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Abelian bosonization is used to map the two-channel Kondo problem into a resonant-level Hamiltoni-

an, which is equivalent to noninteracting fermions for a particular value of the longitudinal exchange
coupling. This solvable point is analogous to the Toulouse limit of the ordinary Kondo problem. The
impurity Green s function, susceptibility, and thermodynamic properties, together with certain
conduction-electron correlation functions, are evaluated at the solvable point. In particular, it is shown

that the pairing resonance of the two-channel Kondo problem may be characterized as an enhancement
of superconducting pairing of the conduction electrons at the impurity site, correlated with the impurity
pseudospin (or equivalently odd-time pairing of the conduction electrons).

I. INTRODUCTION

The general multichannel Kondo model, introduced by
Blandin and Nozieres' consists of a magnetic impurity of
spin S in a sea of conduction electrons, which have spin-
1/2 and n-degenerate orbital channels or flavors. Since
its inception, the model has been solved by
renormalization-group, ' Bethe Ansatz, and conformal
invariance techniques and, by now, it is well under-
stood. At the present time, it seems that the most likely
physical realizations of the model do not involve magnet-
ic impurities, but rather inelastic impurity scattering. A
number of years ago, it was pointed out that the inelastic
scattering of conduction electrons from a nonmagnetic
two-level impurity is equivalent to a single-channel Kon-
do problem. In this mapping, the two levels are
represented by an impurity pseudospin, but the conduc-
tion electrons do not have a corresponding degree of free-
dom. Subsequently, it was emphasized by Zawadowski, '

in the context of the scattering of conduction electrons
from two-level systems in metallic glasses, that inelastic
scattering may change the parity of the angular momen-
tum state of the conduction electrons, thereby giving
them an internal degree of freedom coupled to that of the
impurity. Indeed, Murumatsu and Guinea" used a
renormalization-group analysis to show that, for strong
electron-assisted tunneling between the states of the two-
level system, the low-temperature behavior is dominated
by the nontrivial fixed point of the multichannel Kondo
problem. Physically, the spin of the conduction electrons
plays the role of the channel or flavor index, so n =2.

Recently it has been discovered' that the specific heat,
resistivity, and residual entropy of Y& U Pd3 have the
behavior expected for the two-channel Kondo problem.
The latter is attributed to quadrupolar degrees of free-
dom on the uranium sites, and it has been proposed' that
such a model may also be appropriate for the heavy fer-
mion superconductors UBe»UPt3 and URu2Si2.

Another possible application is to high-temperature su-
perconductors. We have found' that the competition be-

tween long-range Coulomb interactions and the tendency
of holes in an antiferromagnet to separate into hole-rich
and hole-poor phases, leads to low-energy, localized col-
lective modes with internal degrees of freedom. The
scattering of conduction electrons from the collective
modes may be modeled by a two-channel Kondo problem
with anisotropic exchange. ' Previously, it had been not-
ed by Cox' that the marginal Fermi-liquid phenomenol-
ogy of high-temperature superconductors' is reminiscent
of the behavior of a two-channel Kondo system.

As these examples make clear, the most important case
from a physical point of view is the two-channel Kondo
problem, n =2, S= 1/2, for which the conduction elec-
trons overscreen the impurity. ' This offers the possibility
of exploring interesting physical effects because the low-
energy behavior may not be characterized as a Fermi
liquid. ' However, the consequences may be different in
different realizations of the model.

The purpose of this paper is to describe another way of
solving the two-channel Kondo problem, specifically by
mapping it into a resonant-level model, which reduces to
noninteracting fermions for a particular value of the z
component of the exchange. This special case is analo-
gous to the Toulouse limit' of the ordinary Kondo prob-
lem. The mapping will be derived by using an Abelian
boson representation of the conduction-electron fields. It
may also be obtained, but less obviously, from an expan-
sion of the partition function and correlation functions in
powers of the spin-flip part of the exchange interaction.
Similar methods have been used for the single-channel
case' and in the context of quantum dissipative sys-
tems. ' We feel that the method is useful because it al-
lows a very explicit evaluation of correlation functions,
and gives a perspective on properties such as the ground-
state entropy. ' Moreover it may be generalized to
more than one impurity, especially in a purely one-
dimensional version of the model.

The layout of the paper is as follows. The mapping to
the resonant-level model is described in Sec. II where it is
shown that an essential difference between the single-
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channel and two-channel versions is that in the latter
case, only "half" of the impurity degrees of freedom are
coupled to the conduction electrons. The impurity
Green's function, susceptibility, and thermodynamic
properties are evaluated in Sec. III and conduction-
electron correlation functions in Sec. IV. In particular, it
is shown that superconductive pairing of the conduction
electrons at the impurity site is enhanced provided it is
correlated with the impurity pseudospin. This behavior
is a reflection of the pairing resonance that characterizes
the low-energy state of the two-channel Kondo problem.

In applications to problems such as inelastic impurity
scattering, the physical meaning of the variables may not
correspond to the usual Kondo nomenclature. "Flavor"
in the Kondo language may represent the spin of the con-
duction electrons, and the Kondo "spin" may correspond
to some other property such as parity. In an attempt to
minimize the potential confusion we shall use flavor in
the usual Kondo sense of a channel degeneracy, but the
internal degrees of freedom of the impurity will be called
"pseudospin. "

II. REDUCTION TO FREE-FERMION FORM

It is well known that the critical behavior of a Kondo
problem is dominated by a single angular momentum
state of the conduction electrons, and therefore it is
sufficient to consider only the radial motion. This is
equivalent to a one-dimensional problem in half-space
x 0 (since the radial coordinate is positive). The critical
behavior may be obtained by taking the continuum limit,
in which the kinetic energy of the conduction electrons is
given by a Dirac equation involving right- and left-going
particles. An equivalent representation, to be adopted
here, is to retain only the left-going fermions and to allow
x to range over all space —~ &x & oo. A derivation of
this representation was given by AfHeck and Ludwig.

The Hamiltonian is given by

where

@; (x):&—n f dx'ft, (x') —P; (x) (2.5)

Here P; (x) are Bose fields and A, (x) their conjugate
momenta, satisfying commutation relations

P; (x), A~&(x') =i5~5 P(x —x') . (2.6)

In Eq. (2.4), a is a length, which —+0 in the continuum
limit. Physically it corresponds to a lattice spacing. In
terms of the Bose fields, the two parts of H become

'2
2

a,=-,'u, y f" dx ft,'..+
i,a=1

(2.7)

J 2'r'g o'
i, a=1 Bx —p

2

+ g g Jingo p
i, a,P=1 A, =y, z

Xexp i4; (0) i4;&—(0)

i,a=1
2

+aa ia ~

i,a=1
2

(2.9)

(2.&)

The form of && may be simplified by introducing Bose
fields corresponding to collective modes for charge P, (x),
pseudospin P, (x), flavor P&(x), and pseudospin flavor

P,t(x):

%=&0+&(,
where

(2.1) i, a=1
2

~ii +aa ia '

ay,.(x)
&O=luF g f dx 1(+(x)

i, a=1
(2.2)

1(; (x)=
—i4,. (x)

&2n-a
(2.4)

is the kinetic energy of the conduction electrons, UF is the
Fermi velocity, and f, (x) annihilates a left-going fer-
mion with pseudospin a and flavor i at position x. The
impurity part of% is given by

2

Jim cr PQ; (0)P,F(0)+HH, (2.3)
a, Pi =1 A, =x,y, z

where r are the three components of the impurity pseu-
dospin operator, cr are Pauli matrices, and H is the mag-
netic field acting on the impurity. It is assumed that the
impurity is at the origin, x =0.

The boson representation of the fermion fields is given
b 2P

ac,
1
——7

7T Bx p

1+ J„&cos@,(0)+J r~sin4, (0) .
m.a

Xcos@,(0)+Hr' . (2.10)

Note that the charge- and pseudospin-flavor fields, P, (x)
and P,t(x) do not enter into &&.

At this point, the discussion will be restricted to the
antiferromagnetic xxz model (J„=J, J, )0). In the Ap-
pendix, it will be shown that the same critical behavior is

i,a=1

This is a canonical transformation, and the ft„ ft„etc.,
and 4„4„etc., are defined by the same set of linear
equations. In terms of the new variables, %0 remains a
diagonal quadratic form, corresponding to free bosons
and
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obtained for general anisotropic coupling, whatever the
sign of J, . Then 4, (0) may be eliminated from the J„,J
part of %) in Eq. (2.10) by carrying out a rotation in ~-

pseudospin space through an angle —4, (0) about the z
axis. This may be accomplished via a unitary transfor-

ination U&U ' with U=exp[ iH—C) (0)], which alsoS

transforms the kinetic energy Ao to

ac,
U&OU '=HO —uFr*

ax (-=0)
(2.1 1)

We shall mainly be concerned with a special value of the
z component of the exchange, J, =m.UF, for which the
Hamiltonian turns out to be particularly simple: Later
we shall consider the general case. With this assumption,
the r' terms in U&OU ' and U%) U ' cancel, and the
fully transformed Hamiltonian becomes

on & or [P,t(0) —
)t),t(0)]. In a sense only half of the im-

purity and conduction-electron pseudospin-flavor vari-
ables at the impurity site are coupled.

Eq. (2.14} is the central result of this section. The
free-fermion form of &,&

enables us to work out all im-
purity Green's functions and correlation functions. Also
it is possible to evaluate many of the correlation functions
of the conduction electrons, provided they may be ex-
pressed as functions of the fermion field 1(),t and the boson
fields )1}„g„andPf.

If J, /)ruF%1, the term proportional to (ae, /ax)„
in & will not be cancelled. Then the pseudospin-wave
part of the Hamiltonian may be rewritten in terms of a
fermion field P, (x) [defined by Eq. (2.14) with 4,t re-
placed by 4, ] as

aq, (x)
gj, =iur f dx ))'j, (x)

U~U ' =Ho+ r"cos@,t(0)+Hr' .
~a

(2.12)
+2(J, nvF—)(d d —

—,
' )g, (0)i)),(0) (2. 16)

P,t(x) =
27M

(2. 1 3}

In order to have the correct signature for the J„ term of
(2.12), the r-pseudospin operators must be written in
terms of a fermion variable d to give the Hamiltonian for
the pseudospin-favor degrees of freedom:

a))),t(x )
&st= l v Ff dx Q t( x )

We shall now show that Eq. (2.12) is equivalent to a sum
of free-fermion and free-boson Hamiltonians, which is ex-
actly solvable.

The kinetic energy part of (2.12), %0, has contributions
from )I}„g„and )t. f, which separate because they do not
appear in &). Therefore, we shall focus on the part in-
volving P,t, which may be written in terms of fermion
fields by again using a representation similar to (2.4), but
in reverse

—i4,)ix)

The coupling between the conduction electrons and the
impurity is now fully described by &,+&,t, which is the
two-channel version of the resonant-level model. Depar-
tures from exactly solvable limit may be considered using
perturbation theory in the interaction term in Eq. (2.16).

III. IMPURITY PROPERTIES

It is straightforward to obtain the correlation functions
and thermodynamic properties of the impurity from the
free-fermion Hamiltonian (2.14). Since the total number
of fermions is not conserved, there are anomalous
Green's functions, as in the theory of superconductivity,
and it is convenient to use the Nambu notation '

(3.1)

and obtain the impurity Green's function as a 2 X 2 ma-
trix

C~(t)= i (, Tb, (t)b, —), (3.2)
+ [Q,t(0)+/St(0)][d —d]+H(d d —1/2) .

&2tta

(2.14)

Now &,& is a quadratic form and therefore is exactly
solvable. It is analogous to the Toulouse limit of the
single-channel Kondo problem, where the Harniltonian
may also be mapped onto free fermions but in that case
the coupling to the impurity has the form
it,t(0)d+d f,(0). This difference has profound conse-
quences for the correlation functions and thermodynamic
properties of the model, which is evident if we transform
to Majorana (real) fermions

+d
~2

b= d
i&2

Then the two-channel Hamiltonian &,t does not depend

where T is the time ordering operator and ( 0 ) denotes
thermal average of an operator O. Then it is straightfor-
ward to solve the equations of motion and evaluate the
Fourier transform G&(cv) of Cz(t) to find

G~(cu) = tu+2HH+ (1—2r")iI
2

(3.3)

3 (tu) =m5(cu)(1+2K)+ (1—2r") .
r

~2+ p2
(3.4)

This expression brings out the essential feature of the
two-channel version of the Kondo problem. Half of the
spectral weight of the impurity is decoupled from the
electron gas [the 5(tu) term in Eq. (3.4)] and half has the

where I =J„/(vrvFa) and the upper or lower sign corre-
sponds to co in the upper or lower half plane, respectively.
For H =0, the corresponding impurity spectral function
1S
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usual Lorentzian form, with the width I, which is anoth-
er way of showing that only half of the impurity degrees
of freedom are coupled to the conduction electrons. It
will be seen that the interplay between the two contribu-
tions to A(co) is responsible for the characteristic behav-
ior of the correlation functions at low temperature.

The impurity contribution to the free energy F may be
calculated in the usual way by evaluating the therrno-
dynamic average of

which may be expressed in terms of the fermion variables
as

y(co, T)= —i f dt e ' '([&,fi'(t)]), (3.8}

where &—=d d. Since the fermions are noninteracting,
the thermal average in Eq. (3.8) factors into averages of
pairs of d, d, which may then be obtained from the ma-
trix elements of A(co). The result of these manipulations
1s

tanh( —,'Pa), )
g(co, T)= f dc'~

277 00 CO~ CO

(3.9)

using Eq. (3.3}, and integrating over the coupling con-
stant. The result is

uF /a
F=FD+ f dao f(co)tan2' UF ~

I co

N H
(3.5)

where F~ is the free energy of the impurity with J =0,
and f(co)=(e~ +1) '. It is necessary to retain the
short-distance cutoff a, here, in order to obtain a finite ex-
pression for F, but a may be set equal to zero in evaluat-
ing universal quantities obtained by differentiating F.
From Eq. (3.5) the impurity contribution to the entropy
( dF/dT) —may easily be evaluated, to find

lim lim S=—,
' ln2,

T~O H~O
(3.6)

a result obtained previously. There are two contribu-
tions to Eq. (3.6). For J„=O, Sc—= —BF~/BT=ln2, be-
cause an isolated impurity has a two-fold degenerate
ground state. But the integral in Eq. (3.5) contributes
—

—,'ln2 to S; once again only half of the impurity is cou-
pled to the conduction electrons. If the order of limits in
Eq. (3.6) is reversed, the value of the entropy is zero,
which agrees with the conclusion of Tsvelick but is
different from the result obtained by Sacramento and
Schlottmann from the Bethe Ansatz solution for isotro-
pic coupling.

It is known ' that the specific heat at low tempera-
tures has an impurity contribution Cz, which varies as
T InT. However, using Eq. (3.5), we find that the leading
term in Cr is m. T/6I . This is a feature of the exactly
solvable limit: if J,An. uz, the last term in Eq. (2.16) gives
a T lnT contribution to Cz in second-order perturbation
theory. On the other hand, we do find that the magnetic
susceptibility of the impurity has logarithmic divergences

In(u },1
(3.7)

where@=I!Tfor H=O danu =(I /H) for T=O. The
coefficient of the logarithm in Eq. (3.7) agrees with that
obtained from the Bethe Ansatz solution if we identify
I =2~k&Tz, where Tz is the Kondo temperature. Then
the coef5cient of lnH agrees exactly with the result of
Tsvelick and Wiegmann, and the coefficient of (lnT)/Tk
is (2m. ) ', whereas Sacramento and Schlottmann obtain
0.05 numerically. Note that H and T have different scale
dimensions T-H .

The most interesting impurity correlation function for
our purposes is the longitudinal pseudospin susceptibility,

This expression involves one frequency integral instead of
the usual two because of the 5(co) contribution to A(co)
in Eq. (3.4). For co=0, Eq. (3.9) agrees with Eq. (3.7) at
low temperatures. For T =0, the real part of y is given

by Eq. (3.7) with T replaced by co. The imaginary part of
g(co, T), for any co, T is given by

Imp(co, T)=—,'tanh( —,'Pco)
z 2

.I
(3.10)

For small co, this agrees with the result obtained by Tsvel-
ick, apart from a factor of 4.

(4.2)

Here, only the second term on the right involves the im-
purity because the pseudospin density is decoupled from
the resonant-level Hamiltonian %,f. Since r'=& —1/2,
the impurity contribution to the correlation function for
the total pseudospin density is given by y(co, T), defined
by Eq. (3.8} and evaluated in Eqs. (3.9) and (3.10). This
result shows that the time evolution of the impurity pseu-

IV. CONDUCTION ELECTRON PROPERTIES

Some of the correlation functions of the conduction
electrons in the two-channel Kondo problem have been
derived by means of conformal invariance techniques.
In this section, we shall evaluate quantities that may be of
interest for high-temperature and heavy-fermion super-
conductors, in particular pseudospin density and pairing
correlations. The procedure for evaluating the correla-
tion functions is the same as in Sec. II: (a) introduce the
boson representation (2.4), (b) change to collective vari-
ables via Eq. (2.9), (c) carry out the rotation in
pseudospin space generated by U, and (d) change back to
the fermion field g,f(x). Then the correlation functions
are expressed in terms of free-boson or free-fermion vari-
ables and may be evaluated exactly. This procedure is
straightforward for two-particle properties. However, we
shall not consider single-particle correlation functions be-
cause they involve, formally QP, t(x), which is difficult to
work with.

The'z component of the conduction-electron pseudo-
spin density is given by

S'(x}=—,
' g o'pg; (x)f,p(x) . (4.1)

i, a,P

Then following the steps outlined above we arrive at
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dospin feeds back into conduction-electron properties. It
is of interest for calculating the optical conductivity in a
particular realization of the two-channel Kondo problem,
proposed in the context of high-temperature supercon-
ductivity. ' In that realization, the flavor variables corre-
spond to the spin of the conduction electrons and the
pseudospin is an internal degree of freedom of a local col-
lective excitation represented by the "impurity. " Since
there are four collective degrees of freedom, it is possible
to construct four current-density operators for the one-
dimensional version of the model. They are the charge-,
pseudospin-, flavor-, and pseudospin-flavor densities of
the left-going fermions. In the boson representation,
they are proportional to B4, /Bx, 84f /Bx, 84, /Bx, and
B@,r/Bx. Of these, only the last two couple to the impur-
ity: 8&,r/Bx [because @,f(0) occurs in Eq. (2. 12)] and
84, /Bx [because the canonical transformation generated
by U gives it a contribution H5(x), as in Eq. (4.2)]. Then,
evaluating the corresponding current-current correlation
functions, we find a Drude contribution to the
pseudospin-flavor conductivity. But the impurity contri-
bution to the pseudospin conductivity is proportional to
y(co, T) and we find for its real part

Reo, (co, T) =
tanh( —,'Pc@) r

co + I
(4.3)

This quantity is proportional to co
' for T «co « I and

to T ' for ~&&T &&I, which is the behavior charac-
teristic of the normal state of high-temperature supercon-
ductors. Of course, it remains to be shown that, in a
particular model, the optical conductivity maps into the
pseudospin conductivity of the equivalent two-channel
Kondo problem. Moreover it is clear that the z com-
ponent of the impurity pseudospin operator must have
the same transformation properties as a current operator,
i.e., it must be odd under parity and time reversal. These
issues will be discussed more fully elsewhere. '

Another issue of importance for applications is the be-
havior of the conduction-electron pairing susceptibility at
the impurity site. In particular, since the low-
temperature state is a pairing resonance, rather than a
single-particle resonance as in the single-channel Kondo
problem, it is conceivable that pairing correlations might
be enhanced. The correlation functions of the relevant
pairing operators g; (0)1(t ii(0) may be evaluated by the
method outlined above and it is found that they vary as
t for long times. This behavior is the same as for free
fermions and we find, in agreement with AfBeck and
Ludwig, that there is no enhancement of ordinary pair-
ing at the impurity site. But this is not the whole story,
for the pairing resonance also involves the impurity pseu-
dospin. Therefore, it is perhaps not unreasonable that
there is no enhancement of simple pairing of the conduc-
tion electrons.

We may however construct an operator to probe the
nature of the pairing resonance, by considering the solu-
tion for zero hopping &O=O. Then two electrons of op-
posite flavor are exchange coupled to the impurity. It is
easy to show that resultant state has a z component of
pseudospin equal to +1/2 or —1/2, and that it is a su-

perposition of conduction-electron triplets. It may be
shown that there is no enhancement for the triplet
S =+1 components, so we consider the operator

+ ( —+)(011122 421412) (4.4)

which is a flavor singlet, pseudospin triplet S =0 and pro-
jects onto impurity pseudospin +1/2. Expressed in terms
of the collective modes and the d fermions

1
P+ = d d(g, f+fgf)g, ,

27TQ
(4.5)

V. CONCLUSIONS

It has been shown that the anisotropic two-channel
Kondo problem may be solved exactly in the continuum
limit for a particular value of J,. Apart from the T lnT
term in the impurity contribution to the specific heat, the
behavior is the same as for the isotropic case. Moreover
the T lnT term is restored, when J, is away from the solv-
able point. This shows that exchange anisotropy is ir-
relevant at the low-temperature fixed point, in agreement

where g, is defined by Eq. (2.14) with 4,f replaced by 4, .
Using Eq. (2.15), d, d may be replaced by the Majorana
fermions &,b, to give

P+ =(1 i&b—)(p,f+p, ()Q, . (4.6)

Now, when 8 =0, a is a constant of the motion with
I =1/2. Also, since b appears in %,f, (b(g,r+P, f)) is
finite. Then there is a contribution to the P+ susceptibil-
ity equal to a constant multiplied by the 1(, susceptibility,
which is proportional to t '. This is a slower falloff'than
for free fermions and hence the frequency-dependent sus-
ceptibility is enhanced. The same behavior is obtained
for P

The pairing correlations that are enhanced at the im-

purity site may also be written as singlet, odd-time pair-
ing of the type considered by A. Balatsky and E. Abra-
hams, Phys. Rev. B 45, 13 125 (1992). This may be seen
as follows: Introduce the Heisenberg operators g &(t)
and define the flavor-singlet operator:

0 ( t) =$„(t)pi~(0)—g~, (t)1(tii(0) .

Then, using Eq. (2.3), it is straightforward to show that
all odd-time derivatives [d "O(t)/dt "],evaluated at t =0,
contain (among others) a contribution from the J, term
of the Hamiltonian, which is proportional to P+ —P
The operators P+ and P were defined in Eq. (4.4), and
immediately afterwards it was shown that their suscepti-
bilities are enhanced at the impurity site. It follows that
the susceptibility of any odd-time derivative of O(t),
evaluated at t =0, is similarly enhanced, but not the sus-
ceptibilities of even-time derivatives. Consequently, a su-
perconducting state emerging from a collection of two-
channel Kondo impurities should have pairing that is
odd in time. Fermi statistics imply that the anomalous
Green's function (TO(t)) is even under time reversal
combined with pseudospin exchange: Thus the order pa-
rameter should be a pseudospin singlet as well as a flavor
singlet.
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with the conclusion of Aleck. et al. The Abelian bo-
sonization method, used here, allows an explicit evalua-
tion of the correlation functions for the two-channel
Kondo problem. It has enabled us to define and calculate
various conductivities in the model and to probe the na-
ture: of the pairing resonance. It may also be used to con-
sider the behavior of more than one impurity, and to con-
sider annealed as well as quenched averaging. These is-
sues will be addressed in a future publication.
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APPENDIX

The discussion following Eq. (2.10) was presented for
the special (but most important) case of an antiferromag-
netic xxz exchange coupling between the conduction elec-
trons and the impurity. Here, we consider the general
anisotropic situation, J„AJ AJ„following a similar pro-
cedure. Now, we start by carrying out a rotation in ~-

pseudospin space through an angle +4,(0) about the z
axis, i.e., we allow rotations of either sense.

After the transformation, the coefficient of cos@,t(0) in

Eq. (2.10) is proportional to

J +J, J.+J,
2

+
2

r* cos24, (0)+r~ sin24, (0)

(A 1)

and the kinetic energy becomes

ae,
U&OU ' =&0+uF r'

a
(A2)

Now, provided
~ J,AuF ~

=1, we may arrange for the r'
terms in U&OU ' and U%, U ' to cancel, whatever the
sign of J„by choosing the sense of rotation appropriate-
ly. However, the part of the expression (A2) that depends
on 4, (0) will not vanish. Nevertheless, we may argue
that the first term in (A2), the constant, dominates the be-
havior in the continuum limit, unless it vanishes, and that
Eqs. (2.12) or (2.16) characterize the singular low-energy
behavior of the general two-channel Kondo problem. In
order to make the point clear, consider ferromagnetic xxz
exchange (J, &0, J„=—J», or J, (0 J„=J ) for which
the constant term in (Al) vanishes. Now it is known
from renormalization-group arguments' that the cou-
pling to the impurity is an irrelevant variable in this case.
But this is just the 4, (0)-dependent part of (Al). There-
fore, we conclude that the constant part of (Al) dom-
inates the critical behavior and that the second part may
be neglected. The exceptional case for which the con-
stant term in (Al) vanishes is precisely ferromagnetic xxz
exchange. In the general, fully anisotropic, case the same
singular low-energy behavior is obtained for both fer-
romagnetic coupling (J„JJ, (0) and antiferromagnetic
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