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Elementary excitations and nonlinear dynamics of a magnetic domain wall
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Two-dimensional magnons localized in the polarized 180° Bloch domain wall and its nonlinear dynam-
ics at high ac drive field in an yttrium iron garnet single-crystal plate are investigated. The interaction
between translational and flexural modes of the wall vibration is studied in detail. The excitation spec-
trum of the moving wall is shown to depend on its velocity. An unexpected asymmetric dependence of
flexural mode eigenfrequencies and resonance linewidths on the wall velocity is found. The flexural
waves themselves are found to influence the amplitude of the translational wall vibrations. Two kinds of
instability were found at increasing drive field. The first is the transition from the periodic linear vibra-
tions at low field and low wall mobility to weakly nonharmonic oscillations at high mobility. They are
shown to be due to the excitation of the standing flexural modes of the wall. And the second one is the
transition to the region of chaotic wall motion and low mobility at the highest field studied. The real-
time signals, spectral data, and phase-space patterns corresponding to different regions were obtained.
The phase portrait at the highest field studied is found to be of the chaotic attractor type.

I. INTRODUCTION

Spin-wave theory is known to be very useful in the
description of the basic properties of magnetized crys-
tals.!? The most popular material in spin-wave experi-
ments is yttrium iron garnet (YIG) because of its extraor-
dinarily low ferromagnetic resonance (FMR) linewidth
and spin-wave damping even at room temperature. In re-
cent years, due to the growing interest in the chaotic dy-
namics of nonlinear systems, it also became an important
system for investigations in spin-wave instability experi-
ments. >

Apart from magnons, magnets may contain domain
walls with complicated internal structure, and they, natu-
rally, are expected to affect the total excitation spectrum
of the crystal.#~12 A consistent account of the interac-
tions of different types of wall excitations, magnons, soli-
tons, Bloch lines, and points is therefore important in the
description of the relaxation and magnetization dynamics
in magnets with domain walls. Some of these excitations,
namely, wall magnons with the wave vector k normal to
the magnetization in domains M, according to the
theories®®~!! have the unusual asymmetric dispersion re-
lation w(k)#w(—k) (@ is the magnon frequency).

The two lower resonances of the flexural domain-wall
oscillations related to the nonuniform distribution of the
internal magnetic field in bubble garnet films have been
observed in Ref. 13. A more detailed experimental study
of the wall-excitation spectrum was carried out on
YIG.™!5 These observations of the excitation of the wall
standing flexural waves (k1M) allowed the determination
of the wall magnon damping, dispersion, and phase veloc-
ity as well as the influence of the Bloch lines. The possi-
bility of a direct study of the magnon spectrum of the
moving wall was reported in Ref. 16. In the earlier ex-
periments on the same samples, the chaotic generation of
the nonlinear solitonlike excitations of the wall structure
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in the initially polarized wall was found to occur at high
amplitude h, of the ac field 4 ||M.!"!® Here we present
the results of further investigations of the wall magnon
spectrum in a wide frequency range (to 60 MHz) and dis-
cuss the problem of the excitation of standing waves for
the case of asymmetric dispersion (Sec. II). In Sec. III
the data are given on the magnon spectra of the wall
moving at different velocities, including a possible mani-
festation of the asymmetry mentioned. The opposite
effect of the wall flexural waves’ influence on its transla-
tional motion is also discussed. Finally, we shall de-
scribe instabilities of the wall flexural waves, chaotic wall
motion and its dynamic structure conversion occurring at
higher hg.

II. ELEMENTARY EXCITATIONS
IN THE POLARIZED DOMAIN WALL

Domain walls in magnets are known to lead to addi-
tional localized modes of magnetic excitations. Accord-
ing to this theory, there can exist various branches of
these surface excitations of different physical origin.®!!"1°
Here we shall be concerned only with the lower Gold-
stone branch: the flexural mode of the wall excitations,
or so-called Winter’s magnons. In the small anisotropy
easy-axis ferromagnets, they were predicted to obey the
unusual asymmetric dispersion relation [8]

(k)= —cokQ V2 +colkl(1+Q 1172
kAl <<1, kIM (1)
A’=A/K, c3}=8mAy?, Q=K/2nrM?

(A4 and K are the exchange and anisotropy constants; ¥ is
the gyromagnetic ratio).

In a magnet of finite dimensions the quantization, or
the resonant condition of the standing waves, has the fol-
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lowing form:

(ky+k_)d=2mn, n=0,1,2,... )

or using Eq. (1) we obtain, as in [10],
w,=cmn/d=cy(1+Q "W Vrn/d ,

R - _ (3)
(2¢) cy +ecZ', e =w/ky,

where d is the sample thickness along the axis OX||M
(Fig. 1); c; are the phase velocities of the backward and
forward waves. In this case, of the standing waves with x
dependence of the nth mode of the wall displacements
differing from the usual sinusoidal, one should be real-
ized:

q,(x,t)~sin(wt —k | x)+sin(wt —k _x)

=2sin |0t — X (14+0) 12 |cos | TBX @)
This expression obeys the boundary conditions
dq + 1299 _ _
it coQ dx 0, at x=0,d , (5)

which are equivalent to the free boundary conditions only
at Q@ >>1.

Unlike the previous magneto-optic experiments on
YIG [14,15], in the present study of such standing waves
a more sensitive and broadband inductive technique has
been used. A rectangular YIG sample 10X0.3X0.04
mm? in size contained a single domain wall polarized by a
dc field H, LM (see Fig. 1). The flexural vibration modes
of the wall excited by a spatially uniform ac field h||M
were detected by a small carefully compensated pickup
coil, which was wound directly on the sample. The signal
from the coil was fed to the spectrum analyzer, its fre-
quency sweep and additional signal storage and averaging
being controlled by a personal computer. Note that we
held the value of A, constant in the range to 17 MHz. At
higher frequencies the field decreased as 1/w because of
the inductivity of the Helmholtz coils.

The plot of the amplitude of the wall velocity
qo=wqo=2mvq, (g, is the wall vibration’s amplitude)
versus frequency of the field 4 (Fig. 2) explicitly displays a
set of resonant peaks caused by the excitation of the
standing flexural waves of the wall.!* The appropriate
dispersion curve of the peak frequency v, versus its num-
ber n shown in the inset exhibits qualitative agreement
with the theory [Eq. (3)]. The experimental value of

b B

FIG. 1. Geometry of YIG sample containing a single domain
wall and schematic view of its flexural modes.
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units.)

qo (arb.

FIG. 2. Amplitude of the wall velocity ¢, vs frequency v of
ac field h at H, =28 Oe, h;=16 mOe. Inset shows the corre-
sponding plot of the resonant peak frequency v, vs its number
n.

Cexpt =2d [v,(n)—v,(n —1)]=100 m/s obtained at par-
ticular conditions is of the same order of magnitude as
that calculated from Eq. (3), ¢, =120 m/s (in YIG
0=005, 4=4.2X10"7 erg/cm, y=17.6 MHz/Oe).
But the exact values of v, are strongly dependent on the
fields # and H,.'*'® In particular, at lower k, they in-
creased. Therefore the deviation of the v,(n) plot from a
linear one (in the inset of Fig. 2) may be due to the men-
tioned decrease of drive field at frequencies higher than
17 MHz. Another contribution to the nonlinearity of the
dis;s)elrlsion curve may be related to the exchange ener-
gy.”

Note, that we assumed that both even and odd flexural
modes n =0,1,2,3, ... were detected by the pickup coil,
since the signal from the coil is defined by the integral:

dg,(x,t)
I(n,t)~fod—qT

or, using Eq. (4), we shall obtain at Q <<1,

dx=wf0dq,,(x,t)dx ,

2d

— sin mnQ

4

ThQ
4

I(n,t)~ sin (ot —

’

4 (6)
I#0 at0=<n<—.
Q

So, the nonsinusoidal character of the standing waves
caused by the spectrum asymmetry at Q <<1 makes it
possible to detect a large number of modes n ~80 (for
YIG). Unfortunately, we could not verify the I(n)
dependence experimentally and prove the spectrum
asymmetry, because the maximum number of modes ob-
served was about 35. But in the next section we shall
present the data on the excitations in the moving wall,
which may be another manifestation of the mentioned
asymmetry.

III. INTERACTION OF THE TRANSLATION
AND FLEXURAL MODES OF THE WALL VIBRATIONS

In order to investigate the elementary excitations spec-
trum of the moving domain wall, the “interrupted” in-



46 ELEMENTARY EXCITATIONS AND NONLINEAR DYNAMICS OF . ..

ductive technique was used [16]. The static equilibrium
state of the polarized wall in the sample was defined by
the internal gradient field dH /dy of magnetostatic origin,
whose value is characterized by the measured restoring
force  coefficient  k,, =2MdH /dy ~6X10’g/cm?s’.
Therefore, to move the wall at constant velocity V, a
sawtooth field H||M was applied. The wall velocity is
then V=8MH,/(k, T) (T is the sawtooth field period
and H, its amplitude). The high-frequency wall vibration
amplitude g, was selectively measured only during the
short pulses triggered by the field H signal (see Fig. 3) us-
ing an apparatus with a specially designed electronic in-
terrupter.

The plots §y(v), measured at different wall velocities
and analogous to that in Fig. 2 showed a clear asymmetry
with respect to V. The corresponding dispersion curves
v, vs n display the same property of the resonant fre-
quencies v,(V)7#v,(—V) [Fig. 4(a)]. The dispersion
remains linear and the slope of the v,(n) curve monoto-
nously decreases when the velocity changes from —V to
+ V. These points are also illustrated by v,(¥) plots of
different peaks [Fig. 4(b)]. The transition from the mono-
tonous decreasing to increasing curve occurred when the
wall polarity was reversed by the dc field H, (the magne-
tization in domains was ascertained to be unchanged).
Another important observed point is that more high-
frequency peaks were successively suppressed at higher
|V]. This point is seen in the plots of the peak width Av
at the 0.7 level versus its number n and Av vs V at
different n (Fig. 5). These data also display the asym-
metric dependence on V.

The data on the wall resonance linewidth yield infor-
mation on the magnon damping parameter in the moving
wall. At low velocities the damping was found to be ap-
proximately equal to that found from FMR, as in Refs.
13 and 14. But at higher ||, the dispersive dependence
of damping on the wave vector arises [~n?, see Fig.
5(a)]. The dispersion of damping, first of all, may be due
to the multimagnon scattering processes. *2° The second
reason is related to the interaction of the wall magnons
and different types of nonlinear excitations of the wall
structure, their number being larger at higher | V|. They

[

w

L

FIG. 3. Illustration of “interrupted” technique. Real-time
signals of the high-frequency field A (1) and low-frequency field
H (2). The wall motion was recorded during short pulses (3).
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FIG. 4. Plots of the peak frequency v, vs (a) its number n,
obtained by “interrupted” technique at different ¥ =—7.2 m/s
(O), V=0m/s (&), ¥=2.7m/s (O) and ¥=7.2 m/s (A), and
(b) the wall velocity V of different peaks n=4 (OB), n=5 (A A)
at H, =28 Oe (B A), and H, =—28 Oe (OA), hy=19 mQOe.

were revealed in these conditions magneto-optically, us-
ing single-sweep traces on the storage oscilloscope as in
Refs. 17 and 18.

The observed asymmetric dependences of the flexural
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FIG. 5. Curves of the peak width Av at the 0.7 level vs (a) n
at different wall velocities ¥=6.3 m/s (A), ¥ =—6.3 m/s (A),
V=5m/s (M), V=—5m/s (0), V=0m/s (x), H, =28 Oe; and
(b) Vat n=2 (&), n=3 (0), n=4 (0O). hy=19 mOe, H, =28
Oe.



10 832

mode eigenfrequencies and resonance linewidths (hence
the phase velocity and damping) on the wall velocity con-
tradicts the theories”!? that were developed for the high-
anisotropy ferromagnets Q >>1, when ¢, =c_=c,.
Therefore, we believe that these effects are definitively re-
lated to the asymmetry of the spectrum itself, ¢, #c_,
which was predicted for the stationary wall in the low-
anisotropy ferromagnets. Unfortunately, no such theory
exists for the moving wall now.

In addition to the wall motion influence on the excita-
tion spectrum, the opposite effect, of the wall excitation
influence on the translation motion, was also observed.
Using a spectrum analyzer and a lock-in amplifier, we
simultaneously measured the amplitude of the forced
low- and high-frequency wall vibrations (g; and g,)
caused by the fields H and h, respectively. The plots
g,;(v) and ¢,(v) exhibit the peaks at the same resonant
frequencies (Fig. 6). The magnitude of §; was nearly pro-
portional to H. The phase of the low-frequency signal
was found to be nearly constant at any v values. There-
fore, the field & did not affect markedly the low-frequency
wall mobility. So, we conclude that the peaks observed in
the ¢,(v) curves are essentially due to the change of the
local restoring force coefficient ., (thus the total value
K=k, +Ky.) of the wall. This change may be described
by allowing for the magnetic after-effect caused by the in-
teraction of the moving wall with dynamic defects, whose
energy depends on the local magnetization (e.g., the elec-
tron jumps Fe’"«—Fe’").2! The low-amplitude wall vi-
brations, due to the influence of such a local induced an-
isotropy near the wall, will occur in a deeper potential
well than high-amplitude ones at resonant frequencies of
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FIG. 6. Plots of the velocity amplitude of forced low- and
high-frequency wall vibrations (¢, and ¢,) vs frequency v at
hy=15 mOe, H, =28 Oe, low-frequency field H,=14 mOe (1),
22 mOe (2), 29 mOe (3), =20 kHz.
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the field h. Note, that, in case the inverse relaxation time
77! of the defects is of the same order as the frequency v
of the field A, only this field changes the magnitude of «.
Therefore, the value of q; ~ H /« will also be larger at res-
onant frequencies v,.

Another possible reason lies in the interaction of the
wall with static defects, distributed over the sample (not
locally near the wall as in the previous case). Then the «
value will be determined by the ratio of A and mean coer-
cive field of a defect.

This two-frequency technique can be a useful tool for
the investigation of the other types of the wall excitations
as well. In particular, we observed a similar phenomenon
in two-frequency oscillations of a single Bloch line in a
“demagnetized” wall (H, =0).%

IV. INSTABILITIES OF DOMAIN-WALL EXCITATIONS

The spin-wave instabilities and chaotic behavior of
parametrically excited magnons in magnets without
domain walls have been intensively studied in recent
years.? In this section we shall describe a number of non-
linear effects in the wall excitation experiments.

Figure 7 shows the graph of the amplitude of the wall
velocity g, versus drive field amplitude 4, at the given
frequency v=0.94 MHz. Three regions corresponding to
different regimes of the wall motion and separated by two
points of instability are clearly seen. In region 1 the
linear wall vibrations take place and their Fourier-
transform spectrum contains only the first harmonic at
the field 4 frequency. But at some threshold value
h;, =10 mOe a drastic rise of ¢, occurs, accompanied by
the appearance of the upper harmonics and of the narrow
bands of the continuous spectrum. These bands corre-
spond to the excitation of the flexural modes, as can be
seem from a comparison of the Fourier spectrum F 5 N2
and the g4(v) curve (Fig. 8). Another demonstration is
that a dc field H, change, which caused the displacement
of the peaks in the ¢y(v) curves, resulted in the corre-
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FIG. 7. Dependence of the wall velocity amplitude ¢, on the
field amplitude A, at H, =28 Oe and v=0.94 MHz. Inset shows
the initial region of the curve.
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FIG. 8. (a) Fourier-transform spectrum F,(f) of the wall vi-
brations signal at v=0.94 MHz, h, =34 mOe; and (b) frequency
dependence of the wall velocity amplitude go(v) at h; =23 mOe;
H, =28 Oe.

sponding change of the Fourier spectrum.

The unstable growth of the wall vibration amplitude g,
at the first instability point has an effect on the ¢4(v)
curves (see Fig. 9), resulting in the disappearance of the
lower resonances. The curves recorded at increasing
(solid line) or decreasing (dashed line) frequency exhibit
hysteresis behavior. Figure 10 shows hysteresis plots

4o (arb.units.)

0 v, ve 5 10 15
v (MHz)

FIG. 9. Plots g4(v) at (a) hy=10.6 mQe, (b) 12 mOe, and (c)
13 mOe. Solid curves were recorded at increasing v and dashed
curves, at decreasing v.
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FIG. 10. Graphs of ¢4(h,) like those in Fig. 7, recorded at (a)
v=v;=1.2 MHz and (b) v=v,=2.3 MHz. The fields A, h,, h;
marked by vertical dashed lines, correspond to the plots (a)-(c)
in Fig. 9. The frequencies v, and v, are marked the same as in
Fig. 9.

do(hy) like those in Fig. 7, measured at different frequen-
cies (v=v;=1.2 MHz and v=v,=2.3 MH2z), being in a
good agreement with ¢,(v) graphs [vertical dashed lines
in Fig. 9 correspond to ¢,(h,) curves a and b in Fig. 10,
and vice versa; the similar lines in Fig. 10 correspond to
plots a, b, and c in Fig. 9). Thus the failure of the lower
modes in §,(v) curves at decreasing field is definitively re-
lated to the transition from the high- to low-mobility re-
gion through the hysteresis area in the ¢,(4,) plot.

Fy

0o 2 4 6 8
v (MHz)

FIG. 11. Fourier-spectra of the wall oscillations caused by

the simultaneous action of the high-frequency field 7, =7 mOe,

v=1.02 MHz and low-frequency field H (at Q=5 kHz) at

different wall velocities V (V=8MQH,/k,,): 0 m/s (1), 0.16
m/s (2), 0.5 m/s (3), 1.44 m/s (4). H, =28 Oe.
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The phenomenon of the threshold excitation of flexural
modes was also observed in experiments with a transla-
tionally moving wall. The small high-frequency (v=1.02
MHz) field hy<h,; and the low-frequency (=5 kHz)
sawtooth field H||M, which caused the wall to move at
constant velocity ¥V, were applied simultaneously.
Fourier spectra corresponding to different V (Fig. 11)
show the appearance of the same flexural modes at some
threshold velocity value ¥,=0.5 m/s (it was determined
by the magnitude of 4,). In this case the phenomenon
was less developed. In order to enhance the signal-to-
noise ratio, we used the larger resolution bandwidth
(W=10 kHz) of the spectrum analyzer than earlier (in
Fig. 8 W=100 Hz). Therefore the discrete harmonics in
Fig. 11 have a larger visible linewidth than those in Fig.
8. One other distinction is that the fine structure of the
multiple harmonics exists in the present case. A number
of peaks at combined frequencies v.=nvitmQ
(n,m=1,2,3,...) are clearly seen (Fig. 12).

In these experiments the wall was displaced by the
low-frequency field at a large distance. Therefore we con-
clude that the threshold excitation of flexural modes can-
not be attributed to the interaction with static defects. A
more probable reason may be the after-effect
phenomenon, discussed in the previous section. The
parametric excitation of the wall magnons, like that in
the bulk spin-wave experiments is also a possible explana-
tion [3]. So, the nonlinear theory of the spin-wave insta-
bilities and chaos in a domain wall is required.

Now, we shall discuss the experimental manifestation
of the chaotic behavior of the wall at the second instabili-
ty. It occurs at higher 4, when the wall mobility drasti-
cally decreases. It is a transition from region 2 to region
3 in Fig. 7. This instability is characterized by changes in
the real-time signals of the wall vibrations from periodic
to chaotic [see Fig. 13(a)]. In the Fourier-spectrum a
large continuous component appears with a noisy
discrete harmonics at the frequencies v, =(n +1)v [Fig.
13(b)]. Using the signal from the pickup coil ~¢ and the
numerically integrated one, we obtained the phase-space
trajectories ¢ vs g. Figure 13(c) displays the explicit bi-
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FIG. 12. Fine structure of the first harmonic in Fig. 11.
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FIG. 13. (a) Real-time signals, (b) Fourier-spectra, and (c)
phase portraits of the wall vibrations caused by the field 5, =45
mOe (left plots) and hy=0.3 Oe (right plots). v=0.79 MHz,
H, =28 Oe.

furcation from the periodic pattern to the chaotic pat-
tern, like a chaotic strange attractor. A more detailed ex-
perimental study of the chaotic dynamics of a domain
wall will be published elsewhere.

It should be noted that the transition to the chaotic re-
gime of the wall motion was accompanied by a dynamic
structure conversion. It consisted of chaotic nucleation,
motion, and annihilation of the nonlinear excitations of
the wall structure: ‘“dynamic” subdomains—Bloch lines
pairs (like breathers), and small subdomain nuclei local-
ized near the sample surfaces (like low-amplitude soli-
tons). These excitations were often transformed to a stat-
ic surface subdomain nucleus, or even pairs of Bloch lines
after switching off the field. But the repeat switch-on of
the smaller ac field moved them out of the sample and the
wall became polarized. A detailed magneto-optic study
of such excitations in YIG was carried out in the previ-
ous works.*151718 Thys the process of interaction of
elementary and nonlinear excitations, in fact, defines both
the quantitative parameters of the wall motion—velocity
or mobility, and qualitative features—the periodic or
chaotic character of the motion.

V. CONCLUSIONS

The present experiments show that a domain wall in
YIG is a suitable system for the investigation of various
branches of spectrum of magnetic excitations. The mag-
nons in a moving domain wall are found to possess unex-
pected asymmetric properties with respect to the wall ve-
locity, which have no analogs in other types of excita-
tions in solids. Nonlinear phenomena of threshold exci-
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tation of flexural waves are found to take place both in
the moving wall and in the wall at rest. Finally, the ex-
perimental techniques that have been described enable
the determination of detailed information on a variety of
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elementary and nonlinear excitations of different dimen-
sions and on the complex chaotic dynamics of a two-
dimensional spin system. Unfortunately, an appropriate
nonlinear theory is still lacking.
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