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A spin-liquid phase in which long-range order at the absolute zero is destroyed by quantum fluctua-

tions may occur in two-dimensional frustrated Heisenberg antiferromagnets. However, the possible ex-

istence of the spin liquid is intriguing, because a first-order phase transition is expected to suppress it.
Here we present a nonperturbative approach to explore quantum fluctuations in the whole parameter

space of the square Heisenberg model with competing interactions up to third-nearest neighbors. Our

results rule out the existence of the spin liquid when the exchange-interaction competition allows only

collinear spin configurations, but we find that spin liquid exists when the exchange interactions also pro-

duce helix configurations.

I. INTRODUCTION

A spin liquid (SL) is an exotic phase revealed as a
divergent spin reduction' within the simple spin-wave
(SSW} approximation in the square Heisenberg antifer-
romagnet with a suitable competing next-nearest-
neighbor (NNN) interaction. We recall that the classical
(S~~ ) zero-temperature phase diagram of the square
lattice with a nearest-neighbor (NN} antiferromagnetic
interaction (J, &0) and NNN interaction (J2) consists'
of the two-sublattice Neel (N) configuration for

j2 =J2/J, & —,
' and of the two-interpenetrating-

antiferromagnetic-sublattice configuration for j2 & —„the
angle 8 between the spin directions of the two antiferro-
magnetic sublattices being arbitrary. For 8=0 (8=m },
one has the so-called "columnar" (C) phase with alter-
nating columns (alternating rows} of parallel spin s.
Quantum fluctuations, when accounted for in the SSW
approximation, ' suggest the existence of the spin-liquid
phase via a divergent spin reduction. Consequently, the
occurrence of this phase in a finite range around j2= —,

'

was proposed. The existence of magnetically disordered
phases around j2= —,

' was also proposed on the basis of
series expansions about explicitly dimerized models as
well as on the basis of finite-cluster diagonalization. On
the other hand, this expectation runs counter to results of
direct considerations on the zero-point-motion energy
which suggest that the N phase should expand at the ex-
pense of the C phase. Notice that the C phase is selected
by quantum fluctuations which favor the maximum of an-
tiparallelism in the spin patterns, so that the arbitrariness
of the angle 8 between the two interpenetrating antiferro-
magnetic sublattices is removed. The zero-point-motion
energy of the N configuration is lesser than the zero-
point-motion energy of the C configuration so that a
first-order phase transition is expected to prevent the oc-
currence of the SL phase. This picture was indeed sub-
stantiated ' by a self-consistent treatment of the leading
zero-point-motion contributions to the N and C ground-
state energies. Notice that any divergence of the spin
reduction disappears in such approaches.

However, the SL phase could survive nonlinear effects
in a wider parameter space. For instance, the addition of
a third-nearest-neighbor (TNN) interaction J3 (3N model)
enters two helix phases we call H& and Hz in the classical
phase diagram. ' The N-H&-C triple point corresponds
to j2 =—,', j3 =J3/J, =0. The SSW approach suggests the
existence of the spin liquid in the neighborhood of this
point as well as in strips encompassing the N-H and
H ]-H2 phase boundaries as shown in Fig. 4 of Ref. 8.
The existence of a spin liquid is also expected on the
H&-C phase boundary, but only for S =

—,'. A controlled
perturbation approach' shows that crucial nonlinear
contributions shift the existence region of the SL phase
well inside the classical existence region of the H& and Hz
phases. Indeed, the spin reduction as obtained by SSW
theory diverges on the classical N-H phase boundary be-
cause of a soft k behavior of the magnon dispersion
curve in the long-wavelength limit, but we have found
that the Hartree-Fock contribution restores the cus-
tomary linear k dependence. ' However, the vanishing
of the magnon velocity is reached inside the H, and Hz
existence regions so that SL can exist unless a first-order
N-H phase transition occurs. Unfortunately, a systematic
perturbation approach cannot be performed for vanishing

j3 because of unphysical divergencies that appear around
the N-8&-C triple point. This drawback is due to soft
lines in the SSW dispersion curve: The perturbation con-
tributions are enhanced in a catastrophic way because of
lines of zeros appearing in the denominators of the per-
turbation expansion terms. Indeed, in the neighborhood
of the N-H, -C triple point, a suitable approach is the
self-consistent approach, in which artifacts that enter by
the classical approximation can be avoided in a natural
way.

Note that the features of the phase diagram of the 3N
model were anticipated on the basis of a reasonable
guess. " Here we try to obtain quantitative results by per-
forming an extension of the self-consistent approach so
far restricted to j3 =0, ' and to study the effect of quan-
tum fluctuations on helical configurations with j3%0.
This extension is not trivial and requires an ansatz con-
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cerning the magnon spectrum that we justify on the basis
of the Goldstone theorem. ' The results we obtain
confirm the main features of the phase diagram that were
suggested in Ref. 11, in particular, the first-order N-C
phase transition for j3 small enough, but we find an in-
teresting discrepancy concerning the S =

—,
' case. Indeed,

we find that the SL phase for S =
—,
' gets rid of the H,

configuration for intermediate values of j3, while for
5=1 we find that the SL and H& configurations appear
simultaneously as j3 increases, in agreement with Ref. 11,
even though the region of existence of the SL phase is
substantially reduced.

II. MAGNON SPECTRUM AND QUANTUM
FLUCTUATIONS IN THE 3N MODEL

The Hamiltonian we consider reads

8= —2J) $ S;.SJ
—2J2 $ S; S( —2J3 $ S; S, (1)

(ij ) (il ) &i' )

where J&, J2, J3 are the NN, NNN, TNN exchange cou-
pling, respectively. The NN coupling J& is antiferromag-
netic (J, (0), while Jz and J3 can have either signs (ij ),
(il ), and (im ) mean distinct NN, NNN, and TNN
pairs of spin, respectively. We refer the reader to Refs.
12 and 13 to get the explicit expression of the bosonic
equivalent Hamiltonian obtained by the Holstein-
Primakoff transformation' when both collinear and helix
configurations are taken into account.

We are interested in the zero-temperature phase dia-
gram for which the classical approximation ' suggests
the existence of four phases: N, C, and the two helical
configurations H& and Hz. The Q wave vectors charac-
terizing the N, C, and 02 phases are

(n., n ),
(0,~),

2j2 1
cos . , 7T

4j3

respectively. Long-range order (LRO) is expected on the
basis of SSW theory except for a strip encompassing the
N H-(Refs. 8 and 9) and H& H-2 (Refs. 2 and 8) boundaries
for any finite S, while LRO might be suppressed along
the H&-C boundary for S =

—,
' only.

Higher-order quantum corrections cannot be treated in
a systematic perturbation approach throughout parame-
ter space, even though significant results have been ob-
tained on the persistence of the Goldstone mode' ' for
k =+Q, where Q is the helix wave vector, and on the lift-
ing of the accidental soft modes' for k=Q', where Q' is
obtained from Q by symmetry transformations of the un-
derlying square lattice. However, the perturbation ap-
proach suffers from certain shortcomings. For instance,
no thermal and quantum renormalization of the helix
wave vector can be obtained since the SSW energy spec-
trum is well defined only for Q=Q„where Q, is the
helix wave vector obtained in classical approximation
(S~ ~ ). Variational approaches have been worked
out, ' but the equations involved are too cumbersome for
systematic use in parameter space, unless a suitable an-
satz can be introduced to simplify the formulas. Here we
propose a description of the modulated phases that
agrees with the variational approach for large S (Ref. 13)
and reduces to the self-consistent approach for the col-
linear phases, where the bilinear bosonic Hamiltonian
contributions arising from the normal ordering of the
quartic potential are fully accounted for by the general-
ized Bogoliubov transformation' (GBT). For j3 =0, our
approach agrees with recent calculations based on a self-
consistent Hartree-Fock approximation ' and on the
Schwinger-boson mean-field theory (SBMFT). '

Notice that the magnon spectrum Acok that we propose
for helix configurations shows Goldstone modes at
k=+Q and quantum gaps' at k=+Q' so that the main
quantum corrections are embodied in an effective way:

ficoq ")/ SqD q—,
where

and
Sg =J(Q)—J(k),

D~ =J (Q) —
—,
' [J (k+ Q)+J(k —Q) ],

with

(3)

(4)

J(k}=4J, (S+—,
' —a,„}cosk„+4J,(S+—,

' —a, }cosk +4Jz(S+ —,
' —a&+ }cos(k„+k )+4J2(S+—,

' —a2 )cos(k„—k )

+4J3(S+—,
' —a3„)cos(2k„)+4J3(S+—,

' —az )cos(2k ) .

Here

g QS /D (1—cosq„),1

2X

a2+ = g QS /D~[1 —cos(q„+q~)],1

q

(8)

g QS /D (1 cosq~), —1

2X,
a 2

1

2X gQS /D [1—cos(q„—q~)], (9)
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a3„= g QS jD [1—cos(2q„)],1

2N
(10)

a, = QQSq/D [1—cos(2q„)] .= 1

2N

The value of Q is obtained by maximization of J(Q),
which ensures the magnon spectrum energy to be real
and positive. The N phase corresponds to Q„=n, Q»

=m.

for which one finds a&„=a» =a&, az =a2 =a&,+

a3„=a3 =a3. The C phase corresponds to
Q„=O,Q =m for which one finds a»Aa, »,
a z+ =a z =az, az„Aaz». The H, phase corresponds to

—(S+—,
' —a i„)+2jz(S+—,

' —az)

2J, —l
cosQ„=

4J3

with

S+—' —a
2 2

J2 J2S+ i
aux

S+—,
' —a3„

J3=J3 S+ i
a&x

(12)

(13)

and, for the H2 configuration,

ed by symmetry reasons and tested by direct numerical
calculation. Notice that the relationship between the
wave vector Q and the exchange integrals can be written
in the same way as in a linear approximation if one
defines renormalized exchange integrals. Indeed one has,
for the H& configuration,

where ai„Xai», az+ =az =az, a3„%a3». The Hz phase
corresponds to

cosQ„=—,Q =Q„1

2Jz+4J3

with

(14)

—(S+—' —ai )—1 2

2jz(S +—,
' —a z+ )+4j,(S +—,

' —a, }

with ai„=a,»=a„az Aaz, a3„=a3»=a&. The above+

relationships between the self-consistent coeScients a &„,
a», a 2+, a 2, a3„,a» for the different phases are suggest-

S+-' —a+
2 2

J2=J2 S+ i ai

S+—' —a
2 3

J3=J3 S+ i ai
(15)

Notice that these equations hold for the broken symme-
try of the ground state that we have considered. For in-
stance, if we had chosen for the H, configuration

Q= (n, Q ~, all the subscripts x should be replaced by sub-
scripts y in Eq. (13).

The reduced ground-state energy reads

eo=E014iJi iN =
—,'[ (S+—,

' —a,„)cosQ„+(S+—,
' —

a&») cosQ»+ jz(S+ —,
' —az+ ) cos(Q„+Q»)

+jz(S+—,
' —az ) cos(Q„—Q»)+ j3(S+—,

' —a3„) cos(2Q„)+(S+—,
' —

a& ) cos(2Q )], (16)

where Eo is the ground state of our model obtained by the GBT approach. For the N, C, H&, phases, where Q„=m. and

a2 =a2 =a&, one has+

eo= —,'[(S+—,
' —a,„)cosQ„—(S+—,

' —a, ) ]—jz(S+—,
' —az )cosQ„+—,

' j3[(S+—,
' —az„) cos(2Q„)+(S+—,

' —a3») ],

while for the Hz, N phases, where Q„=Q, ai„=a i =a|, and az„=a3 =a&, one has

eo=(S+—,
' —a, ) cosQ„+—,'jz[(S+—,

' —az+ ) cos(2Q„)+(S+—,
' —az ) ]+jz(S+—,

' —a3) cos(2Q„) .

The zero-temperature spontaneous magnetization M(0) reads

M(0)=S+—— g (QSqIDq+(1DqIS ) .
2 2N

(19)

While the above equations are consistent with respect to the GBT approach' ' for the N and C configurations, the
same approach provides unpleasant features' ' ' as for the magnon spectrum AQ& of helix configurations. Indeed,
the result of the CzBT approach is '

AQq="(» SqDt, , (20)

SI,= $ 2JsS cos(Q.5)—cos(k 5)+ Icos(Q.5)(1 I„3I~+Is ) —co—s(k.5—}[—1 I„+,'I~+Is cos(Q.5)]]——

(21)
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Di, = g 2JsS cos(Q 5)[1—cos(k 5)] 1+ (1 —I„—,'Is—+Is )
5

(22)

with

y (QS, /D, +QD, /S, ),
2N

(23)

g(QSq/Dq "i/D—q/S ),
q

Is+ =—g QSqlDqcos(q 5),
q

(24)

(25)

Is =—g '1/ Dq/Sqcos(q 5) .
q

(26)

As one can verify, ficoi, given by Eq. (2) and iriQi, given by
Eq. (20) coincide for the N and C configurations, for
which gq "(/Dq/Sq = gq QS /D, but for the I, and

H2 configurations AQ& suffers from spurious removal of
the Goldstone modes at k=+Q. This drawback is due to
neglect of the three-operator potential' of the bosonic
equivalent Hamiltonian, whose second-order perturba-
tion contribution is of the same order in 1/S as the first-

%aint =AD@ Sr

where

(27)

order perturbation contribution of the quartic-operator
potential (which is the only contribution accounted for by
the GBT approach). On the other hand, the persistence
of the Goldstone modes at k =+Q, when LRO is present,
is ensured by symmetry reasons' and can be checked by
numerical evaluation. ' ' The magnon spectrum that we
propose in Eq. (2) is the simplest modification of the spec-
trum (20) that can be made to satisfy the Goldstone
theorem. Notice that the spectrum (2) allows the lifting
of the accidental soft modes present in SSW theory
[which corresponds to retention of the only terms propor-
tional to S in (5)] and meets continuously the GBT spec-
trum for the N and C configurations. in Figs. 1 and 2 we
show the magnon spectrum ficoi, given by Eq. (2) for the

H, and H2 configurations along the high-symmetry
directions in reciprocal space. Notice the quantum gaps
and Goldstone modes. We have compared the values of
the quantum gap obtained from Eq. (2),

Dq =4~ Ji ~ [
—(S+—,

' —a,„)cosg„+(S+—,
' —a,~ )(1—cosg„)

+2jz(S+ —,
' —a2+ )cosg, (l+cosg„)—j3(S+—,

' —a3 )[1—cos(2Q„)]],

SQ' 4~ Ji ~
( 1 +cosQ„)[a,„—a,~

—2j&(a3, —a 3y )( 1 —cosg„)]

(2g)

(29)
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FIG. 1. Elementary excitation energies for the H 1

configuration (j2 =0.6, j3 =0.1) with S= 1 as function of the re-
duced wave vector q=k/m for 0&q &1, q =1 (solid curve),
for q = 1,0 & qy & 1 (dots), and for q =q (crosses). Notice the
Goldstone modes at the zone center (crosses) and at the helix
wave vector (solid curve). The accidental SSW soft mode is re-

placed by the quantum gap as shown by the dotted curve.

FIG. 2. Elementary excitation energies for the H2
configuration (j2=0.4, j3 =0.25) with 5=1 as function of the
reduced wave vector q=k/m for q„=qy (solid curve), for

qy (dots), and 0 & q„& 1, qy
=0 (crosses). Notice the

Goldstone modes at the zone center and at the helix wave vec-

tor (solid curve). The accidental SSW soft mode is replaced by
the quantum gap as shown by the dotted curve.
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with that obtained by the perturbation approach at the
leading order in 1/S. ' For S= 1, jr=0.6, and j3=0.1,
we obtain duo& =4~J, I

X0.359 from Eq. (27) to be com-
pared with fuu&, =4~J,

~
X0.268 as obtained in Ref. 15.

Even more satisfactory is the agreement if one retains
only terms proportional to S in (28}. In this case one ob-
tains iiico&. =2~J, ~

XO. 307. Notice that the leading contri-
bution of D&. is proportional to S, whereas S&. is in-
dependent of S so that the SSW result corresponds to
S&.=0. The helix wave vector we obtain from Eq. (12) is
Q=(1.0198,m } to be compared with the classical value

Q, =(m/3, n) N. o. tice that the perturbation approach
prevents any renormalization of the helix wave vector
Q, . This example shows that our eS'ective spectrum (2) is
in good quantitative agreement with that obtained from
the perturbation theory;' besides, spectrum (2} accounts
for quantum renormalization of the helix wave vector,
which is essential to evaluate the effect of quantum fluc-
tuations on the phase diagram.

0.4

0.3

0.2

0.1

0.0 I I I I I I I s & I «s
0 0.2 0.8

I

0.4 0.6

FIG. 4. The same as Fig. 3 but S=l. Notice the drastic
shrinking of the region of existence of the SL with respect to the
S=—case.—1

2

III. ZERO-TEMPERATURE PHASE DIAGRAM
OF THE SQUARE FRUSTRATED

ANTIFERROMAGNET

We have numerically solved the self-consistent equa-
tions (6)—(11) for the N, C, H„and H2 phases for as-
signed values of j2, j3, and S, then we have evaluated the
ground-state energy and the spontaneous magnetization
of those configurations in order to obtain the phase dia-
grams which are shown in Figs. 3 and 4 for S =

—,
' and

S=1, respectively.
The SL region is localized by the vanishing of the spon-

taneous magnetization M(0). Where the disordered phase
is concerned, one can prevent the magnetization from
becoming negative by introducing a suitable bound to fix

0.4

0.3

0.1

0.0 I I I I I I I I I I I 1~t i I I I I I I I I I

0 0.2 0.4 0.6 0.8

FICx. 3. Zero-temperature phase diagram for S=
2

in the j2-
j3 parameter space. The dashed curves show the SSW phase
boundaries. The solid curves are the phase boundaries obtained
in the present approximation. N, SL, C, H„and H2 represent
Neel, spin liquid, columnar, and two difFerent helix
configurations, respectively. The dash-dotted line is the N-SL
phase boundary as obtained by the first-order perturbation
theory.

the magnon number. ' Different features from both a
qualitative and a quantitative point of view are found for
S =

—,
' and S=1. For S =

—,', an N-C-SL triple point and
an SL-K&-C triple point occur, while for S=1 an N-H, -C
triple point and an N-SL-H& triple point are noticed. In
both cases an SL-H&-82 triple point occurs. A relevant
common feature is the N-C first order phase transition for
j3 small enough. This agrees with previous results ' '
obtained for j3 =0 and with previous expectations" for
j3%0 as for the S= 1 case, but the strong S dependence
shown in Figs. 3 and 4 is unexpected. A comment about
the results obtained for j3=0 is in order. Some numeri-
cal discrepancies between Refs. 5, 6, and 17 are related to
the form of the ground-state energy. The expressions
used in Refs. 5 and 6 are the same, apart from an expan-
sion in 1/S used in Ref. 5. This approximation leads to
ground-state energies for the N and C phases that do not
cross for S=—,', since no N-C coexistence region is

found. On the contrary, we obtain, in agreement with
Ref. 6, that the N and C phases have the same ground-
state energy at j2 =0.6 for S =

—,', and so we believe that a
first-order N-C phase transition occurs. In Ref. 6, this
possibihty is ruled out and a disordered phase (DO) is
suggested on the basis of an argument to which we do not
subscribe. We stress that both Ref. 6 and our calcula-
tions find a crossing between the N and C ground-state
energies so that only the phase of the lowest energy is
stable and the other one is metastable. This does not
mean that both phases are simultaneously present even if
this could occur in nonequilibrium configurations.

In the Schwinger-boson mean-field theory (SBMFT) of
Ref. 17, the drawback of the no crossing of the ground-
state energies of the N and C phases for S =

—,
' reappears.

Moreover, the first-order phase transition for S= 1 occurs
at j2=0.65, as compared with jr=0.55 obtained by us
and in Refs. 5 and 6. The SBM~ I' overestimates quan-
tum fluctuations with respect to the self-consistent (or
GBT) spin-wave theory. As for j3%0, our phase diagram
(see Fig. 4) for S= 1 agrees qualitatively with that sug-
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gested in Ref. 11 (see Fig. 1 of that paper). However, for
S =

—,', we find a substantially wider region of existence
for the SL configuration. Moreover, we find a substantial
shrinking of the SL phase at large j3 not suggested in

Ref. 11. Anyway, the existence of the SL phase is
confirmed when helical phases can exist owing to suitable
exchange competition even if the SL phase is suppressed
for j3=0. A further nontrivial difference with respect to
the scenario obtained by SSW theory ' ' is the absence of
SL near the H&-H2 phase boundary and near the H, -C
phase boundary even for S =

—,'.
In Figs. 3 and 4 we have quoted (dash-dotted lines) the

N-SL phase boundary as obtained by the first-order per-
turbation approach. ' As one can see, the qualitative
features of such a phase boundary agree with the present
approach.

Notice that the renormalization-group approach
agrees with our conclusion that a disordered phase inter-
venes between the Neel and the helix configuration at
finite j3 even though it cannot be pushed at j3=0. On
the other hand, the renormalization-group approach can-
not rule out the existence of a first-order N-H or N-C
phase transition that would prevent the occurrence of the
SL phase. A direct N-H phase transition is obtained for
S =

—,
' at any j3, without the occurrence of a disordered

phase in between, by extrapolating a large-N expansion to
N=1. In particular, for j3 &0.005 the first-order tran-
sition is between the N and C phases, in agreement with
Fig. 3. The absence of a SL phase for any j3%0 is not
clear. " Perhaps the extrapolation to N=1, which has to
be performed in order to restore the physical picture,
makes this result less reliable than the result obtained by
the renormalization group and by the self-consistent
spin-wave theory ' '" which do not suffer from such un-

reliable extrapolations.
Finally we comment on the results for S =

—,
' obtained

from a series expansion about explicitly dimerized mod-
els and from a finite-cluster diagonalization. ' The
former approach consists of a perturbative expansion
starting from a set of unperturbed Hamiltonians where
three of four NN interactions are neglected, while NNN
and TNN interactions are neglected completely, so that
the results obtained for the 3N mode1 might be question-
able. Indeed these results depend crucially on the choice
of the dimer covering of the lattice which, in its turn,
determines the unperturbed Hamiltonian (see, for in-

stance, Figs. 3 and 4 of the first reference and Fig. 2 of
the second reference quoted in Ref. 3), and the ratio
method used by the author to locate the transition to an
ordered phase (X or C for j3 =0) gives results affected by
larger and larger error bars as one approaches the range
0.3 & j2 &0.6 where the occurrence of the disordered
phase is suggested. For j2=0, the N, disordered, and
helix configurations are found, while our results suggest
the X, SL, and H2 phases, where the disordered (SL)
phase exists over a range less than that of the disordered
(dimerized) configuration. We note that our ground-state
energy lies below the ground-state energy of the colum-
nar dimerized configuration in the range 0.3&j3 &0.5,
while the energy of the columnar dimerized phase is very

close to our evaluation of the H2 energy in the range
0.5 & j3 &0.6.

As for the approach consisting of a diagonalization of
finite clusters of 16 and 20 sites using a Lanczos tech-
nique, ' a clear conclusion about the existence of LRO
cannot be achieved because extrapolation of the results
for a finite lattice to the bulk limit has not been done.
However, a resonating-valence-bond (disordered) state
may be ruled out at least at j3 =0 and the stability of the
columnar dimerized state cannot be shown convincing-
ly. In a subsequent paper, finite-cluster diagonalization
has been used to study the 3N model along the line

j3=j2/2, jz & —,'. The authors conclude that in the bulk

limit the LRO should vanish in a region 0.25& j2 &0.5
(we find the SL phase for 0.35 & j2 &0.55 along the line

j3 =j2/2 as shown in Fig. 3). Even though the existence
of LRO in the thermodynamic limit remains an open
question, the static structure factor S(q) (see Fig. 8 of
Ref. 8) shows peaks located in points that give spin
configurations in overall agreement with those shown in

Fig. 3.

IV. SUMMARY AND CONCLUSIONS

One of the more interesting features of frustrated
Heisenberg antiferromagnets is the possible existence of
the spin-liquid (SL) phase. ' The occurrence of this ex-
otic phase was suggested on the basis of simple spin-wave
(SSW) theory for the square Heisenberg antiferromagnet
with next-nearest-neighbor (NNN) competitive interac-
tion. ' However, higher-order quantum fluctuations '

suppress the SL for this model entering a first-order
phase transition between the Neel (N) and the columnar
(C) configurations. On the other hand, the survival of
the SL was guessed" in a wider parameter space. In this

paper, we work out a self-consistent approach based on
the generalized Bogoliubov transformation (GBT)' ' for
the square Heisenberg antiferromagnet with competing
interactions up to third-nearest neighbors (TNN). The
zero-temperature phase diagram of this model obtained
in the classical approximation is shown in Refs. 3 and 7.
Our self-consistent calculation agrees with the previous
ones ' for j3=0.

To describe the helix configurations we do not limit
ourselves to the magnon spectrum obtained by the self-

consistent approach because of the well-known unsatis-

factory features obtained by this and analogous ap-
proaches. ' ' ' This spectrum indeed violates the
Goldstone theorem' since it does not show Goldstone
modes at k=+Q. The origin of this drawback is well un-

derstood and it is due to neglect of the three-operator
magnon interaction, the inclusion of which unfortunately
leads to results' ' that are too cumbersome to be used

for detailed analysis in calculating the rich phase diagram
of our model. So we do the ansatz of Eq. (2) that embo-

dies all known features of the magnon spectrum due to
quantum fluctuations, namely, the persistence of Gold-
stone modes at the zone center and at the helix wave vec-
tor k=+Q and quantum gaps replacing the accidental
SSW soft modes at k=Q', where Q' is in the "star" of the
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wave vector Q. Notice that the spectrum (2) allows quan-
tum renormalization of the helix wave vector that cannot
be achieved by any perturbation approach. '

The phase diagrams we obtain for S =
—,
' and S=1 are

shown in Figs. 3 and 4. We confirm the existence of the
SL phase when the exchange competition supports helix
configurations in addition to the collinear ones. Our re-
sults confirm the guess of Ref. 11 for S=1 but we find a

different scenario for S =
—,'. The evidence of the S depen-

dence of the phase diagram is clearly visible in Figs. 3
and 4. These features indicate that the region of ex-
istence of the SL is severely reduced with increasing S.
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