

(3.3)

which tells us that the coupling will be marginally ir-
relevant for ferromagnetic sign (A ( 0) and marginally
relevant for antiferromagnetic sign. The numerical re-
sults strongly support this picture. We plot the first
excitation energy versus length in Figs. 15 and 16 for
an odd total number of sites for ferromagnetic and an-
tiferromagnetic couplings, respectively. In the ferromag-
netic case, we approach the asymptotic spectrum con-
sisting of an open even length chain together with a de-
coupled s =

z impurity. We can deduce this spectrum
from Table I by simply taking a direct product of each
multiplet in the "even open" section of the table with an
s = 21 variable. The first two energy levels have states:

. Here and in what follows, we put degener-

ate multiplets in square brackets. The corrections to this
spectrum should only vanish as 1/l in/. (There is also a
1/t~ correction, corning from the irrelevant operators J~+,
Jz, and J~ J . While this would be negligible for suffi-

ciently long chains, it is fairly large for accessible lengths
and therefore included in figures showing marginal flow. )
The ferromagnetic coupling lowers the &~ state relative

to the z state, which therefore becomes unobservable

to our aPProach, as exPlained above. The zi, sz gaP is
plotted in Fig. 15. It flows logarithmically slowly towards
the open chain value, as expected. For antiferromagnetic

coupling, the zi state is lower than z . The 2
gap is plotted in Figure (16). For the fairly weak cou-
pling used, it decreases from the open chain value in an
approximately logarithmic fashion.

Starting from a periodic chain the correspond-
ing operator for varying two adjacent sites by the

-0.068 I I I I

-0 ~ 07

0 5

C

c0 ~
LLI

tL

~ QJ
LLl

-0.072

-0.074

0 i i & & I
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FIG. 14. Excitation gap ~, ~ vs the coupling constant
for one altered coupling for the next-nearest-neighbor and
pure nearest-neighbor bulk coupling models st s fixed length
(19). The next-nearest-neighbor model scales fsster to the
fixed points because logarithmic corrections are not present.

-0.076

-0.078 I & & i & I ~ I 1 ~

10 15
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20 25

FIG. 15. Marginal flow towards the open chain fixed point
due to two weak ferromagnetic links. Corrections to the

gsp are fitted to E —Eop,„=E,p,„(a+ b/l + clnl),
demonstrating logarithmic scaling (ac ( 0).
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FIG. 17. Flow towards the periodic chain fixed point due

to two altered antiferromagnetic links. The 2, ~ gap is

fitted to E = a/l3 which is the predicted scaling. The parity

of the two states reverses at coupling one.

same amount is the sum of two alternating operators
[try(x) —try(z+ a)j. This gives the derivative operator
—trg of dimension d = 1+ s. This is lower in dimension
dx
than the uniform parts of the interaction (d = 2), but is

still irrelevant. The predicted scaling of the &,s gap
with l s/2 is demonstrated in Fig. 17. At long lengths
we recover the periodic chain spectrum with degenerate

doublets. We see that when varying two adjacent
couplings, the periodic chain is now a stable fixed point
and the open chain with a decoupled spin is only stable
for ferromagnetic perturbations. In the case of antifer-
romagnetic coupling to the impurity, the open chain will
be unstable and ultimately fiow to the stable periodic
chain with the impurity site included. This results in a
"healing" effect of the spin chain when we introduce any
antiferromagnetic coupling on two equal adjacent links.
These predictions are supported by the plot of excitation
energy versus coupling for two different lengths in Fig.
18, clearly showing the two fixed points.

FIG. 18. Scaled excitation gap vs coupling for two altered
equal adjacent couplings for two different odd lengths. The
ground state always has s =

~ while the excited state changes
kom s =

z for ferromagnetic coupling to s = 2. The parity
of the two states interchanges at coupling one.

At first sight one might be surprised that the alter-
ations of one or two links in the chain have such funda-
mentally different effects. It is however exactly what we
expect from the fundamentally different symmetries of
the problems. A single modified link violates site parity
and therefore permits the relevant operator try. How-
ever, having two equal adjacent weak links respects site
parity, and therefore try is not allowed. It does break link
parity, thus allowing ~trg. We can readily understand
the effect of various other, longer-range perturbations.
Any perturbation which preserves site parity should be
irrelevant, whereas any breaking of site parity is relevant
(barring an accidental cancellation of the relevant oper-
ator). For instance, in our numerical work we modified
the second-nearest-neighbor couplings to preserve the ra-
tio J2/J = 0.24 at the impurity site as shown in Figs.
1 and 2. Since this preserves link parity and site par-
ity, respectively, in the two cases, it does not change our
conclusions.

Both types of impurities that we have discussed above
correspond to special cases of models studied in the con-
text of defects in one-dimensional quantum wires. 4 s In
these papers spinless fermions were considered. This is
equivalent to the xxz spin chain by the Jordan-Wigner
transformation. The Heisenberg model corresponds to a
particular value of the repulsive interaction. The flow of
a single modified link to the open chain fixed point corre-
sponds to the perfectly reflecting fixed point. 4 The "heal-
ing" discussed here corresponds to resonant tunneling. s

In that work, it was necessary to adjust one parameter
to achieve the resonance condition (even with exact site
parity maintained). This parameter, a local chemical po-
tential at the impurity site, corresponds to an external
magnetic Beld term h So at the impurity site. In the spin
problem this is naturally set to zero by spin-rotation sym-
metry or time reversal. Thus resonance (healing) occurs
without fine tuning in the spin chain.

We are now in the position to extend the analysis to
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more general kinds of impurities by coupling spins of ar-
bitrary magnitude in various ways to the spin chains.
Maybe the most straightforward extension is to place an
"internal" impurity of arbitrary spin inside the chain and
then introduce two couplings of equal magnitude to the
adjacent sites (Fig. 3). This is very much like the case
we considered before, where the strength of two adja-
cent links was changed by the same amount. We expect
the same marginal behavior at small coupling, but if the
impurity does not have spin zi, the chain cannot "heal"
itself. We first consider the case of an s = 1 impurity,
for example, a Niz+ ion inserted into a Cu2+ chain. Fer-
romagnetic coupling is marginally irrelevant and the sys-
tem will therefore slowly flow to the open chain with a
decoupled s = 1 impurity as the length increases. For
an even length chain with a spin-1 impurity, this fixed
point gives us four lowest-lying states 1, [2, 1, 0 j.
We found the energies of the 1+ and the 2 states nu-

merically, which demonstrate the predicted flow (Fig. 19)
towards the stable open chain fixed point. Again it is
important to consider the 1/tz as well as the 1/t ln t cor-
rections. (The combined effect of the two terms actually
produces an extremum in Fig. 19 at t = 16. Only for
longer lengths does the logarithmic term dominate and
the energy correction flow back to zero. )

Antiferromagnetic coupling is marginally relevant and
increases slowly with length. We expect that the anti-
ferromagnetic coupling will renormalize to infinity lead-
ing to a complete screening of the spin-1 impurity by
the two neighboring spins and an open chain with two
fewer spins. Starting from weak coupling we can trace
the 1+, 0 states. The energy gap flows marginally away
from the open chain fixed point value (Fig. 20). Even-
tually the two states cross, and at strong coupling the
0 state will be the ground state and the energy gap to
the 1+ state again approaches the open chain fixed point
value (Fig. 21). Note that the parity of the system is
reversed because two sites are effectively removed from
the chain. We expect the approach to the open chain
fixed point to be governed by the same leading irrelevant
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FIG. 20. Renormalization flow for the weak antiferromag-
netic coupling to an internal s = 1 impurity. Corrections to
the 1+,0 gap are fitted to E E,r,—„=Eor, (a+b/l+clnl),
demonstrating logarithmic scaling (ac ) 0).

operator as before JL, Ji,+ of dimension 2.
Now consider the case of s = &. Since ferromagnetic

coupling is marginally irrelevant, we expect to obtain the
open chain fixed point with a decoupled spin-z impurity
as the stable fixed point. The antiferromagnetic case
is more subtle. If we assume that the couplings to the
impurity renormalize to infinity, we obtain an effective
impurity of size z. This efFective impurity then couples
to the next pair of spins in the chain. Whether this effec-
tive defect heals or decouples depends on the sign of the
efFective coupling. Note that if we assume that the direct
impurity couplings are infinite, then the effective spin is
antiparallel to the screening spins (see Fig. 22). Conse-
quently the antiferromagnetic couplings to the screening
spins correspond to a fer7ornagnetic coupling to the efFec
tive impurity. Thus we are led naturally to the hypothesis
that the efFective coupling will always be ferromagnetic
and hence we flow to the open chain fixed point with a
decoupled s = z. This argument extends immediately to
higher s. The stable fixed point is always the open chain
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FIG. 19. Renormalization flow for the weak ferromagnetic
coupling to an internal s = 1 impurity. Corrections to the
1+,2 gap are fitted to E —E ~, = E ~,„(a+b/l + clnl),
demonstrating logarithmic scaling (ac ( 0).
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FIG. 21. Renormalization flow for strong antiferromag-
netic coupling to an internal s = 1 impurity. Corrections to
the 0,1+ gap flow to the open chain value E —Eo~ = 0.
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L

s-1/2

FIG. 22. Sign of coupling to the partially screened efFec-
tive spin is reversed.

with a decoupled impurity of size s in the ferromagnetic
case and s —I in the antiferromagnetic one.

We will now imagine an "external" impurity of spin s,
placed outside a periodic chain and coupled to just one
site in the chain (Fig. 4). In this case, we are dealing with
a bulk spin operator coupled to a (dimensionless) impu-
rity spin. The continuum limit interaction Hamiltonian
is now

+in' tAtr [g tT] ' Simp.

This interaction has dimension z. It is relevant for ei-
ther sign, of the coupling, unlike the case of the internal

FIG. 24. External spin of size s is partially screened to size
s —

&
for antiferromagnetic coupling. The efFective coupling of

this partially screened spin to its neighbors is ferromagnetic
and therefore flows to zero.

impurity. For ferromagnetic coupling we expect that the
impurity will couple strongly to spin z in the chain and
play the role of an antiferromagnetically coupled "inter-
nal" impurity of spin s + z, which then will get screened
to size s —

z and eventually decouple as described above.
The screening process is depicted in Fig. 23. For an-
tiferromagnetic coupling the impurity will get screened
directly by the spin in the chain, thereby also making
the coupling to the rest of the chain ferromagnetic by
the same argument employed above for an internal im-
purity (see Fig. 22). Hence the screened impurity decou-
ples from the chain as shown in Fig. 24. Ultimately we
will flow to an open chain with a decoupled impurity of
spin s —

z for either sign of the coupling, with the fixed
points only difFering in the efFective number of spin sites,
which is lowered by three for ferromagnetic coupling and
by one for antiferromagnetic coupling from the original
chain length. Note that this kind of impurity changes
odd- to even-length chains and vice versa.

For an external spin-z impurity coupled to an odd-

0 ) r

0.08

0.06

0.04

s-1/2
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~ = -0.1J~Coupl. = 0.1J
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FIG. 23. External spin of size s with ferromagnetic cou-
pling produces a spin of size s+ 2. This is coupled antifer-
romagnetically to its neighbors and hence gets screened to
size s —2. The resulting coupling is then ferromagnetic and
therefore flows to zero.

FIG. 25. Flow away from the periodic chain 6xed point
due to weak coupling to an external s =

~ impurity. The
0+,1 gap is fitted to E = a/l +b/t exhibiting the predicted

scaling corrections up to higher order. For ferromagnetic
coupling the parity of the two states is reversed.



MAGNETIC IMPURITIES IN HALF-INTEGER-SPIN. . . 10 879

1 ~ 05 I I I
l

I I I
I

I I I 0.12 I I
i

I I 1
l

I 1 I

0.1

0.95
C
CL

0.9
ul

0 ~ 85

0.8

0.08

0.06

LLJ

0 ~ 04

Coupl. = -0.1J~Coupl. = 0.1J

0.75

0.7

Coupl. = J~Coupl. =2.5J

0 ~ 02

p
I I I l I I I I I I I I I I I I I i i I s i g

10 12 14
Length

16 18 2.8 32 34 36 38
Square root of Length

4.2

FIG. 26. Flow to the open chain of a periodic chain with

strong antiferromagnetic coupling to an external 8 =
z

im-

purity. The 0+,1 gap approaches the open chain fixed point
value @= @open.

length chain, we expect the effective internal impurity to
be of spin 0, so that the two lowest-lying states are simply
those of the even-length open chain (0+, 1 ). Numeri-
cally we find exactly these two lowest-lying states, mov-

ing away from the periodic chain behavior E = 0 with
the predicted relevant scaling and slowly approaching the
open chain fixed point spectrum (Figs. 25 and 26).

For an external impurity of spin 1 coupled to an odd-
length chain, the fixed point is an s =

2 impurity with an
even-length open chain, so that the lowest-lying states are

. Again we find the two lowest-lying states

and sznumerically for either sign of the coupling,
with their energy difference moving away from the zero-
coupling periodic chain value E = 0 with the predicted
scaling (Fig. 27). There is a parity reversal of the states
when going from ferromagnetic (three sites removed) to
antiferromagnetic coupling (one site removed), which is
not indicated explicitly in the graphs.

FIG. 27. Flow away from the periodic chain fixed point
due to weak coupling to an external s = 1 impurity. The

gap is fitted to 8 = a/L' + 5/L exhibiting the pre-

dicted I, scaling corrections up to higher order. For anti-
ferromagnetic coupling the parity of the two states is reversed.

IV. THERMODYNAMICS

In this section we discuss the thermodynamics of a
single impurity in a quantum spin chain. We first con-
sider the scaling limit in which T -+ 0 and L ~ ao. In
practice this means T « v and T « T~, where T~ is
the "Kondo temperature, " i.e. , the energy scale at which
renormalization-group flow to the stable fixed point oc-
curs. It also means L » 1 and L » v/T~. In this limit,
the partition function only depends on the dimension-
less ratio v/LT. In the presence of a magnetic field Lt, it
also depends on the other dimensionless ratio Lt/T. Cor-
rections to these results are expressed in a perturbative
series in the irrelevant operators and are suppressed by
powers of T/T~.

We begin by considering the scaling limit. The par-
tition function for an open x2:z chain with anisotropy
corresponding to a radius R is

Z;",„(LT/v; R) = ) exp[ —(zv/LT)(2+R )(S') ] [1 —exp( —nvm/LT)]
S» m=1

(4.1)

Z ALT/6v+O($/LT)1

Q4n R (4.2)

for an even or odd length. In this limit the free en-

The sum over S' runs over integers or half-integers for
an even or odd length, corresponding to Z' and Z', re-
spectively. Note that Z is a product of the contributions
of the soliton degree of freedom S' with a rigid rota-
tor spectrum, and of the harmonic oscillator degrees of
freedom a~. In the low-temperature limit, LT/v ~ 0,
the partition function is dominated by the lowest-energy
state; i.e. , a singlet for even length or a doublet for odd
length. In the opposite limit, LT/v ~ oo, we find the
asymptotic behavior

cb„ik(T) = n'LT/3v. (4.3)

The impurity free energy simply gives a temperature-
independent entropy 8 = lng, where the "ground-state
degeneracy" g is given by

g(R) = 1
(4 4)

Note that there is no impurity contribution to the spe-
cific heat in this limit. This only arises when we include

I

ergy consists of a bulk term, scaling with I plus an t-
independent impurity contribution. The bulk free energy
gives a linear specific heat:
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(lT R i, , (lT 1
pe" lE2v ~2) op

In the limit lT/v ~ oo, we find

(4.5)

irrelevant operator contributions. Taking into account
the doubling of degrees of freedom for the periodic chain,
we find that in this case the partition function is given
by

(lT
periadie ~(v )

y &( 1. In this case b vanished in the limit y ~ 0, as we
approach the free Fermion fixed point. Since this hap-
pens, the boundary operator is a modified hopping term
in the free Fermion Hamiltonian and there is no nonlinear
P function in a free theory. )

Next we consider the magnetization in the scaling
limit, i.e. , ignoring irrelevant operators. We specialize
to the Heisenberg case for an open chain. Now only the
rigid rotor degrees of freedom contribute, giving

M = T ln ) exp[ —(xv/lT)(S ) + (h/T)S ]cth

2"' (lT/ R) ' I "+ ("I' )
periodic (4.6) (4 7)

Note that the bulk part of the free energy (that scales
with l) is the same as for the open chain. However, there
is no "impurity free energy" in this case; the ground-state
degeneracy is g(R) = 1 for all R.

The ground-state degeneracy g(R) is in general non-
integer for the open chain. It is only integer at the
free fermion point g(1/~47r) = 1. These systems pro-
vide interesting examples of the "g theorem" which was
conjectured but only partially proven perturbatively in
Ref. 2. This theorem states that g always decreases un-
der renormalization from a less stable to a more sta-
ble boundary fixed point. It is in many ways analo-
gous to Zamolodchikov'sis "c theorem" which states that
the conformal anomaly parameter c, proportional to the
specific-heat slope, also decreases under renormalization
between bulk fixed points. The flows between the var-
ious fixed points that we have discussed all obey this
theorem. let us begin b considering the Heisenberg
model for which g = 1/ 2 & 1 for the open chain. We
saw in the previous section that modifying one weak link
is a relevant perturbation which drives the system from
the periodic to open chain. In this process g decreases
from 1 to 1/v 2, respecting the g theorem. For two weak
links the flow is from the open to periodic chains. How-
ever, in this case, the unstable open chain fixed point also
contains a decoupled impurity spin. This contributes an
extra factor of 2 to g, g = 2/v2 ) 1. Thus again g
decreases under renormalization.

It is interesting to consider the general xxz chain from
this perspective. For the case of one weak link, the
lowest-dimensional operators at the periodic and open
chain fixed points have dimensions 1/4+Rz and 4vrRz,
respectively. Thus the stability of the fixed points re-
verses when R passes through 1/~47r, the xx point, cor-
responding to a free fermion. (This was observed in Ref.
4. It corresponds to a transition between perfect reBec-
tion and perfect transmission when the fermion inter-
actions change sign from repulsive to attractive. ) We
note that the ground-state degeneracy for the open chain
passes through 1 at precisely the same value of R, so that
the flow is always in the direction of decreasing g. (De-
spite the fact that the change in g is small near the free
Fermion point, this does not provide an example to which
the perturbative proof of the g theorem~ applies. That
proof assumed a barely relevant coupling constant A with

P function &i"i ——yA —bA, where b is of order 1 and

(Again the sum is over integer or half-integer S' for even
or odd chains, respectively. ) In the low-temperature
limit, the susceptibility vanishes exponentially for an
even-length chain: g —+ (2/T)e "I', but exhibits Curie
law behavior for an odd-length chain due to the s =

z
ground state: y —+ 1/4T. In the infinite length limit, the
magnetization exhibits only a bulk term: M ~ lh/2irv;
there is no impurity magnetization, ignoring irrelevant
operators.

Now we consider the effect of irrelevant operators. We
work in the infinite length limit and consider the spe-
cific heat and susceptibility. These calculations exactly
parallel the fairly well-known ones that have been done
for the Kondo effect. i4 We simply perform lowest-order
perturbative calculations in the leading irrelevant oper-
ator. Because these operators are irrelevant, all higher-
order corrections are suppressed by additional powers of
T compared to the leading-order calculation. The power
of T, with which the specific heat and susceptibility scale,
is determined by the dimension of the leading irrelevant
operator. The behavior is somewhat difFerent depending
on whether the periodic or open chain is the stable fixed
point.

I et us first consider the open chain fixed point. There
are now three leading irrelevant operators, all of dimen-
sion 2: J~+, J2, and J+ J . Weexpect the corresponding
coupling constants to be of order 1/T~, where T~ is the
energy scale at which the crossover to the stable fixed
point occurs. If we slightly perturb the periodic chain
with one modified link by 6J, for example, we expect
T~ oc (b J)2/v since the relevant operator has dimension

The impurity specific heat is proportional to T/Tli,
since it arises from first-order perturbation theory in the
leading irrelevant operator. Note that this is dimension-
less, as is the bulk term ALT/Sv. The factor of l/v is
replaced by 1/TIr in the impurity term. By the same
reasoning, we predict an impurity susceptibility propor-
tional to 1/Tlr, T-independent at T ~ 0. Again this has
the same dimension as the bulk term, l/2nv, with l/v
replaced by 1/TIr.

Next we consider the periodic chain fixed point, which
is stable in the case of two modified links. In this case the
leading irrelevant operator (d/dx)trg has dimension z.
Thus the corresponding coupling constant is 1/T& . Ifi/2

we begin with an almost decoupled spin with coupling 6J
to its two neighbors, then the Kondo temperature is ex-
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c; p oc (T/TJc) ln(T/TJc). (4.8)

Similarly, the impurity susceptibility has a logarithm

gimp oc 1n(T/T~). (4.9)

For the periodic chain fixed point, the Wilson ratio Riv
is universal because there is only one leading irrelevant
operator. We find

gimp/Cimp&w=
Xbuik/Cbulk

(4.10)

V. CONCLUSIONS

We have studied the effect of various types of impu-
rities in s =

z Heisenberg antiferromagnets. In nearly
all cases we found that the stable fixed point is the
open chain, sometimes with a leftover decoupled partially
screened impurity. The only exception is the case of two
weak links where the periodic chain is the stable fixed
point, corresponding to a healing of the defect.

There are analogies to both the single-channel and the
two-channel Kondo effects. The most striking difference
is that the two fixed points that occur in the single-
channel Kondo problem (0 or m/2 phase shift) are equiv-
alent, whereas the open and periodic spin-chain fixed
points are quite different from each other. The open
chain fixed point is very similar to the single-channel
Kondo fixed point. The Kondo interaction (correspond-
ing to coupling open chains to an isolated impurity) is
marginal. In the absence of a decoupled spin, the lead-
ing irrelevant operator is of dimension 2. On the other
hand, the periodic chain fixed point is more like the non-
Fermi-liquid fixed point that occurs in the two-channel
s =

2 Kondo effect, despite the fact that it corresponds
to a trivial boundary condition (i.e., no boundary condi-
tion) on the spin chain. The reason for this is that both

ponentially small: TK oc e ""'~"~s~. The leading irrele-
vant operator can also be written as (JL, i+JR i) trgo'.
It is convenient to regard the right-moving spin degrees of
freedom as a second channel of left movers, for purposes
of doing perturbation theory in the boundary operator.
We then have two left-moving A: = 1 WZW fields. This
is equivalent to a single k = 2 WZW field together with
an Ising sector, a correspondence which was used in a dis-
cussion of the two-impurity Kondo effect. The operator
trgcr ~ gi o&gzp ~ P, where P is the spin-1 primary
field in the tc = 2 theory of dimension z. The leading
irrelevant operator becomes J i P. This is precisely the
same leading irrelevant operator as occurs in the two-
channel Kondo effect. Thus we can take over the results
of Ref. 1 directly. J i @is a primary field with respect to
the single Virasoro algebra in the purely left-moving the-
ory. Therefore, its finite-temperature expectation value
vanishes. Consequently, the leading contribution to the
specific heat arises from second order -perturbation the-
ory. The second-order perturbation theory result gives
an impurity specific heat

left- and right-moving channels come into play. The heal-

ing process that we have described is analogous to over-

screening in the Kondo effect. The two neighboring spins
overscreen the s =

2 impurity, leading to an effective im-

purity of the same size, which is then screened by the next
pair of spins, etc. Beginning from the limit of two very
weak links, the fixed point occurs at a value of the cou-

plings which is neither zero nor oo, as in the two-channel
Kondo case. The leading irrelevant operator is actually
equivalent to the one occurring in the two-channel Kondo
problem.

Although the discussion so far has focussed on the case
of an s =

z chain, much of it should apply to general
half-integer spin. The continuum limit of the Heisen-

berg model is believed to be the same for all half-integer
spins. i7 Thus all the above conclusions from the con-
tinuum limit about the relevance or irrelevance of vari-
ous perturbations and about finite-size scaling carry over
directly. The generalization of the healing phenomena
to higher spin merits some discussion. It is clear that
equally modifying two-neighboring bonds will always be
irrelevant and lead to healing. What is less clear is what
will occur if a smatter spin is inserted into the chain,
for example, an s = zi impurity in an s =

&
chain.

This is again an "overscreened" situation. If the antifer-
romagnetic couplings flow to infinity, the effective spin
becomes z. The effective coupling to the next pair of
spins remains antiferromagnetic. If this coupling flows
to infinity, then the effective spin becomes

&
again, etc.

Thus it is natural to hypothesize that the system will
always flow to some critical point which does not corre-
spond to the open chain, whenever an impurity of size
simpzpiiy is inserted into a half-odd-integer-spin chain
such that 2s~;„) s; p„„iy. The stable critical point
might correspond to the periodic chain (as it does for
szhaiz = simpzpi&y: z ) or may possibly be a nontrivial
fixed point.

Experimental observation of the effects discussed here
will probably not be easy. Two crucial effects which we
have not discussed are interimpurity interactions and in-
terchain couplings. The former are rather analogous to
Ruderman-Kittel-Kasuya- Yosida (RKKY) interactions
in the Kondo effect. They are relevant for arbitrarily
low impurity concentration in the one-dimensional case,
based on replica methods. is In order to study quenched
random disorder, an approximate renormalization-group
transformation has been developediszo in which most
strongly antiferromagnetically coupled pairs of spins are
eliminated, leaving behind only weak couplings between
the spins on either side of the pairs. This tends to pro-
duce a progressively more dilute system of spins with
weaker couplings. It leads to a susceptibility which di-
verges at T ~ 0, but less rapidly than 1/T. It is unclear
to us whether this approximation takes into account the
effects which we have discussed here for a single impu-
rity. It seems less appropriate in the dilute impurity
limit, where most spins form long uniform chains and
more strongly coupled pairs essentially do not exist. This
question may deserve further investigation.

Another possibility for observing the effects discussed
here is in muon spin-resonance experiments. In this case,
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the muon itself may act as the impurity, and it is perfectly
feasible to study a single impurity.
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APPENDIX: THE ALGORITHM

(A1)

where

b4i+ HCi
(b +2b(H)+(Hz))'I ' (A2)

Az=(H ) —(H),
b,s = (H)(Hz) —(Hs),
64= (H ) —(H)(Hs).

(A3)

(A4)

(A5)

We used the notation (H") = (4'i ~H" ~4i). The energy
is given by

The algorithm we used starts from a normalized ini-
tial trial vector 4'i and successively minimizes the en-
ergy expectation value in each iteration step by forming
the linear combination 4z = b@i+ H@i. The explicit
formulas are

The algorithm terminates when we are close to the
ground state so that the energy cannot be lowered much
further. Clearly all symmetries of ttfq are preserved in
each step, so the algorithm can be used to find ground
states in difFerent sectors of H.

We decided to work in the orthonormal S, basis be-
cause the next-nearest-neighbor coupling requires exces-
sive computations in the valence-bond basis, which
keeps track of the total spin. The basis states can be
represented by integer bitstrings, and the Hamiltonian
was implemented as a procedure that manipulates and
then stores the bitstrings and their coefficients as they
are created. For numerical convenience we used the ex-
change Hamiltonian, which divers by a factor of 2 and
a constant from the Heisenberg Hamiltonian. The var-
ious tricks to optimize the algorithm include a hashing
technique, z extrapolation to the exact ground state, and
reusing previously created information on how to update
basis states. The resulting ground state can be used as
an initial starting state for a similar Hamiltonian with
only slightly modified parameters. The extrapolation is
based on the fact that the actual ground-state energy is
approached exponentially and simply uses the last three
iteration values to find an improved result. (This gives
reliably at least two more digits accuracy. )

Taking into account the limited available symmetries of
our problem, we can handle only about 22 sites on a SUN
workstation (about 8 sites less than what can be done
for a periodic chain in the valence-bond basis). Some
calculations were done on a NEC SX3/44 supercomputer
because supercomputers generally allow for about four
more sites. Working in the valence-bond basis with s = 0
and using translational and parity invariance, we can find
the exact ground state to 8-digit accuracy of a periodic
chain of 24 sites in only 15-sec CPU time on a NEC
SX3/44 supercomputer. This needs to be compared to
20-min CPU time on a SPARCstation2 when working in
the S, basis for the same problem.
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