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We calculate the spin-wave dispersion, the perpendicular susceptibility, the spin-stiffness constant, and
the sublattice magnetization of a two-dimensional Heisenberg antiferromagnet at T'=0, to order
1/(2S)%, treating carefully the umklapp processes. Our numerical estimates for the thermodynamic
quantities are in good agreement with series-expansion estimates, and satisfy the hydrodynamic relation

very accurately.

I. INTRODUCTION

A great deal of theoretical interest in the physics of
quantum antiferromagnets has been raised after the
discovery of high-temperature superconductors (HTSC),
since the undoped mother materials like La,CuO, are de-
scribed by a square-lattice spin-i antiferromagnetic
Heisenberg Hamiltonian,

H=J 2 S,"Sj ,
(i, j)

(1.1)

where (i,j) indicates a sum over pairs of nearest neigh-
bors. The quantum fluctuation is expected to be large
due to the smallness of the spin S =1 and the low dimen-
sion D =2. At the beginning of the discovery of HTSC,
there was a controversy whether large quantum fluctua-
tion destroys the antiferromagnetic long-range order or
not, but it is now widely accepted that the Heisenberg an-
tiferromagnetic exhibits the Néel long-range order at
T=0 even for S=1 in square lattice.' ™3

The presence of the Néel long-range order suggests
that the spin-wave expansion (1/S expansion) makes
sense. Actually many authors, evaluating several ther-
modynamic quantities by various methods such as series
expansion,* Monte Carlo®~® and others,” !> have report-
ed that the linear spin-wave (LSW) theory,'*!* leading or-
der of the 1/S expansion, gives good results. This fact in-
dicates that higher-order terms are small. Recently
Igarashi and Watabe (IW)!® have made the 1/S expan-
sion on the basis of the Holstein-Primakoff (HP) formal-
ism,!” and have reported the small corrections of order
1/(28)? for the spin-wave velocity c, the perpendicular
susceptibility x,, the spin-stiffness constant p,, and the
sublattice magnetization M. Also Castilla and Chakra-
varty (CC)!® have reported a very small values of order
1/(28)? for the sublattice magnetization on the basis of
the Dyson-Maleev formalism.

In the higher-order terms, the umklapp processes may
have important contributions, but these processes were
not correctly taken into account by IW. Treating care-
fully the umklapp processes, we develop IW’s idea to cal-
culate thermodynamic quantities in the 1/S expansion.
We find that the values of order 1/(25)? for c, X, p,, and
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M are improved from IW’s, in good agreement with
series-expansion estimates.* It is also found that our
values are satisfying the hydrodynamic relation,
c=(p,/x,)"’%, within a very small numerical error, indi-
cating that our estimates are quite accurate.

In Sec. II we express the Hamiltonian in a symmetric
parametrization. We calculate the spin-wave dispersion
in Sec. III, the perpendicular susceptibility in Sec. IV, the
spin-stiffness constant in Sec. V, and the sublattice mag-
netization in Sec. VI. Section VII is devoted to the con-
cluding remarks.

II. HAMILTONIAN

We express the spin operators in terms of boson an-

nihilation operators a; and b; (and their Hermite conju-

gates) using the HP transformation:

Si=S—afa; , 2.1)

ST=(87)'=V2S5f.(S)a, , 2.2)

z— t

Si=—S+bb, , (2.3)

=(s— )t =v35p1
Sr=(87)"'=v2Sb/f,(S), (2.4)
with
n 172 ) n n 2
= (1= 1™ 1" .

fitsH=11 28 =22 sl | 7 ’

(2.5)

where the indices i and j refer to sites on the a (‘“up”) and
b (“down”) sublattices, respectively, and n,=a;a; or
b;b ;. We will consider in the following a square lattice.
The Fourier transforms of the boson operators are

defined by

5 172
4= |5 Zk"akexp(ikr,-) ,
bj= W‘ % bkexp(ikr}) ’

where the momentum k is defined in the first Brillouin
zone (BZ), that is, —7 <k, <m, —7 <k, =7 in units of
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1/(V2a) with a being the nearest-neighbor distance. 1+e, 1—¢ |'?
Substituting Eqgs. (2.1)-(2.6) into Eq. (1.1), and perform- L= ) == =—xily
ing the Bogoliubov transformation, €k €k
T T

ay lkak +mkﬁ_k 5 (2-7)

bﬁk=mkal+lkBAk , 2.8)  =1—y})"?, y,=cos(k, /2)cos(k, /2) ,
with we find

]

H=H,+H,+H,+ -,

Ho=JSz 3(e,—1)+JSz 3 e(afa, +BIB,)
k k

JSz
Hl 2S — A ZGk(akak+[3kﬁk
—JSz
+ S 8(14+2—3—4), 1,141,
2SN 3%
X [alafasa, BV +BLiBL B \B_,B R +4alBl B_raiB ),
+( 2‘7511([7-”—20‘30‘43 et Zﬁtﬁ— 1B_a3B et aTazﬁ’l 33143 (16254 +H.c.)],
JS
Hy==5 3 €)@y BB+ Cok @B HBsa)+
where

2
A== %(l~ek)=0. 1579 ,

(1
31234 Vi—aX 1 Xa TV 13X 1 X3V 4XoX4H Y, 3%,%;5

1

R O P TR 0P P o 5 The ol 0% Fio L PSSP TS 75 Fio of SWEWPS 25 T i of PSS 5 7 P o SWCEES 75 75 79N
31234 Vo—aX 1 X3ty —aXo X3y 3x X4ty 3%yx,

—_1
TV X 1 X3X 4 TV 1 XX 53X Ty X 1 X X3 FY3X 1 XX T Yo 34X TV —3-aX2 T V42— 1%3 +Y3a-1%4)

B =7 a—a ¥ 13X 1 X, X 33X Hy _aX Xy Ty, 3X X,

— 1
PAVZLTI AL 2P 70 i o PHETPE T3 of SUENIS 35 75 F3 o T PEal 2> PP 2° i of PUPHNS Fho o SUPES 35 75 PN

4) — _ _ _ _
B33 = =V 4X4 TV 1-4X1X2X4 TV 2-3%X3 TV 3% X2 X3

+3(yaty X x, Hysx,x; FYaXoXgTVa3-aX3Xs TV 3 aX 1 X X3X4H Y31 X1 X3 +Ya2-1%1X4)

(5) — _ _ _ _
B33 = —V2—4X1 V23X 1X3X4 TV 1—4X2 TV 1-3X2X3Xy

+%(7/2x1x4 +7/1"27‘44'7’4"1"‘2‘*‘7’3"1"2"37‘4'*'7’2—3—4"17‘3"‘7’1—3—4"2?‘3‘*‘?’4—2—1‘*’?’3—2—13"3"4) ’

6) —
B33 TV a—aX2X3 TV 3% X4ty 13X 1 X4 TV —4X1X3

—%(y2x2x3x4+'y3x4+y2_3_4x2+y3_2_1x|x2x4+y1x1x3x4+y4x3+7/,#344x1 FYa 1 X1X2%3)

2
> lil%l% X —6y2_1,kxkx,x2+72x%x2+72xix%x2+27kxkxf +'y,xl2(x1 +yx2)

N|»—‘
=z

2
] zlil%l%X(37/271—kx1x2+37’2717kx12(x1x2—27’1xkx1x%_27’2ka2 ka kalzcx%)'

N|»—~
zZ|o

I&

2.9

(2.10)

(2.11)
(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)



46 1/S EXPANSION FOR THERMODYNAMIC QUANTITIESIN A . ..

The part H, represents the spin-wave energy in the LSW
theory. The part H, represents the energy of order 1/2S;
the first term in Eq. (2.13) comes out through the process
of setting the products of four boson operators in a nor-
mal product form.! We have used the abbreviations
a;=ay,b =b_ k> Y1-2= Vi, -k ©tC. The Kronecker

delta 86( 1 +2 3 —4) represents the conservation of mo-
menta within a reciprocal lattice vector G. The vertex
functions B';,’s are given in a symmetric parametriza-
tion.?® It is important to notice that y,_,#y,_; if G#0
for 8g(1+2—3—4) because of a possible sign change in
Yy with k—k+G(y,g==v,). The expressions for the
vertex functions by IW may be incorrect, since this type
of sign change is disregarded. The part H, represents the
energy of order 1/(25)?, which comes out through the
process of setting the products of six boson operators in a
normal product form.

III. SPIN-WAVE DISPERSION

We define the Green’s functions at zero temperature:*°
G ook, t)=—i{ T(a(1)a}(0))) , (3.1)
Gopk,t)=—i{T(a(1)B_4(0))) , (3.2)
x

Sk, 0)=3gk,0)= A€, , ZP(kw)=3G)k,w)=0

S2(k,0)=2Z(—k, —0)=C,(k)+

Sk, 0)=3Z(—k, —w)=C,(k)+

><kaq[k+p —q]

Here [k+p—q] stands for the momentum k+p—q re-
duced in the first BZ by a reciprocal lattice vector G, that

is [k+p—q]=k+p—q—G, and sgn(yg) denotes the
sign of yg. Note that €4, =€y+p—q and
Ity p—q=!ik+p—q)- The last terms in Egs. (3.11) and

(3.12) correspond to the diagrams shown in Fig. 1, where
we have used the relations,

(4)
B(l ~qlapk =S8NV G)Bip g, (k+p—ql>

Bq,[k+p—ql.k,p =Sgn(7’G)BL6.:>.q,[k+p—q] .

Now we discuss the behavior of 22(k,w=0) for small
k. The vertex functions are expanded as

(3.13)

kaq[k+p ) =lp,q T380(YG)sp 15 g6k

XD (k-Vyep, )+, (3.14)
Bl p.atk+p—a1 =SBV )y q ~Spq T Sp gk
+XOk-Vye, )+, (3.15)

212[k+p q
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Gpalk,1)=—i{T(B! (1af(0))) , (3.3)
Gaslk,t)=—i{T(B" (1)B_,(0))) , (3.4)

where ( - - - ) denotes the average over the ground state,
and T is the time-ordering operator. The Fourier-
transformed unperturbed propagators are given by

G (k,0)=[w—¢€+id]! 3.5
Gls(k,0)=Gg,(k,w)=0 (3.6)
Gplko)=[—w—¢+id]"", (3.7)

with 8—0". The self-energy is defined by the Dyson
equation:

G#V(k,w)=Gov(k @)
+ 2 G0 (k,0)2,, (k)G (ko). (3.8
u'v
Expanding the self-energy in powers of 1/2S,
=1 s ...
2.k 0) 2Szw(k ) (25 ~wv' K )
3.9

and performing the second-order perturbation, we obtain

(3.10)
(4) 2
|Bk,p,q,[k+p—q]|
W= €~ €€ ypqtid
— IB(k?l)’va[k+P_q]I2 (3'11)
ote,tete, i
2
] 221k121 lk+p qsgn YG)kaq[k+p q)
2(e, T €, 1€ )
ktp—q (3.12)
© —(e teqterip— q) +i8
with
Spa™ TV q¥p—q 580V G)Yp-gXq
+1 {qup q Ts8n(yg)yexpxg
tYp—gXpXp—qTs8n(7G)7,} » (3.16)
tpq ™ TSBNYG)Yp—gXpXp—q "V ¥pXq
+2{580(y6)Y*p—qt¥p-g%q
tsgn(yg)ypXpXgXp—qtX;,) (3.17)
where G= —[p—q), and X’ and X'© are linear

functions of k-prp, k-quq, and k‘VP_qu_q. Note that

Xp—q=X(p—q)- Also C (k) and C,(k) are expanded as
Ci(K)=coeg '+c e+ -, (3.18)
Cy(k)=—coe ' +cie+ -, (3.19)

where
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aq ap
ak m ak ak m ak
(a) —e < - + < < <
N N
1 ' ! |

(4)

3(4)
k.p,a,[k+p—q] k,p,q,(k+p—q]

aq
ak m Bk
(b) —< ‘ —€ Iﬁ‘
! Bp 1

B(4)

(6)
k.p,q,[k+p—q] qulk+p—q],k.p

B

(6)
5 k,p.a,[k+p—q]

k,p,q,[k+p—q]

BY

(6)
B [k+p-ql.a,p.k

k.p,q,[k+p—q]

FIG. 1. Diagrams for the self-energy in the second-order perturbation: (a) 2{2)(k,w); (b) 2{3)(k,w). The solid lines represent the
unperturbed Green’s functions Gﬁﬂ(k,a)). Momentum [k+p—q] in the vertex functions stands for the reduced value of k+p—q in
the 1st BZ. The arrows for G %(k,) run in the opposite directions to the conventional ones due to our definition.

2
112 22 _ 2 12 ]
=3 [ ] Bt =1 |2 | ShR it
aq
2
2 TYpXpXaTVq%q),  (3.20) Flypxpxltiyexg) . (3.22)
1|2
o= | 1212 {3y __ —x2%}, 3.21
1T N E’ plal3Vp-a¥p¥qXpl (2D g ubstituting Eqs. (3.14)—(3.22) into Eq. (3.11), we have
J
S(k,00= - [0+ |2 22121212 2ty tsgn(ralsp)” | (3.23)
' K,0)=—|c — - - : Vy€ » .
“ & |’ |N e €, e te, g
|
where v, is a certain numerical constant. Substituting  to order 1/(2S)? may be given by
the relation, 1 1 .
=€t Ae+ 2.k, . (3.25)
b tsen(ye) k~ €k 7S €x (25 ) aa' K> €4)
pq ' SBMYG!Spq
=1, tegte,_g){x,—sgnlyglxgx, ¢}, (3.24) — . :
b
into Eq. (3.23), with the help of the relations i 2
S A gsen(YG)epX XXy g !
Pa . i ]
= S -asen(Y6)ep— X pX g Xp—g 0.5 .
g ]
and g ]
2 I ]
I—qs8n(YG)€p—gXp—q=Vp-q/2 > o ]
0.2 0.4 0.6 0.8

we find that the first term of Eq. (3.23) vanishes. Thus we
find that 2;2(k-»0,0)=0, which the rotational invari-
ance of the Hamiltonian is demanding. We can similarly
prove that ZLZB)(k—»O,O) =0.

The quasiparticle energy €, for spin-wave excitation up

k./n(=k,/m)

FIG. 2. Spin-wave dispersion relation €, for k, =k,. Curve a
represents the linear spin-wave value €. Curves b and ¢
represent the values up to order 1/(2S) and 1/(2S)? respective-
ly. The energy is measured in units of JSz.
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To evaluate Eq. (3.25), we sum up 6400 points of p and q
in the 1st BZ for 3{2)(k,¢,) given by Eq. (3.11). Figure 2
shows the spin-wave dispersion thus evaluated. The
second-order correction is positive. The spin-wave veloc-
ity is estimated from 22/(k,€) /¢ for k,=k,=m/Ny
with N; =40,80,160, and by extrapolating the values to
N, —«.2! [For 2{2)(k,¢,), we sum up N}? points of p
and q in the 1st BZ.] The renormalization factor of the
spin-wave velocity is given by

0.1579 |, 0.0215(40.0002)

10 767

which yields Z,=1.1794 for S=1. Here the lowest
bound 0.0213 of order 1/(2S)? is the value at N, = 160.

IV. PERPENDICULAR SUSCEPTIBILITY

According to the linear-response theory, we may ex-

Z. =lime, /&,=1+ + , (3.26) press the perpendicular susceptibility in terms of the
€ ko KOOk 28 (25)? Green’s functions:
|
_N( )2 ©
xl=#l{in%—if_ dt{(T[(S, (k,t)+S, (k,))(S,; (k,0)+S, (k,0)]) , 4.1
where
5 172
SHk)=[S;(K]'=|=| 35 exp(—ikr;), 4.2)
i
5 172
Sy K)=[S, (K)]'=|= | 3 S exp(—ikr;) . 4.3)
j
Introducing the operators,
YD (k)=[Y (K] =[S} kK)—m,S; (k)] /(28)"2, 4.4)
Y (k)=[Y; k)] =[—mS, (k)+1.S5, (k)]/(25)"?, 4.5)
and the associated Green’s functions,
F(ko)=—i [ dte(T[Y, (k,1)Y; (k,0)]), 4.6)
we may rewrite Y, as
_ —N(gup)? ) _ _ _ _
Xl———m—-&gr})2S(lk+mk) X[Foo(k,0=0)+F 5(k,0=0)+Fg,(k,0=0)+ Fg(k,0=0)] , 4.7)

where the energy is measured in units of JSz.

We perform the HP transformation and the Bogoliubov transformation for the spin operators defined by Egs. (4.4)

and (4.5), so that

Y:(k)=Dak—%—lA7 3 86k +2—3 =), L1yl (M B sy + M B alBt BT+ ), (4.8)
234
Y ()=Dp",— L L 3 55(k+2-3— ) L1, sgn(y o) (M ZaB_rasas+ MBalBl 8 o+ ) 4.9)
B -k 59 N = G kf2l3t4SEMY g k234P —2Q304 K234 AP 3P —4 . .
Here the “spin reduction” factor D is given by
AS 1 AS(1+3AS)
D=1——"2—— =2 =29 1
28 4 (25)? (4.10)
with
4.11)

AS=(1/N)3 (eg'—1)=0.196 60 .
q

The first-order term in Eq. (4.10) arises from the process of setting the products of four boson operators in the normal
product form, while the second-order term arises from the process of setting the products of six boson operators in the
normal product form. The “nonlinear” matrix elements M are given by

() —_
Mio34= —x, +sgn(yg)x,x3x, ,

(2) — _
MG =x3x,—sgn(ygxyx, ,

(4.12)
(4.13)
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with G=k+2—3—4.
Substituting Egs. (4.8) and (4.9) into Eq. (4.6), and performing the second-order perturbation (the corresponding dia-
grams are shown in Fig. 3), we find

—n2 0 0 7
F,,(k,0)=DG,,(k,0), +1,,k )G, (ko)+G,, ko), ko)+J, ko), (4.14)
where
(n (4) (2) (6)
(k,0)=T. (k)= 1 2 21 12121 M p.q(x+p—a1Bkp,q k+p—q] _Mk,p,q,[Hp_q}Bk,p,q»[Hp—q]
fea fea (28 | N KPakrema | h—e,—€q—€1pqtid ot+e,tegte i, q—id |’
(4.15)
(1) (6)
* 1 2 My paix+p-aBkpalk+p—a
I (k,(z))zl a(k,w)= ~ 12121212 _sen( ) P Qs ,q, P
i g (287 |N E B A PP
(2) (4)
_ Mk.p,q,[k+p—q]Bk,p,q,[k+p—q] (4.16)
ote,tegte s, —id ’ '
(2) (4)
7 1|2 My.p.aik+p-qBipa (k+p—q]
Ig,(k, =J .k, = “ l 12121 P D P ,
palko)=laplko0) =10 0 Nl 2 lillelirp-asenlye) | = = i
ML B
_ k,p,q,(k+p—q}” k,p,q,[k+p—q] 4.17)
ote,tegte, q—id
2 (2) (6)
1 12 My p.aix+p-aBip.alk+p-al
Ige(k,0)=Ige(k,0)= = R - ;
g w (25)? [N % Kpaktr—q ©— €, €€ yp_qtid
(n (4)
_ Mk,p,q,[k+p-q]Bk,p,q,[k+p—q] (4.18)
ote, e tey, q—i8 ’
1 112 |M=t11)wq[k+p'q]|2 i1"I;x21)ﬂ1[k+p~q]12
J o k)= —|= R 2 - P , (4.19)
aa(k; ) (282 2 | N 2 Kpa'k+p— q{w—ep-—eq—ek+p_q+i8 ote,tetey, q—id
1 112 2e,tegteypg)
J gk, 0)= = IR sgn(yg)M}! M2 P4 ,
o (2822 |N 2 k+p—qS8N(Y6)Mipq -+ p-aiMipg i p- V2 —(e,+ €+ €spq)+id
(4.20)
Jpa(k,0)=J yp(k,0) (4.21)
2 (2) 2 (1) 2
1 1 |M [k+—]| M [k+—]|
J ook, )= 112 112121 ,p,q,(k+p—q _ ,P,q[k+p—q ’ 4.22
salk ) (28) 2 E’ k k+p- q[w—ep—eq—ek+p_q+i6 ote,tegte, q—id “22)

with G=k+p—q—[k+p—q]. Using Egs. (4.14)-(4.22), we may express F,,(k,0=0)’s for small k in the following
form:

Faa(k,0)=FﬁB(k,0)z——6-1: [D2 -5+ (ZA;)Z (—2;7(—%+2iaa—jaa)] : 4.23)
Fop(k,0)=Fp, (k, 0)"‘?151;,2“ Oogt2iag—Jag) 4.24)
where
0= lim =32k, 0 , 4.25)
(2;)2 o = Him L., (K,0) 4.26)
72—;)7 = limed o (K,0) 427
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Since (I, +m, )*~€,/2, the substitution of Eqs. (4.23) and (4.24) into Eq. (4.7) yields
xl=ﬂ—§%)2 '1—%(2AS+A )
+ -(%)2- - % _(ASP L, as+ 4 20 a0t 2i0a 208~ jua—Jap ] ] . (4.28)

The term of order 1/(2S) is identical to Oguchi’s.'” In the terms of order 1/(2S)%, o ,,+0 3 may be expressed as

21 12

{—tpqtsen(vglsyq)?

— "
Uaa+aaﬁ_cl+cl P'qa'pP—q

’ (4.29)

ep+eq+ep_q

with G=p—q—[p—q], where ¢, ¢}, 5, 4, and ¢ 4p are defined by Eqgs. (3.21), (3.22), (3.16), and (3.17), respectively. In
deriving Eq. (4.29), we have used the relation, X‘“+sgn(yg)X'®=0. Also i,,+i,p and j,, +jp may be expressed as
2
- —g)(—t, 4 tsgnlygls, o)
o ticg= |2 | si2z_ ZpT 8N VaRa¥Xpo) Tipg TOENYGMyg) (4.30)
N | % e,tegte, g
2 2 (x,—sgn(yg)xx,_q)?
. . Xp G’”q7p—q
Jaatiap=— l~—] 31222 4.31)
aa At N | & Pard €, tegte_g
Combining Eqgs. (4.29)-(4.31), we finally find
—oaa—aa3+2iaa+2iaB—jaa—jaB=—%{(4AS+A)(4AS+3A)+2A}
2 2
—t o tsgn(ygls, o +x,—sgn(yg)x x,—
+ |2 S, pa 7381V G)sp,q+ X, —s8n(yg)xgX, g} 4.32)
N | o €, tegte, g

Itoh and Kanamori*? have given a similar expression of
order 1/(25)? in a different context. To evaluate Eq.
(4.32), we sum up N} /8 points of p in the 1/8 part of the
Ist BZ and N} points of q in the first BZ, with

(@) X—<—X

D D

S R ==t

M)

() )

MO MO MDD M

FIG. 3. Diagrams for F,(k,0): (a) DZG#V(k,m); (b)
I“V(k,m)G?,v(k,m); (c) Gzﬂ(k,w)fw(k,w); (d) J,(k,0). The
solid line for (a) represents the Green’s function including the
self-energy correction, while the solid lines for (b)-(d) represent
the unperturbed ones. The crosses for (a) represent D, while the
crosses for (b)-(d) represent 1 or

(1)
e . : Mk.p‘q.lk+p~ql or
My q.k+p—q) [580(Y ) is omitted].

[
N;=160,320,480, and extrapolate the values to N,
— .21 The renormalization factor for y, is given by
_ Xu(2Jz) _ 0.551 , 0.065(+0.001)
¥ N(gug) 28 (28)?

which yields Z, =0.514 for S=1/2. Here the lowest
bound 0.064 of order 1/(2S 2 is the value at N, =480.

) (4.33)

V. SPIN-STIFFNESS CONSTANT

Let the order parameter be twisted by an angle 6 per
lattice constant along one of the crystal axes (denoted as
»), which points to the direction tilting 7/4 relative to
the axes of momentum. The twist of the order parameter
is conveniently handled by introducing the local coordi-
nate frame for spin variables such that the spins are
aligned in the t+z directions.* In this coordinate frame
the Hamiltonian may be expressed as

H=J 2 S;'S; +192(S A
(i,j)

—J‘OZE(S Sy TSiSF)+0(0) (5.1

SiSite)

where [ runs over all lattice sites, and / +b indicates the
nearest neighbor to the Ith site in the positive y direction.
The stiffness constant p, is defined by the coefficient for
an increase of the ground-state energy due to such twist:
AE=(N /2)p,6*+

Applying the HP transformation and the Bogoliubov
transformation to the second term of Eq. (5.1), we find
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172

J03 (SiStey = SiSisy) =~ 0428 2| S g(1—2+3), 1,1,
123
wialpl o+ wEa alBl s+ H.co+ -, (5.2)

where the vertex functions are given in a symmetric parametrization by

W‘llz’3=—%(n3x2x3+n1x1x2+772_3x3+172_1x1) ’ (5.3)

W3 =—3m 3% xy i xoxy %, Hayxs) (5.4)
with

M= —2i sin kxtky ‘ i (5.5)

The second-order perturbation with respect to Eq. (5.2) gives rise to a change of the ground-state energy of order 62,
which may lead to an expression of the spin-stiffness constant as
2 ( 2 (2) 2
2121212 le [ptalq I +’Wp [p+q],q| (5.6)
Papta €t egt€Eptg ' '

Ppara — J
s z

The third term of Eq. (5.1) averaged over the ground state gives rise to another change of the energy of order 6°. Ap-
plying the HP transformation and the Bogoliubov transformation to the third term of Eq. (5.1), we find

1
(2S)?

pIR=US? 1= 5 (205 — )+ — - [HASPH2AAS) A+ 47 | (5.7)

The total spin-stiffness constant p, is the sum of pP*® and p%i®. To evaluate Eq. (5.6), we sum up N7 /2 points of p in the
1 part of the first BZ and N, f points of q in the first BZ, with N; =80, 160, 320, and extrapolate the values to N; — « 2

The renormalization factor for p; is given by
0.235  0.041(£0.003)

Z = JSH)=1— , (5.8)
p=ps/UIST) 28 (28)
which yields Z,=0.724 for S = . Here the lowest bound 0.038 of order 1/(2S ) is the value at N, =320.
VI. SUBLATTICE MAGNETIZATION
The sublattice magnetization may be expressed as
M=S—(ala;)= S——Z lim +f ‘;:: e"“MI3G 4ok, @) +1,m [Gop(k,0)+ G gk, )] +miG ga(k,0)] . (6.1)
k n—0
The substitution of Egs. (3.11) and (3.12) into Eq. (6.1) yields
1 2 Iym
=S—AS+ = Sk, —€)
(2sE N 2 { «
2
2 22 (g +mi)IB o krp-a)l’
v (exte,tegtesp—g)
n 2Ikmk53n(?’G)B&L,q,[k+p—q]B(k?|)>,q,[k+p—qJ (6.2)
G (eptete s, o) ’ '
r
where G=k+p—q—[k+p—q]. To evaluate Eq. (6.2), M=S—0.19660+ ——>2 0.0035 , (6.3)
we sum up N} points of p and q in the first BZ, and (28)?

NZ /8 points of k in the L part of the first BZ, with

N, =20,40. The convergence of order 1/(2S5)* with which yields M =0.3069 for S=1. Our value of order
respect to N is very good. The sublattice magnetization 1/(28)? is different from the value of CC, who have used
is given by the Dyson-Maleev formalism. We hope that our value is
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more reliable in view of the treatment of the umklapp
processes.

VII. CONCLUDING REMARKS

Treating the umklapp processes carefully, we have
developed IW’s idea, and have calculated the spin-wave
dispersion, the perpendicular susceptibility, the spin-
stiffness constant, and the sublattice magnetization, to or-
der 1/(2S)?% using the HP formalism. The calculated
values of order 1/(25)? are not negligible, though small,
indicating that the 1/S expansion is a useful asymptotic
expansion. In Table I, our estimates are listed for
S=1/2, in comparison with the series-expansion esti-
mates* and the Monte Carlo estimates.>® Our values are
in good agreement with the series-expansion estimates.?

Whether or not our values are satisfying the hydro-
dynamic relation, Z,=(Z,/Z, )72, may be a crucial test
for their accuracy. Substituting Egs. (4.33) and (5.8) into
this relation, we find

0.1580 , 0.0216
28 (28 )?

which is equivalent to Eq. (3.26) within a very small nu-

Z,=1+

> (7.1

10771

TABLE 1. Renormalization factors for the spin-wave veloci-
ty Z., the perpendicular susceptibility Z,, and the spin-stiffness
constant Z ,, as well as the sublattice magnetization M [S = % ]-

Theory Z, z, z, M
1/S expansion
this work 1.1794 0.514 0.724 0.3069
CC (Ref. 18) 0.300 68
Series expansion (Ref. 4) 1.176* 0.52 0.72 0.3025
Monte-Carlo
TC (Ref. 5) 1.14 0.31

MD (Ref. 8) 0.796

*Value evaluated from the relation Z. =(Z,/Z,)'"%

merical error. Thus we believe that our estimates are

quite accurate.
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