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1/S expansion for thermodynamic quantities in a two-dimensional Heisenberg antiferromagnet
at zero temperature
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Department ofPhysics, Faculty ofScience, Osaka Uniuersity, Toyonaka, Osaka 560, Japan

(Received 23 January 1992)

We calculate the spin-wave dispersion, the perpendicular susceptibility, the spin-stiffness constant, and
the sublattice magnetization of a two-dimensional Heisenberg antiferromagnet at T=O, to order
1/(2S), treating carefully the umklapp processes. Our numerical estimates for the thermodynamic
quantities are in good agreement with series-expansion estimates, and satisfy the hydrodynamic relation
very accurately.

I. INTRODUCTION

A great deal of theoretical interest in the physics of
quantum antiferromagnets has been raised after the
discovery of high-temperature superconductors (HTSC),
since the undoped mother materials like La2Cu04 are de-
scribed by a square-lattice spin- —, antiferromagnetic
Heisenberg Hamiltonian,

H=J $ S;.Si,

where (i,j ) indicates a sum over pairs of nearest neigh-
bors. The quantum fluctuation is expected to be large
due to the smallness of the spin S=

—,
' and the low dimen-

sion D =2. At the beginning of the discovery of HTSC,
there was a controversy whether large quantum fluctua-
tion destroys the antiferromagnetic long-range order or
not, but it is now widely accepted that the Heisenberg an-
tiferromagnetic exhibits the Neel long-range order at
T=0 even for S=

—,
' in square lattice. '

The presence of the Neel long-range order suggests
that the spin-wave expansion (1/S expansion) makes
sense. Actually many authors, evaluating several ther-
modynamic quantities by various methods such as series
expansion, Monte Carlo and others, ' have report-
ed that the linear spin-wave (LSW) theory, ' ' leading or-
der of the 1/S expansion, gives good results. This fact in-
dicates that higher-order terms are small. Recently
Igarashi and Watabe (IW)' have made the 1/S expan-
sion on the basis of the Holstein-Primakoff (HP) formal-
ism, ' and have reported the small corrections of order
1/(2S) for the spin-wave velocity c, the perpendicular
susceptibility yj, the spin-stiffness constant p„and the
sublattice magnetization M. Also Castilla and Chakra-
varty (CC)' have reported a very small values of order
1/(2$) for the sublattice magnetization on the basis of
the Dyson-Maleev formalism.

In the higher-order terms, the umklapp processes may
have important contributions, but these processes were
not correctly taken into account by IW. Treating care-
fully the umklapp processes, we develop IW's idea to cal-
culate thermodynamic quantities in the 1/S expansion.
We find that the values of order 1/(2$} for c, yj, p„and

II. HAMILTONIAN

We express the spin operators in terms of boson an-
nihilation operators a; and b (and their Hermite conju-
gates) using the HP transformation:

S; =S—a;a;,z

S;+=(S; } =v'2$f;(S}a;,

SJ'= —S+bj bj,
S+=(S, ) =v 2$bj f,(S),

with
1/2 '2

(2.1)

(2.2)

(2.3)

(2.4)

n,f ($)=I
1 I 1 I=1——
2 2S 8 2S

+ ~ ~ ~

(2.5)

where the indices i and j refer to sites on the a ("up") and
b ("down") sublattices, respectively, and nt =a; a; or
b~b-. We will consider in the following a square lattice.
The Fourier transforms of the boson operators are
defined by

' 1/2
2

a =
N

' 1/2
2b. =
N

g a„exp(ikr, ),

g bzexp(ikr, ),
(2.6)

where the momentum k is defined in the first Brillouin
zone (BZ), that is, —

m &k„&tr, n&k„&m. in—un. its of

M are improved from IW's, in good agreement with
series-expansion estimates. It is also found that our
values are satisfying the hydrodynamic relation,
c =(p, /gj )', within a very small numerical error, indi-

cating that our estimates are quite accurate.
In Sec. II we express the Hamiltonian in a symmetric

parametrization. We calculate the spin-wave dispersion
rn Sec. III, the perpendicular susceptibility in Sec. IV, the
spin-stiffness constant in Sec. V, and the sublattice mag-
netization in Sec. VI. Section VII is devoted to the con-
cluding remarks.
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1/(3/2a) with a being the nearest-neighbor distance.
Substituting Eqs. (2.1)—(2.6) into Eq. (1.1), and perform-
ing the Bogoliubov transformation,

1 /2

, Plk-
2Ek

I —ek

2E'k

1/2

~~ =4ak ™.p-«

b k =m], a],+l],P

with

(2.7)

(2.8) e],=(1—
y],)', yk=cos(k, /2)cos(k /2),

we find

H=H +H +H +

Ho =JSz g(e] —1)+JSz g ez(a]ta], +PkP] ),
k k

H] =
2S

A ge],(a],a],+P],P], )
JSz

k

+ g 5G( 1+2—3 —4)l, 1213l4
1234

X [a]a2a3a4B]234 p 3p 4p ]p 2 ]234 4a]p 4p 2a3B]234
(1) 4 f (2) f f (3)

+(2a]p 2a3a4B]234+2p 4p lp 2a3B]234+a]a2p 3p 4B]234+H.c. )],(4) i. (S) f t g t (e)

H2= g C](k)(a]a],+p]p], )+C2(k)(akp], +p ]ak)+
JSz

(2S)

where

A =—g(1 —e], ) =0.1579,2

k

(1)~ 1234 V1 —4+1+4 Y I —3X1+3+ V2 —4+2+4+ V2 —3+2+3

—
—,'(y]x]+y2x2+ 3 3x3+ V4x4+y2 —3 —4x2x3x4+ Yl —3 —4x ]x3x4+ Y4 —2 —]x lx2x4+ Y3—2 —]x ]x2x3 }

~1234 P2 —4+1+3+V1 —4+2+3+72—3+1+4+ V1 —3+2+4
(2)

,'(y2x—]x—3x4+ylx2x3x4+34x] 2x3+3 3x]x2x4+y2 3 4x]+—Yl ——3 —4x2+y4 —2 —lx3+ Y3 —2 —lx4}

(3)~ 1234 V2 —4+ 3 1 —3+ 1+2+ 3+4 + V 1 —4+ 1+2 + V2 —3+3X4

2( Y2 4 Vlx]x2x4 Y2 —3 —4x3+y] —3 —4x]x2x3+y4x2+1 3x2 3x4+3 4 —2 —]x] +3 3 —2 —
1 ]x3x4}

~ 1234 F2 —4+4 r 1 —4+1X2+4 r2 —3+3 r1 —3+ 1+2+3(4)

+
2 Y2+ Vlxlx2+ Y3x2x3+ Y4x2x4+ Y2—3 —4x3 4+ Yl —3 —4x lx2x3x4+ Y3 —2 —]x lx3+ Y4—2 —1 ]x4

n(5)
1234 V2 —4X1 V2 —3+1+3+4 ~1—4 2 V1 —3+2+3+4

+ ( Y2x]x4+ Ylx2x4+ Y4x]x2+ Y3x]x2x3x4+ V2 —3 —4xlx3+y 1 —3 —4x2x3+ V4 —2 —]+1 3 —2 —]x3 4 }

~ 1234 ~2 —4+2+3+ V2 —3+2+4+ V 1
—3+1+4 Vl —4+1 3

(6)

( V2x2x3x4 Y3x4+y2 —3 —4x2+y3 —2 —]x]x2x4+ Ylx]x3 4+3 4x3+3 1
—3 —4x]+ Y4 —2 —]x] 2x3)

2

C, ( k ) =—— y 1],l ]l 2 X ( —6y2 ] ],xkx ]x 2+ y2x ]x2+ y2x ],x ]x2+ 2ykx], x ] +y ]x kx ] +y2x 2 },222 2 2 2 2 2

2

1 2
C2(k) =—— y lkl, l2 X(3y2, ]x]x2+3y2 ] ]x]x]x2—2y]x]x]x 2

—2y2x]x2 —ykx 2
—y]x]x2 ) .2 2 2 2 2 2 2 2

2 iV
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The part Ho represents the spin-wave energy in the LSW
theory. The part H, represents the energy of order 1/2S;
the first term in Eq. (2.13) comes out through the process
of setting the products of four bosori operators in a nor-
mal product form. ' We have used the abbreviations
a, =a~, b 2=b ), , y, 2=kg ~, etc. The Kronecker

1 2 2

delta 5&(1+2—3 —4) represents the conservation of mo-
menta within a reciprocal lattice vector G. The vertex
functions 8&&34's are given in a symmetric parametriza-
tion. It is important to notice that yz 4%y, 3 if GAO
for 5G(1+2—3—4) because of a possible sign change in

yk with k~k+G(yk+o=+yk). The expressions for the
vertex functions by IW may be incorrect, since this type
of sign change is disregarded. The part H2 represents the
energy of order 1/(2S), which comes out through the
process of setting the products of six boson operators in a
normal product form.

III. SPIN-WAVE DISPERSION

G,.(k, t }=-i(T(p' „(t)a'„(0»),

Gtttt(k, t)= —i(T(P „(t)P „(0))),
(3.3)

(3.4)

where ( . . ) denotes the average over the ground state,
and T is the time-ordering operator. The Fourier-
transformed unperturbed propagators are given by

G (k, co) = [co e—„+i5]

G tt(k, co)=G& (k, co)=0,

Gtttt(k, co)= [—co —e„+i5]

(3.5)

(3.6)

(3.7)

G„„(k,co) =G„,(k, co)

+ g G„„(k,co)X„.„(k,co)G„„(k,co) .
p, v

Expanding the self-energy in powers of 1/2S,

(3.&)

with 5~0+. The self-energy is defined by the Dyson
equation:

(3.1}

We define the Green's functions at zero temperature:

G, (k, t ) = i ( T(a—„(t)a„(0)) ),
X&,(k, co)= X&„'(k,co)+ X„'„'(k,co)+1

(2S}2 "" '

(3 9)

G tt(k, t)= i(T—(a„(t)p „(0))), (3.2} and performing the second-order perturbation, we obtain

X"'(k,co) =XItIt'(k, co) = A ek, X~p'(k, co) =XI'"(k,co)=0,
I 2

2' '(k, co) =X''( —k, —co) =C)(k)+ — g 21klplqlk~p q
pq

(4) 2
k p q (k+p-ql ~

co ep Eq Ek+p 'q+ t 5

(6) 2
~Bk,p, q, [k+p —q] ~

co+ ep+ eq+ ek+p q
t 5

(3.10)

(3.11)

2
X"tI(k,co)=X&"(—k, —co) =C,(k)+ — g 2lklplql'k+p qsgn(yo)B'k p q („+p q]

pq

2(e +e +ek+ )

(e+ —e+ e+k, ,)'+ 5t
(3.12)

Here [k+p —q] stands for the momentum k+p —
q re-

duced in the first BZ by a reciprocal lattice vector G, that
is [k+p —q]=k+p —q —G, and sgn(y&) denotes the
sign of' yo. Note that el, +p q 6[Q+p q] and

lk+p q=l{k+p q]. The last terms in Eqs. (3.11) and
(3.12) correspond to the diagrams shown in Fig. 1, where
we have used the relations,

~(5) S n( ~n(4)
l&+P —ql q P.k g '~G' &.P q )&+P—ql&

~ (6) =s n'
q f&+p —q) & p g '~G' &.p. q t:&+p—ql

(3.13)

Now we discuss the behavior of X„'„'(k,co=0) for small
k. The vertex functions are expanded as

(4)
kpq{k+p —ql pq+ gn y& pq p.qek

+X' '(k %pep, )+, (3.14)

I

with

y x sgn(yG)y qxq

+—,'Ix x q+sgn(yG)y x xq

+ypqxpxpq+sgn(yo)yp}

t = sgn(yo—)y x x —y x x

+ —,
' [sgn(yo}y x +y

(3.16)

+sgn(yo)y~ x x +x }, (3.17)

where G=p —
q
—[p —q], and X' ' and X'6' are hnear

functions of k Vpppp k Vq/qp and k Vp qpp q
Note

xp q=x{p q]. Also C, (k}and Cz(k} are expanded as

C, (k) =coe„'+c,ek+ (3.18)

(6)
k p q {k+p—q] g yo) p, q

+X"'(k.V e . . )+ . .
Cp(k) = cock +c

~
ek+—

(3.15) where

(3.19)
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(a)
ak

i

I

I

t

~(4)
k p q [k+p —q]

~(4)
k,p,q, [k+p —q]

@(6)
k,p,q, [k+p —q]

~(6)
k,p, q, [k+p —q]

nk
I

I

I

I

Pk ak
i

I

I

I

gy(4)
k,p,q, [k+p-q]

g(6)
q, [k+P-q]» P

g( )
k,p,q, [k+p-q]

g(5)
[k+P—q],q,p»

FIG. 1. Diagrams for the self-energy in the second-order perturbation: (a) X"'(k,co); (b) X'&(k, m). The solid lines represent the
unperturbed Green's functions Go„(k,co). Momentum [k+p —q] in the vertex functions stands for the reduced value of k+p —

q in

the 1st BZ. The arrows for G&&(k, co) run in the opposite directions to the conventional ones due to our definition.

2

2Z +2co= —— gl„l I
—3y x x +x

, pq

2+ypxpxq+yqxq
2

(3.20)

2

~ =1 2 g 1 1 I
—

—,'y x x + —,'x
qq

+ —,'y x x + —,'yqxqI . (3.22)

1 2
c, = —— gl 1 I3y x x —x

pq

(3.21)
Substituting Eqs. (3.14)—(3.22) into Eq. (3.11),we have

2 —2(t +sgn(yo)s ) +vga'g,
~r +~q+~r -q

(3.23)

where v2 is a certain numerical constant. Substituting
the relation,

t& +sgn(yG)s„

I

to order 1/(2S ) may be given by

1 1
ek+ S 4 e~+ (2S)' " ' (3.25)

=
—,'(e +eq+e~ q)Ix —sgn(yo)xqx~ q I,

into Eq. (3.23), with the help of the relations

g 1 1 1 qsgn(yG)e x xqx
pq

(3.24)

and

=pl 1 1 sgn(yo)e x xqx
vq

0.5

'r "g"(yo)'r qr q-=yi —q~--
we find that the first term of Eq. (3.23) vanishes. Thus we
find that X'~'(k~0, 0)=0, which the rotational invari-

ance of the Hamiltonian is demanding. We can similarly
prove that X' tI(k~0, 0)=0.

The quasiparticle energy ez for spin-wave excitation up

0.80.2 0.4 O. 6
k /m(=k /m)

FIG. 2. Spin-wave dispersion relation Zk for k = k~. Curve a
represents the linear spin-wave value ek. Curves b and c
represent the values up to order 1/{2S) and 1/(25), respective-
ly. The energy is measured in units of JSz.
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(3.26)

To evaluate Eq. (3.25), we sum up 6400 points of p and q
in the 1st BZ for X' '(k, ez) given by Eq. (3.11). Figure 2
shows the spin-wave dispersion thus evaluated. The
second-order correction is positive. The spin-wave veloc-
ity is estimated from X' '(k, ez)/ez for k„=k~=~/NI
with NL =40, 80, 160, and by extrapolating the values to
Nt ~~. ' [For X' '(k, ez), we sum up NL points of p
and q in the 1st BZ.] The renormalization factor of the
spin-wave velocity is given by

0. 1579 0.0215(+0.0002 )
Z, = limZq/ q= 1+

v-o 2S (2S)2

which yields Z, =1.1794 for S=—,'. Here the lowest

bound 0.0213 of order 1/(2S) is the value at NL = 160.

IV. PERPENDICULAR SUSCEPTIBILITY

According to the linear-response theory, we may ex-
press the perpendicular susceptibility in terms of the
Green's functions:

where

lim i f —dt(T[(S+(k, t)+Sb+(k, t))(S, (k, O)+Sb (k, O))]),
N(g—ps )

4 1f,~0 —oo

' 1/2

(4.1)

S,+(k)=[S, (k)] = 2 g S;+exp( i kr—; ), (4.2)

Sb+(k)=[St, (k)] = 2
' 1/2

gS,+exp( ikr—, ) .
J

(4.3)

Introducing the operators,

Y+(k)=[Y (k)] =[l&S,+(k) —m&Sb+(k)]/(2S)'~

Yt3 (k) =[Y& (k)]t= [ —m&S,+(k)+l&Sb+(k)]/(2S)'~

and the associated Green's functions,

F„„(k,ol)= i f —dt e' '(T[Y„+(k,t)Y„(k,O)]),

we may rewrite g~ as

—N(gp& )'
lim2S(lz+m&) X [F (k, F3=0)+F t3(k, F3=0)+Ftt (k, co=0)+Ftttt(k, ol=O)],

(4.4)

(4.5)

(4.6)

(4 7)

where the energy is measured in units of JSz.
We perform the HP transformation and the Bogoliubov transformation for the spin operators defined by Eqs. (4.4)

and (4.5), so that

1 1Y+(k)=Daq — —+5G(k+2 —3 —4)lqlzl314(MI, '2'34p 2a3a4+M~q'3~a2p 3p 4+ ),2S N 234

1 1
Yt3 (k) =Dp &

— —g 5&(k+2 —3 —4)lkl213l4sgn(y&)(M&&34p 2a3a4+M&&'34alp 3p 4+ ) .
2S N 234

Here the "spin reduction" factor D is given by

b.S 1 hS( 1+36S )

2S 4 (2S)

with

ES= ( 1/N ) g (e ' —1 ) =0. 196 60 .

(4.8)

(4.9)

(4.10)

(4.1 1)

The first-order term in Eq. (4.10) arises from the process of setting the products of four boson operators in the normal
product form, while the second-order term arises from the process of setting the products of six boson operators in the
normal product form. The "nonlinear" matrix elements M" are given by

Mg334 = —X2+sgn(yo)xqx3X4(1)

M/334 X3X4 sgn(po)xgx2(2)

(4.12)

(4.13)
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with G=k+2 —3 —4.
Substituting Eqs. (4.8) and (4.9) into Eq. (4.6), and performing the second-order perturbation (the corresponding dia-

grams are shown in Fig. 3), we find

F„„(k,co) =D G„„(k,co), +I„„(k,co)G,„(k,co)+G„„(k,co)I„„(k,co)+J„(k,co),

where

(4. 14)

2

I (k, co)= (k, co)= — g lki l lk+
1 2

IIII T QQ T

(2$ )2 N k p q k+p 'q

g(4) g(6)
k pq. [k+p —ql kpq [k+p —q] kpq [k+p —ql kpq. [k+p —q]

CO E'p 6'q 6k+p q+ l 5 CO+ 6p+ 6q+ 6k+p q

(4.15)

'2

I& (k, co)=I &(k, co)=
2

— g lklplqlk+p qsgn(yo)
(2$)2 N P q P q

eq ek+p q+ l 6

g(6)
k pq [k+p —ql kpq [k+p —ql

co +Ep+ Eq +Ek+ p
''q l 5

2 ~(2) g(6)
k, p, q, [k+p —q] k, p, q, [k+p —q]

N 6'p Eq 6k+p q+ l 5
1 2

Ipp(k co) Ipp(k co)
2 glklplqlk+p q(2S) N

pq

g(4)
k, p, q, [k+p —q] k p q [k+p —ql

Q)+gp+6q+E'k+pq l 5

2

I p(k, co)=IP (k, co)= — g lklplqlk+p qsgn(yG)
(2S )' N

pq
CO E 6'q E'k+p q+ l ~

g(4)
k, p, q, [k+p —q] k, p, q, [k+p —q]

Ct) +6'p+ 6'q+ 6'k+
p q

l 5
(4.16)

(4.17)

(4.18)

1 1 2 ~ ~ 2 2 k, p, q, [k+p —q] k, p, q, [k+p —q]

(2$ ) 2 N co Ep Eq
—Ek—+p

—q+i 5 co+ Ep+ Eq+ Ek+ p q
i5—(4.19)

'2
2222 2( Ep+ Eq+ Ek+p q )

2 2 N ~ k p q k+p —q g" 1& k p. q [k+p —ql kp, q, [k+r —q] 2 2(2$) 2 N co —(Ep+Eq+Ek+p q) +i5

(4.20)

Jp (k,co)=J p(k, co),
T

Jpp(k, co)= —— g lklplql„+ q(2$)' 2 N

(2) 2 (1) 2I~k, p, q, [k+p —q] I I~k, p, q, [k+p —q] I

N —
ep

—
eq

—ek+p-q+l5 N+ep+eq+ek+p q
—l5

(4.21)

(4.22)

with G=k+p —q —
I k+p —q]. Using Eqs. (4.14)—(4.22), we may express F „(k,co=0)'s for small k in the following

form:

F (k, O) =F (k, O) = ——D 1 — + + ( 0+2i ——j„}1, W A2 1
aa & PP (2S} (2S)

1 1F c](k,O)=Fp (k, O)= ——
( cJ p+2i p jp)—, —

Ek (2$)

where

cT,= lim —X' „'(k, 0),1

k-O ek

1 i„„=limI„„(k,O),
(2$)2 ""

k 0

1 j„„—:limEkJ„(k, 0) .
(2S)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)
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Since (l&+mk) -ek/2, the substitution of Eqs. (4.23) and (4.24) into Eq. (4.7) yields

N(g jun )'
1 — (2bS+ A )

2Jz

hS (b,S}i 2

2 2
+2355+ 3 —o. —o p+2i +2i p

—j —j p
1+

(2S )

The term of order 1/(2S) is identical to Oguchi's. ' In the terms of order 1/(2S), o«.+cr & may be expressed as

(4.28)

I 2 2I 2I 2

pq

I
—t +sgn( yo )s j

'
E'p+ 6q+ 6p q

(4.29)

(4.30)

(4.3 1)

with G=p —q —[p —q], where c&, c'„sp q, and t are defined by Eqs. (3.21), (3.22), (3.16), and (3.17), respectively. In
deriving Eq. (4.29), we have used the relation, X' '+sgn(yo)X' '=0. Also i +i,& and j +j & may be expressed as

(x —sgn(yo)xqxp q)( t—
p q+sgll(yo)sp q)

i ~+i ti
— — gl l l

6p 6'q E'p
q

(xp —sgn(y&)xqxp q)
J«+lap N g lplq p q + +

Combining Eqs. (4.29)—(4.31), we finally find

0'~~ cT~p+ 2l~~ +2lap jaa jap
16

I(46S+ A )(46S+3A )+22 I

pq

t t +s—gn(yG)s +x —sgn(yo)xqx

~p+ ~q+ ~p-q
(4.32)

Itoh and Kanamori have given a similar expression of
order 1 /( 2S ) in a different context. To evaluate Eq.
(4.32), we sum up Nz /8 points of p in the 1/8 part of the
1st BZ and Nz points of q in the first BZ, with

(~)
D D

NL = 160, 320,480, and extrapolate the values to NL
The renormalization factor for g~ is given by

0.5 5 1 0.065( +0.00 1 )

N(gp~ ) 2S (2S )
(4.33)

which yields Zr =0.5 14 for S= 1 /2. Here the lowest
bound 0.064 of order 1/(2S ) is the value at NL =480.

V. SPIN-STI Iq a NESS CONSTANT

(b)

M(I)

M(i )

Let the order parameter be twisted by an angle 0 per
lattice constant along one of the crystal axes (denoted as
y), which points to the direction tilting n. /4 relative to
the axes of momentum. The twist of the order parameter
is conveniently handled by introducing the local coordi-
nate frame for spin variables such that the spins are
aligned in the +z directions. In this coordinate frame
the Hamiltonian may be expressed as

M(')

H =J g S, S, +J8+ (Si St+b StSt+b )
&i,j & I

J& 8 g (SPSi+b +StSt+b )+O(8) ~

I
(5.1)

FiG. 3. Diagrams for F„„(k, co ): (a) D G„(k, m ); (b)

I„„(km)G (k co) (c) G„„(kco)I„(k co); (d) J„„(k,co). The
solid line for (a) represents the Green's function including the
self-energy correction, while the solid lines for (b)—(d) represent
the unperturbed ones. The crosses for (a) represent D, while the
crosses for (b)—(d) represent 1 or ~Q p q jQ+p —q]
~k, p, q, [k+p —q] [Sgn(YG} iS Omitted].

where I runs over all lattice sites, and I +b indicates the
nearest neighbor to the lth site in the positive y direction.
The stiffness constant p, is defined by the coeKcient for
an increase of the ground-state energy due to such twist:
hE =(N/2)p, 8 +

Applying the HP transformation and the Bogoliubov
transformation to the second term of Eq. (5.1},we find
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JO Q (S]S]+b S]S]+b ) = —JO—,
' &2S 2

I

1/2

g 5(3(1—2+ 3 }I,1213
123

X( W']23a, p 2a3+ WI23p —]a2p 3+H.c. )+ . (5.2)

where the vertex functions are given in a symmetric parametrization by

~]23 T(93+2+3+9]+]+2+92—3X3+ 92—]+]} &

(1)

~]23 2( g2 —3+]+2+92 —]X2+3+93+] )] 3 }
(2)

with

(5.3)

(5.4)

2r srn
k„+k,

(5.5)

The second-order perturbation with respect to Eq. (5.2) gives rise to a change of the ground-state energy ««de«
which may lead to an expression of the spin-stiffness constant as

gr(] ) 2+ gr(2) 2

p J 2 ~ I2I2I2 p [p+q], q p [p+q], q (5.6)P =
Z N PqP+q E+E+E

p q p+q

The third term of Eq. (5.1) averaged over the ground state gives rise to another change of the energy of order (9 . Ap-
plying the HP transformation and the Bogoliubov transformation to the third term of Eq. (5.1), we find

p, "=JS 1 — (25S—A )+ [4(bS) +2(bS)A+ A ] . .1 1

2S (2S }
(5.7)

The total spin-stiffness constant p, is the sum of p,
'" and ](),". To evaluate Eq. (5.6), we sum up NL /2 points of p in the

—,
' part of the first BZ and NI points of q in the first BZ, with NL =80, 160,320, and extrapolate the values to NI ~ ~. '

The renormalization factor for p, is given by

0.235 0.041(+0.003 ) (5.8)

which yields Z =0.724 for S=
—,'. Here the lowest bound 0.038 of order 1/(2S ) is the value at NL =320.

VI. SUBLATTICE MAGNETIZATION

The sublattice magnetization may be expressed as

M =S—(a; a; ) =S——g lim f ie'""[lkG (k, co)+lkrnk[G &(k, eo) G& (k, a])]+mkG&&(k, co)] .
0 77

The substitution of Eqs. (3.11) and (3.12) into Eq. (6.1) yields

M=S —bS+ —g X (k, —Ek)
1 2 lyme (2)

N „E„

(6.1)

'2

+2lkl I 1k+
pq

k k)~ k, p, q, [k+p —q] ~

(Ek+Ep+Eq+Ek+p q)
(4) (6)2lkmksgn(yo „p q [„p q] k p q [k p —q]

Ek ( Ep+ Eq+ Ek+p q }
(6.2)

where G=k+p —q —[k+p —q]. To evaluate Eq. (6.2),
we sum up NL points of p and q in the first BZ, and

Nl /8 points of k in the —,
' part of the first BZ, with

NL =20,40. The convergence of order 1/(2S) with
respect to NL is very good. The sublattice magnetization
is given by

M =S—0. 19660+
(2S }

(6.3)

which yields M=0. 3069 for S=—,'. Our value of order
1/(2S) is different from the value of CC, who have used
the Dyson-Maleev formalism. We hope that our value is
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more reliable in view of the treatment of the umklapp
processes.

TABLE I. Renormalization factors for the spin-wave veloci-

ty Z„ the perpendicular susceptibility Z~, and the spin-stiffness
constant Z~, as well as the sublattice magnetization M [S= —'].

VII. CONCLUDING REMARKS
Theory Z. Zp

0. 1580 + 0.0216
2S

(7.1)

which is equivalent to Eq. (3.26) within a very small nu-

Treating the umklapp processes carefully, we have
developed IW's idea, and have calculated the spin-wave
dispersion, the perpendicular susceptibility, the spin-
stiffness constant, and the sublattice magnetization, to or-
der 1/(2S), using the HP formalism. The calculated
values of order 1/(2S) are not negligible, though small,
indicating that the 1/S expansion is a useful asymptotic
expansion. In Table I, our estimates are listed for
S=l/2, in comparison with the series-expansion esti-
mates and the Monte Carlo estimates. ' Our values are
in good agreement with the series-expansion estimates.

Whether or not our values are satisfying the hydro-
dynamic relation, Z, =(Z /Z&)'~, may be a crucial test
for their accuracy. Substituting Eqs. (4.33) and (5.8) into
this relation, we find

1/S expansion
this work

CC (Ref. 18)
Series expansion (Ref. 4)

Monte-Carlo
TC (Ref. 5)
MD (Ref. 8)

1.1794 0.514 0.724 0.306 9
0.30068

1.176' 0.52 0.72 0.302 5

1.14
0.796

0.31

'Value evaluated from the relation Z, =(Zp/Zz)'

merical error. Thus we believe that our estimates are
quite accurate.
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