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Kondo insulators such as Ce;Bi,Pt; and CeNiSn are small-gap semiconductor compounds. We con-
sider a stoichiometric Kondo insulator described by the symmetric Anderson lattice without orbital de-
generacy and on average two electrons per site. We use a Gutzwiller-type mean-field approximation for-
mulated in terms of four slave bosons per site in analogy with Kotliar and Ruckenstein’s approach for
the Hubbard model. A hybridization gap on the scale of the Kondo temperature opens in the paramag-
netic phase, giving rise to the semiconducting properties at low temperatures. The paramagnetic solu-
tion is stable for sufficiently small U, but not stable with respect to a metallic ferromagnetic phase if
U > 1.54V (first-order transition) and antiferromagnetic long-range order for U > 0.45V (second-order
transition). In zero field the energy of the antiferromagnetic phase is always lower than the energy of the
ferromagnetic state. Quantum fluctuations and the Ruderman-Kittel-Kasuya-Yosida interaction are ex-
pected to stabilize the paramagnetic and antiferromagnetic phases as compared to the ferromagnetic
one. We also discuss the effects of a strong magnetic field.

I. INTRODUCTION

The low-temperature properties of heavy-electron sys-
tems, in particular, the development of coherence in
stoichiometric compounds, have received a large amount
of attention in recent years."? The coherence manifests
itself most significantly in the low-temperature resistivity
and magnetoresistivity. As a consequence of the transla-
tional invariance of the lattice, there is effectively no
scattering (Bloch theorem) at low 7 and low energies, and
the resistivity is then ideally zero at T =0 for a heavy-
fermion metal.

The effects of coherence are most pronounced in so-
called Kondo insulators, which have small-gap semicon-
ductor properties. Here, as a consequence of the coher-
ence, a hybridization gap opens at the Fermi level. The
Kondo insulators SmS, SmBg, and TmSe were already an
exciting topic about ten years ago.’ The more recent
discovery of several Ce, Yb, and U Kondo insulators,
e.g., CeNiSn,* Ce;Bi,Pt;,> YbB,,,® and UNiSn,” has
renewed and enhanced the interest in this subject. All
systems seem to be nonmagnetic (i.e., van Vleck dominat-
ed susceptibility) at low 7, except TmSe and UNiSn for
which antiferromagnetic long-range order has been re-
ported. In UNiSn the antiferromagnetic transition is ac-
companied by an insulator-metal transition, so that the
system is semiconducting only at higher temperatures. In
view of the small energy gaps involved, the properties of
these compounds strongly depend on strains in the crys-
tal and impurities.

The formation of the coherent state in the Kondo lat-
tice can also be studied by introducing disorder into the
system,® i.e., by alloying nonmagnetic impurities (Kondo
holes) substituting for the rare earth or actinide ions.
Adding impurities to a Kondo lattice breaks the transla-
tional invariance and gradually destroys the coherence of
the heavy-fermion ground state.

In recent publications”!® we reported a simple micro-
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scopic theory of the Kondo hole, for both the metallic
and the insulating situations. In the case of a Kondo in-
sulator a bound state (& function in the density of states)
develops in the energy gap. These states only appear in
the coherent phase and disappear in the continuum at
higher temperatures. When the concentration of Kondo
holes is increased, an impurity band forms in the gap.!'
The effect of adding nonmagnetic impurities is then to
gradually smear the hybridization gap in the Kondo insu-
lator. For a low density of Kondo holes, the width and
height of this band depend nonanalytically on the impuri-
ty concentration and the Fermi level is pinned within this
band. As a consequence of this finite bandwidth there is
a small low-temperature regime in which the specific heat
is proportional to T and the susceptibility is finite as
T —0. A metal-insulator transition is expected as a func-
tion of the Kondo-hole concentration.

Doniach and Fazekas'? considered the formation of an
antiferromagnetic ground state in a doped Kondo insula-
tor. Again the Kondo holes introduce a band of heavy-
particle excitations. They argue that the exchange cou-
pling between the heavy particles can lead to an antifer-
romagnetic ground state at relatively low doping. For
larger doping (dirty metal) the system may revert to a
nonmagnetic state. They anticipate the possibility of a
tongue of antiferromagnetic phase protruding into the
nonmagnetic region of the phase diagram at low to inter-
mediate coupling.

The formation of antiferromagnetic long-range order
in heavy-fermion metals has been a subject of intensive
theoretical studies.'* ~!” Experimentally a faint antiferro-
magnetic order has been observed in several heavy-
fermion metals at low temperatures. The ordered mag-
netic moment is very small due to the competition be-
tween the Ruderman-Kittel-Kasuya-Yosida (RKKY) in-
teraction with the Kondo effect. For small Kondo cou-
pling antiferromagnetic order is expected, while if J is
large the ground state is paramagnetic.
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In principle, a stoichiometric Kondo insulator (no
Kondo holes) could also have a magnetic ground state.
We address this question in this paper within a mean-field
approximation for the symmetric Anderson lattice. Fol-
lowing Kotliar and Ruckenstein’s approach!® (for other
variational treatments see Ref. 19) for the Hubbard mod-
el, we introduce four auxiliary bosons at each site, which
then are replaced by scalars in the molecular field treat-
ment. This approach is closely related to the Gutzwiller
method. We analyze the paramagnetic, ferromagnetic,
and antiferromagnetic solutions for the mean-field Kondo
insulator. Using a bandwidth D =10V, V being the on-
site hybridization between f and conduction states, we
obtain that the ground state is paramagnetic for small U
and the antiferromagnetic phase is stable for U >0.45V.
A strong magnetic field lowers the energy of the fer-
romagnetic state, and for large fields and sufficiently large
U the ground state is metallic and ferromagnetic. Quan-
tum fluctuations about the mean-field solution are, on the
one hand, believed to reduce the long-range order, while,
on the other hand, the Ruderman-Kittel-Kasuya-Yosida
interaction for a half-filled conduction band is expected
to favor antiferromagnetism. These competing effects
probably shift the para-antiferromagnetic boundary to
larger-U values.

The definition of the projectors renormalizing the hy-
bridization is not unique. There are several possible
choices for the normalization of the projection operators
that reproduce all matrix elements correctly. The one
here is associated with the Gutzwiller approximation and
reproduces the U =0 limit correctly in mean field, al-
though the approach is actually intended for highly
correlated states. Within the mean-field approximation it
gives a collective enhancement of the Kondo temperature
and a tendency towards magnetic long-range order. This
is very different from the 1/N slave boson approach,?°~2?
which shows no collective enhancement nor magnetic or-
der, and yields universal properties as a function of one
energy scale. In both approaches fluctuations play a fun-
damental role: within the Gutzwiller approximation the
tendency towards magnetic order and the energy scale
are expected to diminish, while within the 1/N expansion
magznetic order has to be induced (probably to order
N9

The rest of the paper is organized as follows. In Sec.
I1, we introduce the Anderson model and the mean-field
equations for the paramagnetic, the ferromagnetic, and
the antiferromagnetic situations. In Sec. III, we present
the numerical solution of the equations. Concluding re-
marks follow in Sec. IV.

II. THE MODEL
AND MEAN-FIELD APPROXIMATION

We consider the Anderson lattice without orbital de-
generacy and with an on-site hybridization V. The Ham-
J
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iltonian is given by
H=2 ekcil-w("lm*{_ef EfiTafia_‘— U 2 nin;y
ko io i
+V2(clafka+flacko) ’ (2.1
ko

where € is the f level energy, Uis the Coulomb repul-
sion in the f shell, n,,=f} f.,, ct, (fi,) creates a con-
duction electron (f electron) with momentum k and spin
o, and f] is the Wannier state at the site R;. The solu-
tion of this model is straightforward if U=0. A gap
opens around the f-level position €, and we have an insu-
lator if the Fermi level lies in the gap. This corresponds
to, on average, two electrons per site.

The effect of U is to introduce correlations into the sys-
tem. In particular, the double occupancy of a site by two
f electrons becomes unlikely for a sufficiently large U,
leading to a complicated many-body problem. The con-
straints on the f occupation of the sites can be reformu-
lated in terms of “auxiliary bosons.”?°~22 This method
has been extensively used in the U — o limit, where only
one ‘“‘slave boson” per site is needed to exclude the double
occupancy. The method has been extended by Kotliar
and Ruckenstein'® to the finite-U situation by introducing
four ‘“‘slave bosons” per site. They studied the Hubbard
model with this approach, and later Balseiro et al.?*%*
applied this slave-boson technique to a model for highly
correlated bands of hybridized Cu3d and O 2p orbitals.
The Kotliar-Ruckenstein slave-boson approach has re-
cently been developed in a spin-rotationally-invariant
form.?

In this paper we use the non-spin-rotationally-invariant
formulation of Kotliar and Ruckenstein. We introduce
four Bose creatlon and annihilation operators for each
site: e',e and d',d for the empty and doubly occupied
state, and p’; ,p1 and p’l ,p for the single occupied states.
These bosons act as projectors onto the corresponding
electronic states. They satisfy the constraint (complete-
ness relation)

e;ei +P,TTP,‘T +PiTlpil +d1Tdt =1 (223-)
and the conditions
fhfi=plhpi+dld,,
(2.2b)

fiTLfil =PiTlpil +dd; .

In the phys1ca1 subspace defined by Egs. (2.2), the opera-
tors f i and f;, are replaced by

zLrl fioZig s (2.3)

so that the matrix elements are invariant in the combined
fermion-boson Hilbert space. The constraints (2.2a) and
(2.2b) are incorporated via Lagrange multipliers A"’ and
M2, respectively. The Hamiltonian now reads (B is the
magnetic field)

H= 2 Ek("li'taclw—‘L 2 (Gf_‘O'B )fizfia_*_VE (Citr IUZ +Zsz

+szd+zwle

e +phpi+pipi +dldi— D+ SAP(L S,

_pitrpia —ddei ). (2.4)

io
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As shown by Kotliar and Ruckenstein,
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the definition of the operators Z,a is not unique, but the following choice

yields the correct matrix elements and the correct expectation value of (Z ' Z;,) within the mean-field approximation

as U—0:

Z,=(1 ‘ddei —Pitrpiar 2

eiTpia +PiT— odi)(1—e; e

—piopi—o) V2. (2.5)

In the mean-field (saddle-point) approximation we replace all boson operators by their expectation values. For the

sake of simplicity we restrict ourselves to the symmetric situation, i.e., €,=

these circumstances,

2<f. ofic?=1,

<eT)=<e»>=(d~T)=<d»)=d ,
(Z,,)=(zl)=(z,_y=(z! )=z,
dip, +p_,)
T2 tddpr, +dN])

and the mean-field Hamiltonian takes the form

(Pl =(pi,)=pP, .

— U /2 and two electrons per site. Under

H=Secl,c0+ 2 €rofinfiot VZ 3 (i fiot fihein) + NdXU+20V =2 P =2 2)
ko i io

+NpF A —AP) +Np2 (A=A —NAD

where N is the number of sites and € -ef oB +7L‘2)
the renormalized f-level energy. 7& ) consists of a spin-
dependent and a spin- mdependent term. In the sym-
metric situation [in order to satisfy the first condition of
(2.6)] the latter is equal to U /2, so that €, changes sign
with the spin, i.e., €7, = —0€;, where €, is to be deter-
mined self-consistently.

The parameters &, A'", p;, p, and d are obtained by
minimization of the ground-state energy of (2.7), i.e.,

oH) _ o(H) o(H)

e, Tl p,

_ 3(H) _
0, =57 =0

=0’

The corresponding equations are
<f,afm> =p;+d*, pitpi+2d’=1,

VE (fhcio) +AD=22)p =0, (2.9)

7V2<f.-2rcig'>+2k") =

The parameter A'! can be eliminated from the last two

equations, yielding
aZ

2d—— V2<f

"ad

=(U—20¢,+20B)p,d . (2.10)

The expectation values (f} f.,) and (flc,) are

straightforwardly obtained from the Green’s functions
J

pitpi+2d’=1,
2pi+p lpy+py ) —1]

(1+pf—p})1—pi+p1)’D? | ©D

2.6)
@.7)
W—E€E
({fro ifle V0= . ,
Juo i/ (0+02, )N w—e)—Z2V?
2.11)
zv

<<Cka ;f10>>w: _ZZVZ s

(a)+0?f)(w—€k)
via
dem((fka ;f;a > )w ’
(2.12)
<fl1;1’clt7)_~—2f dwlm((cko 1fko))w’

(fz):yfia>=_7r1ﬁ2 fi)w

where Im denotes the imaginary part. For simplicity we
assume a flat density of states for the conduction elec-
trons in the energy interval (—D,+ D). When we evalu-
ate the integrals we distinguish between the paramagnet-
ic, ferromagnetic, and antiferromagnetic situations.

A. Paramagnetic ground state

In the paramagnetlc phase and in the absence of an

external field (ff;,)=1,2,=0and p; =p, =p. Under
these circumstances we have
pi+di=1,
(2.13)
D? UD
8(4p2— 1n PP N) = a2
8p2(1—2p2)V v

The solution of these equations will be discussed in the
next section.

B. Ferromagnetic ground state

We now consider the case p; >p, and €,70. In this
situation we have

(2.14)

pip [1—(pF—p1)*]

20py+p ) 1—pF —p])V? v

’
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both equations are valid quite generally, independent of whether the system is a metal or an insulator. Two more equa-
tions are needed to completely determine the four parameters d, € s D1, and p . These equations depend on the relative

magnitude of the gap ( =2Z*V?/D) and €, i.e, on A=max(¢;,Z

zZ*v?
2DA
2p1+p’1—pi—pi] p2

p+d=

V?/D),

(2.15)

(pr—p)l1—pt—pil1+(p;+p,)]

(1+p3—p}[1—pi+p1* D

where in the last equation it is assumed that
A=%,;>Z*V?/D, i.e., that the system is metallic. This
situation can be achieved either by spontaneous fer-
romagnetic order or via a sufficiently strong external
magnetic field B.%

C. Antiferromagnetic ground state

In order to study antiferromagnetic order we have to
introduce a lattice with two interpenetrating sublattices
which we denote with indices @ and b. The kinetic energy
of the conduction electrons is then formulated in terms of
a nearest-neighbor hopping on that lattice. Otherwise
Egs. (2.4) and (2.5) remain valid and we continue restrict-
ing ourselves to the symmetric situation. Within the
mean-field approximation we have to distinguish the ex-
pectation values of the p bosons and the f-level shifts of
the two sublattices, i.e.,

pi=pi=py, pi=p%=p,,

2py+p 1—(p3—p1)]

the procedure is otherwise similar to the one that led to
(2.7). To evaluate the expectation values of the f-level
occupations and the hybridization terms, we need the
Green’s functions. Rather than a 2X2 matrix, we now
should consider a 4 X4 matrix involving the two sublat-
tices. The Brillouin zone is reduced to one-half of its
original size and there are four (rather than two) bands.
The energies of the bands are given by [e=e(k) is the
conduction electron dispersion]

o=1LE+2V?Z2++2V &+ Vizh' 2
U@ 20222+ -2V e+ ViZh! 2

The band structure is schematically shown in Figs. 1(a)
and 1(b). Figure 1(a) corresponds to a small f-level shift
€, (weak antiferromagnetism). The band structure
changes at about €,=0.71VZ to the shape shown in Fig.
1(b), which represents the strong antiferromagnetism sit-

uation. To simplify the k integrations, we replace the
A — Ui AE— Ul-_ AF— v (2.16)  density of states of the tight-binding band of the conduc-
2 2 2 tion electrons by a flat density of states. After some alge-
bra we obtain for the f density of states on the a sublat-
=— [A} 2T)_ Uil_ -2, tice for the majority- and minority-spin directions, re-
2 spectively,
I
o) y2z? a)z—-a)é‘f—(VZ)2 1/29 D2 (a)z—VZZZ)Z—a)}é‘}
Patl@)= — ,
f 2D | [o*+ o', —( VZ)Z](a)+%‘f)3(co—-'e‘f) wz—?}
2.17
y2z2 0’ + e, —(VZ)? 12 (@?—V2Z?)?— 0%’ @17
Pasl0)= / e |p— !
2D [wz—w‘e‘f—( VZ)Z](a)—Zf )3(a)+2‘f) wz—z} ’

where © denotes the step function. The density of states p,; (majority-spin direction) for €,=0.1VZ is plotted in Fig.
2. The main contribution in the o integration to obtain the expectation values arises from the dominant peak in the
density of states. This can be used to greatly simplify the integration (it involves an approximation of the order of 1%)
and to arrive at the following analytic self-consistency equations:

pZT +pﬁ +2d%=1,
s
V& + (V222 /Dy +V?Z2/D

2Api+dH)=1+

(2.18)
UD_2(pT-i-Pl)z[(pT*i—pl)z—l]1 [1—(p2 —p?} )2 ]*D?
D _ ] |
Vi 1= —p] | oy 4p H1—pd —p ]IV 14303 —p] P+ 1—(p2 —p] 212
UD _ 8(pT+pl)3

V: o [1+(p;+p, 21— (p3 —p3)?]
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FIG. 1. Schematic band structure for the antiferromagnetic
ground state. The Brillouin zone is reduced, so that there are
four bands. Situation (a) corresponds to weak antiferromagne-
tism and (b) to strong long-range order. If D >>V, the crossover
between the two cases occurs at an f-level shift €, =0.71VZ.

The solution of the above equations is discussed in Sec.
IIIL.

III. RESULTS

In this section we present the solution of the mean-field
equations for the paramagnetic, ferromagnetic, and anti-
ferromagnetic phases.

A. Paramagnetic ground state

We first present the analytic solution of Egs. (2.13) in
the U —0 and U — « limits, and then discuss the numer-
ical solution for the general case. For U=0 we straight-
forwardly obtain

pT=pl=d=e=%, (3.1)
so that Z =1, in agreement with the exact solution in this
limit. This justifies the choice of the projectors Z,, as
given by Eq. (2.5). In the limit of large U, on the other
hand, doubly occupied or empty sites are unlikely, so that
d is small and p is close to 0.5; we obtain

125 1T T T L
10.0
75

5.0

Pt (w) V

25

ol b b by

L L N LA ALELN BRI B

‘.Ir.\r\‘ al oy

-2 4 0 1
o/V

FIG. 2. f density of states for D=10V and €,=0.1VZ (cor-
responding to U=0.545¥) as a function of frequency in the an-
tiferromagnetically ordered phase. Note that the main contri-
bution in the w integrations to obtain the expectation values
arises from the dominant peak in the density of states.

N

u/v

FIG. 3. Energy gap Eg and p? of the paramagnetic phase as
a function of U/V for D=10V. For U=0 we have
E;=2V?/D and p*=0.25. In the limit U—x we obtain
E;=16d?V?/D and p?=0.5. The large-U asymptotics, Eq.
(3.2), agrees well with the numerical result for U /V larger than
6.

2
d2=D exp

UD
T2

g2

(3.2)

The numerical solution for p? as a function of U/V and
D =10V is shown in Fig. 3. The gap of the Kondo insula-
tor is given by

Zv? y?

Eg=2 =16p*(1—2p*)—
G 16p"(1=2p") -,

(3.3)

which  becomes E;=2V?/D for U=0 and
E;=16d?V?*/D in the limit U— . A plot of E; as a
function of U /V is shown in Fig. 3. The large-U asymp-
totics, Eq. (3.2), agrees well with the numerical result for
U /V larger than 6.

It should be pointed out that the exponential depen-
dence for large U, i.e., (3.2), differs by a factor of 2 from
the usual Kondo exponential. This different exponential
dependence is characteristic of Gutzwiller-type approxi-
mations and is known as the ““lattice enhancement of the
Kondo effect,”'>?” which increases the ground-state
Kondo bound-state energy of the lattice with respect to
that of the impurity. This difference is believed to arise
due to the “coherence” in the lattice.

B. Ferromagnetic ground state

Here we first analyze the solution of Egs. (2.14) and
(2.15) in zero field. The second equation of (2.14) yields
p1 as a function of p, for given U, D, and V. When in-
serted into the second equation of the set (2.15) for B =0,
we determine p; and p,. This solution is obtained nu-
merically and the result is displayed in Fig. 4. For U<V
there is only the paramagnetic solution with p; =p , but
there is no ferromagnetic state. For U > V the equations
allow for two solutions (in addition to the paramagnetic
one), one corresponding to a maximum and the one other
to a relative minimum of the energy. The solution
representing the minimum of the energy is shown in Fig.
4.

Once the p, are determined it is straightforward to ob-
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FIG. 4. p; and p, in zero field for the ferromagnetic and
paramagnetic states as a function of U/V for D=10V. The
stable phase is indicated by the solid line and the energetically
unfavorable state by the dotted line. The transition from
paramagnetism to ferromagnetism at U =1.54V is of first order.

tain the parameter d [Eq. (2.14)] for the doubly occupied
and empty electronic configurations. d? as a function of
U/V is plotted in Fig. 5. The magnetization is given by
m= p% — pzl and the energy is computed as the expecta-
tion value of H

_ U
2[(py+p)?—1]

(3.4)
The comparison of the energies of the paramagnetic and
ferromagnetic solutions determines that the transition
occurs at about U=1.54V. Note that the p, change
discontinuously, so that this transition would be of first
order from a paramagnetic insulator to a metallic fer-
romagnet.

We follow an analogous procedure to obtain the mag-
netization in a finite magnetic field. Our results for m as
a function of B/V for various values of U/V are
displayed in Fig. 6. In zero field m is zero for U <1.54V
(paramagnetic state) and, if U > 1.54V, there is a spon-
taneous magnetization. As expected the magnetization
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FIG. 5. Occupation probability for the doubly occupied and
empty electronic configurations, d2, as a function of U/V for
D =10V. For U =0 we have d =0.5. d decreases monotonical-
ly with U and the discontinuity indicates the transition from
paramagnetism to the ferromagnetic phase.
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FIG. 6. Magnetization as a function of the magnetic field for
various U /V values and D =10V. For U =0 the magnetization
grows continuously when the field overcomes the energy gap.
The transition is discontinuous for U0 and there is a spon-
taneous magnetization even if B =0 for U > 1.54V.

increases monotonically with the field. The critical field
at which the first-order transition to a metallic ferromag-
net takes place decreases with U. The transition is only
continuous for U =0, where the gap is closed if B=E.%
If U > 1.54V, the field required to induce ferromagnetic
long-range order is zero.

C. Antiferromagnetic ground state

For the antiferromagnetic ground state we proceed in a
similar way as for the ferromagnet. The last two equa-
tions of set (2.18) are solved numerically to determine p
and p, (of the a sublattice) as a function of U, V¥, and D.
The results are shown in Fig. 7 as a function of U /¥ and
for D=10V. For U <0.45V there is only the paramag-
netic solution. A second solution, corresponding to an
antiferromagnetic ground state, emerges for U >0.45V.
This is similar to the ferromagnetic situation with the ex-
ception that now the paramagnetic and antiferromagnetic
solutions split continuously at U=0.45V, while the two
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FIG. 7. p; and p, in zero field for the antiferromagnetic and
paramagnetic states as a function of U/V for D=10V. The
stable phase is indicated by the solid line and the energetically
unfavorable state by the dotted line. The transition from
paramagnetism to antiferromagnetism at U=0.45V is continu-
ous.
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FIG. 8. Occupation probability for the doubly occupied and
empty electronic configurations, d?, as a function of U/V for
D =10V. For U=0 we have d =0.5. d’? decreases monotoni-
cally with U and has a kink at the transition from paramagne-
tism to the antiferromagnetic phase at U=0.45V.

solutions split discontinuously for the ferromagnet.

The energy of the antiferromagnetic ground state is
also given by Eq. (3.4). The ordered state is always ener-
getically favorable compared to the paramagnetic state.
The parameter d representing the doubly occupied and
empty electronic configurations is straightforwardly
determined from the first equation of the set (2.18). d? as
a function of U/V is plotted in Fig. 8. As expected d*
decreases dramatically with increasing U. The spontane-
ous sublattice magnetization given by m=pi—p? is
displayed in Fig. 9 as a function of U/V. The
paramagnetic-antiferromagnetic transition is then of
second order.

Next, we have to compare the ground-state energies of
the two ordered phases in the parameter region where
they both are stable with respect to the paramagnetic
solution. It is easy to verify that the ground state always
has antiferromagnetic long-range order if U>0.45V.
The antiferromagnetic order enhances the gap of the
Kondo insulator. This gap is displayed in Fig. 10 as a
function of U /V.

We have not calculated the influence of the external
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FIG. 9. Spontaneous sublattice magnetization as a function
of U/V and for D=10V. For U <0.45V the ordered magnetic
moment is zero and it grows continuously with U in the antifer-
romagnetic phase.

u/v

FIG. 10. Energy gap of the Kondo insulator in the paramag-
netic and antiferromagnetic phases as a function of U/V for
D=10V. The gap has two kinks: the small-U kink is the
paramagnetic to antiferromagnetic transition while the other
kink corresponds to the change in the band structure as dis-
cussed in Fig. 1.

magnetic field on the antiferromagnetic state. The field
breaks the symmetry between the p, of the two sublat-
tices, complicating the analysis. However, qualitative ar-
guments indicate that the magnetic field interferes de-
structively with the antiferromagnetic long-range order,
while it favors ferromagnetic long-range order. As a
function of field we then expect a first-order phase transi-
tion from the antiferromagnetic solution to the ferromag-
netic state. For sufficiently small U there is a first-order
transition from the paramagnetic to the ferromagnetic
state.

IV. CONCLUDING REMARKS

In this paper we considered a Kondo insulator as de-
scribed by the symmetric nondegenerate Anderson lat-
tice. In order to treat the correlations within the f-shell
adequately, we introduced four slave bosons per site in
analogy to Kotliar and Ruckenstein’s treatment'®?3 of
the Hubbard model. Subsequently, we performed the
standard mean-field approximation and replaced the slave
bosons by their expectation value. We studied the 7 =0
properties of the paramagnetic, ferromagnetic, and anti-
ferromagnetic states as a function of U/ V.

The paramagnetic solution corresponds to a Kondo in-
sulator. It correctly reproduces the U =0 limit and for
large U the gap has the characteristic exponential Kondo
dependence. This exponential dependence includes the
“lattice enhancement of the Kondo effect’”'>?’ charac-
teristic of Gutzwiller-type approximations and differs
from the standard impurity Kondo temperature depen-
dence. The many-boson approach by Kotliar and Ruck-
enstein is closely related to the Gutzwiller variational
method, while the mean-field approximation to the single
slave-boson approach (for the asymmetric Anderson lat-
tice) by Coleman?®! and Read and Newns?? corresponds to
the leading order in a 1/N expansion.

In the absence of an external magnetic field the fer-
romagnetic state is energetically less favorable than the
antiferromagnetic ground state. For D =10V there is a
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second-order phase transition from the paramagnetic
state to the antiferromagnetically ordered one at
U=0.45V. The antiferromagnetic phase is insulating
and the long-range order enhances the gap as compared
to the paramagnetic insulating gap.

An external magnetic field breaks the symmetry be-
tween the p, of the two sublattices in the antiferromag-
netic phase. Since the magnetic field interferes destruc-
tively with the antiferromagnetic long-range order, while
it favors ferromagnetic long-range order, we expect a
first-order phase transition from the antiferromagnetic
solution to a ferromagnetic state for intermediate and
large U. For sufficiently small U (but U+0) there is a
first-order transition from the paramagnetic to the fer-
romagnetic state if the field is strong enough.

If taken literally the above results would indicate that
Kondo insulators are always antiferromagnets in contrast
to experimental observations. Several approximations
entered our calculation. First, the orbital degeneracy has
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been neglected. The orbital degeneracy is believed to in-
crease the threshold for long-range order.?’” Second,
Gaussian fluctuations about the mean-field approxima-
tion are also expected to reduce the antiferromagnetic or-
der. Third, at two-loop the hybridization in the strong-
coupling Anderson lattice generates a RKKY interaction
between local f moments via the polarization of the con-
duction electrons.?® This RKKY interaction is likely to
be antiferromagnetic between nearest neighbors, and thus
it again favors the instability. The interplay of the above
effects is expected to raise the threshold value of U for
antiferromagnetic order. Fourth, the normalization of
the Z, factors is chosen to reproduce the weak-coupling
limit, rather than the unknown strong-coupling limit for
which the approach is intended for.
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