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Dispersion of magnetic excitations in a spin-1 chain with easy-plane anisotropy
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We study the dispersion of magnetic excitations in a Heisenberg antiferromagnetic chain of spin S = 1

with exchange J and single-ion anisotropy D. Chains of length up to 18 sites are studied by a Lanczos
method. For the Haldane phase D &D, =J we show that the gap at zero momentum and S'=1 is given

by the sum of the gaps in the sectors S'= 1 and S'=0 at momentum ~. The transition region near D =J
is likely to be reduced to an isolated point. Large-D perturbation theory is smoothly recovered as soon
as D &2J. We discuss the implications for experiments on Ni(C288N~)2NO&C104 (NENP) as well as
CsFeBr3.

Antiferromagnetic (AF) quantum spin chains have
been the subject of intense theoretical and experimental
studies since Haldane's conjecture' about the difference
between integer and half-integer spins. Integer spin
chains are predicted to be generically massive. In the
case of the isotropic Heisenberg S = 1 chain with
nearest-neighbor exchange, there is now convincing evi-
dence from numerical studies that a finite gap exists in
the thermodynamic limit. On a finite chain the lowest-
lying levels are a singlet ground state with zero momen-
tum and a degenerate triplet S=1 with momentum m.

The gap between these low-lying levels converges towards
a finite nonzero value in the thermodynamic limit.
Current estimates for this so-called Haldane gap are
close to 0.41 J. However, most studies have been restrict-
ed to the k =~ part of the spectrum of elementary excita-
tions. In the isotropic case, a quantum Monte Carlo
study has given weight to the belief that the gap at k =0
is twice the gap at k =~ as occurs naturally in the non-
linear 0. model picture of the spin-1 chain.

In this paper, we obtain the spectrum of elementary ex-
citations for a spin-1 chain with easy-plane single-ion an-
isotropy D. When D is increased, the Haldane gap is di-
minished until at D =J it vanishes. At this point a transi-
tion occurs so that when D is further increased we ob-
serve the rise of a gap of a different nature in a singlet
phase. These results are relevant to the interpretation of
experiments on Ni(C2HsN2)2NO2CiO~ (NENP), for ex-
ample, on the Haldane side and on CsFeBr3 on the
strongly anisotropic side.

Experimentally the compound Ni(C2HsN2) 2NO2C104 is
one of the best candidates' to display the Haldane gap.
The nickel ions have spin 1 and are tentatively described
by the following Hamiltonian:

H=JgS, S, +, +Dg(S )

The vectors S, are quantum spin operators satisfying the
SU(2) rotation algebra with length S, =2. They are locat-
ed along a one-dimensional lattice of X sites with periodic
boundary conditions and the exchange constant J is posi-

tive. In the case of NENP, present estimates"' are
J/kit=43. 5 K and D/J=0. 18. The isotropic chain
D =0 can be described' by a continuum field theory, the
O(3) nonlinear cr model. This is a massive theory as seen
from general renormalization-group arguments as well as
from the Bethe-ansatz solution. Moreover, its scattering
S matrix is known and there are no bound states: the
spectrum consists of a massive triplet. This has impor-
tant consequences for the spin chain: the excitation near
wave vector k =0 should consist of two massive particles
and thus the gap in the k =0 sector is predicted to be
twice the gap in the k =~ sector where the fundamental
massive particle shows up. This property is thus part of
the Haldane conjecture and it is worth testing it on the
experimental candidates such as NENP. '

In the presence of single-ion anisotropy, the Haldane
gap is split into two components: the triplet with S =1
and k =m under the perturbation caused by the D term
gives a high-energy singlet state with S'=0 and a low-

lying doublet S'=+1. The gap between the ground state
and the doublet (singlet) will hereafter be called
G' ' (O'+I). The evolution of these two gaps has been
studied' in detail for anisotropy up to D/J=0. 2S. Un-
der the assumption that nothing significant happens in
the presence of anisotropy, the excitation at k=0 and
S'=+1 should consist of one excitation with k=~,
S'=0 and one excitation with k =m, S'=+1. Thus, the
gap at k =0 and S'=+1 should be equal to G'+'+ G'

To investigate the excitation spectrum we have used a
Lanczos algorithm with minimized iterations applied to
chains of up to 18 spins. An accuracy of 10 on the en-

ergy is obtained typically in a few tens of iterations. On a
Cray2 computer, the lowest energy of the 18-spin chain
sec obtained with such an accuracy in —3100 (-2400)
secs for S'=0 (S'=+1) once the matrix elements are
computed. In addition to the ground-state energy, we
have computed the lowest energy of the sector S'=+1
for all the allowed momenta. The difference ek is called
the excitation energy (e„=G' '). It has been obtained
for all sizes from 4 to 16 sites (for 18 sites we have only
computed the k =0 and m. momenta around D =0 and J).
The momentum k=0 and ~ are common to all these
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chains. In these cases it is possible to use eSciently the
so-called Shanks transformation' which is well suited to
the removal of the exponential transients ' that we ex-
pect in a massive chain (an estimate of the error can be
obtained using a one-parameter family of transforma-
tions' which generalizes the Shanks transformation). In
the isotropic D =0 case we find for the Haldane gap at
k=m the value 0.411(1) J. At k=0 we find a gap of
0.86(3) close to twice the Haldane value. Our findings for
the isotropic chain are summarized in Fig. 1 (the finite-
size effects are found to be more important for k =0 than
for k =n.). When adding anisotropy, we find that the gap
at k =0 is given with a good accuracy by G'+'+ O' '. In
the case of NENP, where D /J =0.2, we have
G'+'=0. 684(1) while G' '=0.289(1) giving a sum
0.973(2) which is very close to the measurement at k =0:
1.01(2) (in units of I). Up to D/J-l, the sum property is
well satisfied inside our errors.

The Haldane phase will survive until G' '=0. This
closure of the lowest gap happens for D =D, =J. In the
lower part of Fig. 2, we have plotted the values of 6'
against the anisotropy term D using the Shanks transfor-
mation for 4—16 chains. The transition occurs clearly in
a narrow region. ' ' The most likely proposal is that

there is only one transition occurring in an isolated point.
However, there may be a small massless phase with a
nonzero width in D. The fact that the Shanks transfor-
mation can be used successfully near D —J with 4—16
spin chains shows that the singular behavior shows up
only for long chains. Our ability to use chains up to 18
sites can thus clarify the analysis.

We have thus computed the gap from D!J=0.9 up to
1.1 by steps of 0.01 for 4-16 chains and by steps of 0.02
for 18 chains (from D/J=0. 9 up to 1.02). We have
determined the transition point D, and the critical indice
v by use of finite-size scaling with an unknown critical
curve f:

NGN '=f[(D D, )N—' '] . (2)

The result is shown in Fig. 3, in the upper part for 14—18
chains and in the lower part for 10-18 chains. We find

good evidence for scaling in the longer chains. The pa-
rameters are chosen to obtain visual matching of the
points on a single curve. An analysis of the D depen-
dence of logarithms of ratios of NG& ' for different N
values' leads us to prefer a slightly reduced D, central
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FIG. 1. Excitation spectrum as a function of the momentum for four values of the anisotropy. Data from N =4 (cross), 6 (plus), 8
(diamond), 10 (square), 12 (octagon), 14 (fancy plus), 16 (fancy cross), 18 (fancy square), and Shanks extrapolation (burst). The solid
line is from Eq. (3) and the dashed line is from the semiclassical formula. D and e are in units of J.
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FIG. 2. Excitation eo and e as a function of the anisotropy,
in units of J. The solid line is obtained from Eq. (3).

value. We conclude that the zero gap region reduced to
an isolated point at D, /J=0. 99(2) with a critical ex-
ponent 1/v=0. 6(2). In the Abelian bosonization frame-
work, the massless point is reached by setting to zero the
coefficient of the relevant operator of a sine-Gordon mod-
el. A simple scaling argument shows that the scaling di-
mension x of this operator is given by x=2 —(1/v).
This, in turn, leads to a value for the exponent g govern-
ing the decay of correlations at the massless point:
g=1/2x=0. 36 in excellent agreement with a direct
determination.

For larger D values, the gap rises again as seen in Fig.
2. For D not large enough the correlation length remains
large and the finite-size effects are important on the spec-
trum as seen at Fig. 1 for D/J=1. 2. The physics of this
phase is quite different from the Haldane phase and can
be understood from the large-D limit. When D ~~, the
ground state becomes simply ~Si = =S&=0) since
all the spins are forced to lie in the XY' plane. There is
thus a gap of order D toward excitation of one spin to
S'=+1. The states ~Si =O, . . . ,S =+1,. . . ,S&=0) will

be dispersed under the action of the nearest-neighbor ex-
change term and form a band with ek =D+2J cosk at
first order in perturbation (in J). These states ' with one
up or down spin have been christened excitons (e) and an-
tiexcitons (e) since they are very difFerent from magnon
states in an antiferromagnet. They have been observed
in the compound CsFeBr3 which has a very large single-
ion anisotropy. Perturbation theory to third order has
been performed with the result
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FIG. 3. Scaled gaps NG& ' as a function of the scaling vari-

able in Eq. (2). Gaps and anisotropy are in units of J.

We have investigated the dispersion relation for various
values of the anisotropy in the large-D phase. As seen in
Figs, 1 and 2, the agreement between our ab initio results
and the perturbative result (solid line) is excellent for
D/J=5 and 2.5. In these cases the gap is so large that
we do not need any extrapolation method to estimate the
infinite volume limit. It is only below D =2J that there
are some significant deviations: for example, we display
the spectrum ek for D =1.2 J, the immediate neighbor-
hood of the transition which shows strong deviation from
the perturbation theory. The gap value G' ' can be ob-
tained from Eq. (3) and compared with numerical data:
see Fig. 2 which summarizes our findings as a function of
D. From our curves it is clear that the semiclassical for-
mula derived by Lindgard, '

ek =D&1+4(J/D) cosk,
(dashed line in Fig. 1), is valid only asymptotically when
D ~ ~ and that the straightforward perturbative result

[Eq. (3)] is much more realistic for small-D values. This
implies, that, in the case of CsFeBr3, the anisotropy pa-
rameter should be D/J=3. 3 rather than D/J=4. 7 as
suggested by use of the semiclassical result.

In conclusion, we have obtained evidence that, in the
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whole Haldane phase of the anisotropic chain, the gap at
k =0 is given by the sum of the two gaps at k =~. For
the NENP compound we thus predict the k =0 S'=1
gap to be =3.7 meV. At large anisotropy, perturbation
theory is smoothly recovered as soon as D/J )2.5. The
Gnite-size scaling analysis of the transition between the
two phases leads to a critical value D, /J= 0.99(2) with
an exponent l /v=0. 6(2).
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