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Quantum particle in a washboard potential. II. Nonlinear mobility and the Josephson junction
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We obtain an analytic expression for the nonlinear mobility of a quantum particle moving down a

cosine potential in the presence of a finite bias force in the small viscosity limit. This is used to explain

some experimental observations in Josephson junctions in which the Coulomb blockade is important.

The result is based on a resummation of a series expansion of the mobility in Vo (the strength of the

cosine potential) and is applicable to a variety of regimes in the parameter space.

I. INTRODUCTION

This paper is part of an investigation of the dynamics
of a quantum particle moving in a periodic cosine poten-
tial while coupled to a boson bath. ' Our analysis uses
a real-time Wigner distribution function formalism. Due
to the direct relation between the velocity of the particle,
vF, under an external driving force, F, and the I-V
characteristic of a current-biased Josephson junction
(I~F, V~vF), this problem has attracted a great deal of
theoretical interest; cf. the accompanying paper
(hereafter referred to as I) for background. Our starting
point here is the formally exact series expansion for vF in
terms of Vo, the strength of the cosine potential (cf. Sec.
IV of I) and our interest is in the small viscosity limit of
an Ohmic dissipation, J (co)= rico.

This case is relevant to realistic experiments involving
quantum effects in ultrasrnall Josephson tunnel junctions.
In general the presence of hysteretic I-V curves, which
appears only when the viscosity is below a certain value,
is essential in macroscopic quantum tunneling measure-
rnents. Note, however, that the small viscosity limit is
by no means an indication of weak effects of dissipation
on the quantum dynamics of the particle. On the con-
trary, the effects are expected to be important for the mo-
bility since the particle is eventually stopped at rather
large velocities by the dissipation.

The strategy used here is to first divide the multidimen-
sional time integrals which appear as coefficients in the
series expansion into "neutral charge" clusters (viewing
each time argument t of the integrands as the position of
a particle with charge p.). In each cluster the total
charge is zero. When the viscosity is small, the links be-
tween clusters are in general very weak so that they are
we11 separated from each other. For a given cluster, we

employ again the weak damping limits of the various
functions entering the integrands. This enables us to car-
ry out the intracluster integration exactly and transform
the series for the mobility into an expansion in the neu-
tral charge clusters (or equivalently in I /s), the inverse of
the viscosity). We then find that the new expansion can

I

be represented by an integral equation which can be
solved via self-consistency. This leads to an analytic ex-
pression for v~ as a function of F=F/ri which is expect-
ed to describe the small viscosity limit of the dynamics in
almost the entire parameter space. The result shows in
particular the effects of the quantum Bloch states on the
particle's dynamics. The striking feature is that this was
not an explicit input for the computation at the starting
point. We then compare our results with experimental
observations in ultrasmall Josephson junctions where
quantum effects, the so-called Coulomb blockade, are irn-

portant. It seems to provide a reasonably satisfactory ex-
planation for the various experimental phenomena.

The plan of this paper is as follows. In Sec. II we re-
view briefly the general expression for the stationary ve-
locity vF as a series in Vo. Then in Sec. III we discuss the
concept of the neutral charge cluster and deal with the
problem of summing over a single irreducible cluster.
The method is generalized in Sec. IV to include multi-
cluster terms. We then sum over the entire series in the
cluster expansion to get the analytic expression for the
quantum mobility. In Sec. V we present plots of vF vs F
for various parameters and discuss the relation of our re-
sult to the experimental observations in small Josephson
junctions.

II. THE STATIONARY VELOCITY

We consider a system with Hamiltonian

w2

H = + V cos(k x) Fx-
P 2 0 0

coupled to a boson bath with an Ohmic dissipation spec-
trum J(co)=rico. Starting with an initial product density
matrix for the bath in equilibrium and the system local-
ized at the origin, one finds for vF, the mean velocity of
the particle subject to a force F, see I,

(x)(t,F)
F 7

f —+ oo

the series,

kp P Fkp 2n
v~= —+ g ( —I)"Vo" J dt2„, . . . J dt, g ( —1)exp i g pkt„F, F2

~2n p2n ~j =1~J
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The functions F) and F2 entering (3) are

2n —1
1 k0 2n

F, ({t,,p, I ,)= g —sin g p,g(t, t„—)
2 . k+

k2 2n

Fz({t,p ])=exp g p p&C(t —t„)
2

Ic, k =1

where

g (t)= [1—exp( —rtt /m)]
0(t)

{t, , t2, , t2„),t2„) into irreducible neutral charge clus-
ters according to their "charges" {p I. Here we have
made an analogue of the integrals with a one-dimensional
Coulomb system, viewing each t as the position of a par-
ticle carrying charge p . The particles cannot cross over
each other. Let the cluster a have a length 2L and start
with j =J; it terminates at j =J' =J +2L . The num-
ber of irreducible clusters depends on the distribution of
{p~ I. Given a set of {p, I, we then have

{t ) )t2) . . ) t2n —) ) t2n

and

C(t)= I d co A'gN
[1—coscot]coth

plica

Pl CO +'g CO 2 with

kT [ I—tl mg—(Itl )]+o(i}).
1

(7)
'9

Identical expressions for the velocity have been obtained
in Ref. 2 (and references therein). Note that the expres-
sion for the corresponding tight-binding model, though
appearing similar in structure, is actually different from
ours in detail (mathematically the tight-binding model
seems to correspond roughly to m~O and g~l/g of
the continuous model).

III. EXPANSION IN NEUTRAL
CHARGE CLUSTERS

A. The neutral charge clusters

The coefficients of Vo in (3) consist of multidimensional
integrals over past times. It is useful to divide

J

~(a} a

1 y 2) ~ ~ ~ ~

One then finds that large distances for intracluster
"charges" are exponentially suppressed by the function
F2({tt,pj I ). To see this let us put, for example, one
charged particle, say t, far away from its cluster cen-
tered at t =t, Since .C(t)—=kTItI/ri at large t the in-
tegrand is suppressed by an exponentially decaying factor-exp( ko I t, t~

—
I
k T/rt—). This mechanism does not

work for intercluster separations. In the latter case the
suppressions come from the function F, ({tj,pj]). Since
the clusters are charge neutral, the suppression for the
connection between the ath and (a —1)th clusters be-
comes

0 2n —1

sin g p~g (t~ t, ) -sin-
J= a

Wk0
Qp, g(t t, )—
J(a)

Rk0

2
a —1

g(tj —t, } g t pj
j(a}

Rk0
exp[ ri(tJ t, )I—m] g t, p)—

~(a)

which converges for integration over t, . Note that if the
a

viscosity 7} is small, the right-hand side of (8) decays very
slowly so that the intercluster separations are typically
very large.

B. The small viscosity limit

It is now crucial to notice that the size of a neutral
charge cluster becomes, on the other hand, nearly in-
dependent of the viscosity when the latter is small. In
fact, for g~O the limits of g (t}and C (t) entering (4) and
(5) can be approximated, for fixed t WO by

g (t}=8(t)—,C(t) = t' .
t kT

Pl 2'
These quantities have the property that the analytic con-
tinuation of R (t)=ko[ikg(t)/2+C(t)] satisfies
R (t i pA) =R *(t), an a—nalyticity essential for the valid-

ity of the Einstein relation; see Sec. IV A of I. For t ~0 a
quantum correction comes in, giving an asymptotic be-
havior of C ( t ) of the form C ( t }-i}t lnPA/t, cf. also Ref.
5. This correction can, however, be quite safely ignored
as g is small here. For a given neutral charge cluster one
can further rewrite
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2L k pkT 2L

p g pJPkC(tk t—j) =e"p
4 g Pjpk(tj —k)

j,k=1 j,k=1

2L
='1/m/2mkpkT f dgexp — g2 —ig g ij. t.

oo 2kpkT
(10)

which enables us to conveniently evaluate intracluster in-
tegrals exactly. Our strategy then is to rearrange the
series (3) for the stationary velocity UF into a new one in
terms of the neutral charge clusters; the nth order will
then involve n clusters with complicated interactions be-
tween them. Since the interactions decay as
exp( —rtt /m), this becomes an expansion in I /rt upon in-
tegrations over the intercluster separations. It is evident
that an efficient method for summation over all the clus-
ters is essential in order to understand the behavior of the
dynamics in this limit. In what follows we shall first
work out step by step the whole structure of the series
and show that the resummation can be reduced to solving
an integral equation.

C. Summing over an irreducible cluster

We first consider the summation over Vp for a single
irreducible cluster. Although the result is just the first-
order term in the new expansion in I/rt, it is an essential
step to understand the whole structure of the series. To
proceed let us associate to the integrands an exponential
decay factor of the form exp(et&), @~0+; this is neces-

Akp~'g ~Q
QmkpVp 2V m Vp

where 0 is the dimensionless form of fikp/2m (a mea-
sure of quantum effects in frequency). All velocities and
times are hereafter measured in units of QVp/m and
(kp+Vp/m ) ', respectively. Carrying out the integra-
tion over the different t s yields the velocity due to the ir-
reducible cluster,

(1)(»= X2g L=( (20 )

where

(12)

sary when one uses (10). Furthermore, let us scale at this
point all relevant quantities to be dimensionless with
respect to the system's intrinsic parameters m, kp, and
Vp,

F kT~F, ~T,
kpVp

'
Vp

F=F/73, (13)

ft = f dgexp
2 tt T

(IJ 0' =+~)I' J

2L —1

n, =,
i gp,

l 0'k /2
k

F g+Qq g —
crq +e

j=l

(14)

ALf &2~T dg exp

k/22L —1

(n. =+1) k =1 F
j=1

The poles of integrands are on the two sides of the real
axis. If we close the integral over g in the upper half
plane, only the poles above the real axis are picked up.
However, integration along any contour a finite distance
off the real axis simply vanishes since for @~0 the in-
tegrand is odd under p - ~—p . Therefore we have

where the contour of the integration encloses the poles of
the integrand and

P2L 2L —1 k

~,=x," n r~,
Ip. I k =1 j=1

(16)

is just a numerical factor with the summation restricted
to the irreducible neutral charge cluster of length 2L.

The evaluation of AL for large L is difficult. One can
think of AL as the partition function of a one-
dimensional lattice system of size 2L. As L becomes
large, one expects that the boundary effects will be negli-
gible and that AL ' ' will exist as L ~ 00. In fact, the
approximation AL =—Z is excellent for Z =0.8. The
differences between AL ' ' and Z are negligible for all



10 754 YONG-CONG CHEN AND JOEL L. LEBOWITZ

L (with the exception of the lowest one L =2 which has
A 2 —=0.71, but this can be easily fixed when this term is
dominant). It remains to calculate the residues of the in-
tegrands, some of which are from higher-order poles.

It is illustrative to consider first the so-called classical
limit where A~O, i.e., the dimensionless 0 ~0. In this
case the summation over the o. 's reduces to taking
derivatives with respect to g. We thus have

2

fr =i f dgQ 'exp
&2~T 2T

1

dg F

2L —
1

a g2L —1

(jF 2~ ~(2L —2)(

'2 2L —2 p2
exp (17)

Now the series expansion (12) for U~, ~
can be readily summed up. It yields

1 Z 8 8 F
v~, ~(F, T) ~n 0= 2n/T co.s — exp

4») 4 dF aF
(18)

The derivatives in (18) can actually be carried out by means of Fourier transforms. We obtain

U(~)~n 0= g [T+icrZI2] exp
&2»r 8 ~ —1/2

dF =+)

F2

2(T+ioZ/2) (19)

In the "quantum" case, i.e., Qq 6nite, we have to deal with the evaluation of many residues arising from the poles
near g=F; they are spread around g=F in a band of width Q . At first sight, it seems rather difficult to compute the
general terms because higher-order poles also play a role. Fortunately, the problem can be solved based on the follow-
ing observations: First of all, a detailed term by term analysis of the symmetry structure of (15) reveals that terms con-
taining derivatives of exp( —

g /2T) completely cancel. Thus for the Lth-order term the result of the loop integration
over g can be written as

AL
f~ = &2»r/T—

g2L —2

2L —1

I= —2L+ 1

(F I Qq}-
N(exp (20)

One also finds that fr is odd under Qq ~ —Q», so that w&
= —w &. Finally, one realizes that the limit Q ~0 must

coincide with the corresponding classical limit, i.e., Eq. (17). This shows that the right-hand side of (20) is proportional
to the lattice version of the (4L —3)th-order derivative of exp( —F /2T). The derivative requires at least (4L —2) lat-
tice points. Since we also require, in addition, the odd symmetry under 0 ~—0, it turns out that w& is uniquely
determined. The result is

Ar &2»rIT
f~ = —

j —,'[(d& —1) ~
(d& )

—(d& —1) (d& ) ]exp[ g /2T]] ~&-
q

(21)

where we have introduced a set of "lattice" displacement operators

dg 0(f)=4(k+Qq) "g 0(k)=4(k Qq}

The summation over the infinite series can again be handled by Fourier transform; we have
4L —4

AL i slnpn pnq Tp
8p 2 sin exp ipF-

&( 2L —2 }(Q&~

(22)

(23)

Substituting this back to (12) we then obtain

l slnpQq
U~, ~(F, T)= f dp cos

g oo

'2
z pQ

2
2 Sln

40
Tp

2

exp ipE—
2

(24)

Clearly it matches the classical limit as Q ~0. The result of (24) is valid for arbitrary Q except in the extreme case
q

where only the first few (1 or 2) orders dominate the series. In the latter case one can simply take the exact value of A~
and cut the series at some convenient L
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IV. SUMMING OVER THE NEUTRAL
CLUSTERS

A. Two-cluster problem

We now study the interactions between clusters. Let us start with a two-cluster problem; the result will then be gen-

eralized to higher orders in the cluster expansion. In the small viscosity limit the distance ~2—~1=~2, between the
lower cluster (cluster 1) and the upper cluster (cluster 2) is of the order I /rt, which is much larger than the intracluster
distances of the order T '~2. Returning to (3)—(5), the relevant functions connecting the two parts behave as

and

g pj g (tj t~
—}=.exp( —r}r2) ) g Itj tj +O(q)

~(2)

(25)

J(&) J(z) J(2)

+O(rt) . (26)

Using (25) and (26), it is now straightforward to integrate over the internal degrees of the two clusters while yxing r,
In doing this we have implicitly neglected the sizes of the clusters with respect to the distance between them. The pro-
cedure is similar to that performed for the single-cluster problem. The two-cluster contribution to u [see (3)] can be
approximated by [let g

—=exp( —gr2) }]

J P g ( Q )2(L&+L 1
)
—1

I
~(1) ~(2)j 0 j

dk
&2~T 2T

2L) —1 () )y20kn"=' F g, Q, y—~—(')
j=1

(+i~(),) )

dkx ItI exp
+2m T(1—g )

2L —12f2 ~(2) y2

2T(1—g2)
F gg g Q gy&())+ g~(2)

( —t'} "
( —1) 'Z ' ldg dkL) 2L) —2

2rl ~ 2L( —1 f() g
~ v'2 T(2Q )

n
2L) —1 () ) y2

k=1 F g Q y (1)

j=l
I
a(."=+1Ij

The integral over $2 and summation over L2 can be readily carried out. This leads to
r

(27)

X U(, )
F gQ g cr'" +g»— T(l —g )

j=l
(28)

U(2)
= X( i) " —L) Z

N ow again in the classical limit Q~ ~0 summing over o.j"reduces to taking derivatives on g„
2L) —2 2

1 dg dg,
o g v'2~T 2Texp

a
(}4') F g, —'

'
ZLi —1

v(, )(F—gg), T(1—g }}.
1

(29)

Expanding ((}I(}pl)U(1)(F—gg), T(1—g )) via a Taylor series in (F—g)), one finds that only even terms play roles in
(29). It then yields
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z
4

a
'"' '' &2~IT

ag, (2L i
—2 —1)! 2Texp

X ( —1)' a
I! ag',

Z
4

'2 I

v(, )(F—gg„T(1—g ))
I

(30)

Following the same reasoning as in the one-cluster problem, in the quantum case the derivatives are replaced by their
lattice versions. But the case here is slightly complicated since we have two functions (left-hand side and right-hand
side) attached to the integral in different ways. First of all, the argument that no derivatives on the functions (to be
discretized) would appear in the expression with finite 0 is still valid. However, we have some freedom for a given L,
to arrange among various lattice derivatives on the left-hand-side or the right-hand-side functions. Suppose that we
chose in (30) for a given / the lattice derivatives on the left-hand-side function to be of the form (21) [which now would
be a (4L i

—3 —2l)th-order derivative]. Then it follows that the lattice derivatives on the right-hand-side function can
only take the form (21) too. This is based on two observations: (a) the whole term has to be even under 0 ~—Q~; (b)
from the structure of (28) the maximum displacement on the right-hand-side function allowed is +(1+1)Q~. Let us

now introduce the following sets of operators and functions:

z (d~ +d) —2)
Q (g)=cos

4 n'
q

d d

20 (31)

and

z (d~ +d( —2) d( —
dg

Q2(g) =sin
Q~ 20q

yi(k g)=Qi(k}yo(k g» y2(k g} Q2(()yo(( g}

(32)

(33)

with

1 2nyo(, g}=—
4 T(1—g )

1/2

exp
g2

2T(1—g )
(34)

The result for the two-cluster problem can be written in the form

U(2) 3 1 ~ O 1 +$2 F 0 2 U(1) ~ g T ~ g g
F- (35)

B. Summing over the clusters

We now generalize the inethod to multicluster terms. The algebra is straightforward but very tedious. The general
procedure is as follows. In the first step we go from the bottom to the top with fixed cluster lengths 21. and interclus-
ter distances ri +, i

—r =(lng )/g. We then integrate over the intracluster degrees of freedom of the lowest cluster
(cluster 1}by expressing it in terms of a contour integral over g, . Et modifies the structures of other clusters. We then
integrate over the second lowest one (cluster 2} with the modification from cluster 1. Both will modify the remaining
clusters. But the effect of cluster 1 becomes indirect after adding the effect of cluster 2 (cf. below, this is precisely the
property that allows us to express the final result in terms of an integral equation). This procedure can be continued un-

til we reach the top. In the second step, we carry out the resulting contour integrals and sum over the series in Vo for
each cluster one by one from the top to the bottom. The final structure turns out to be rather elegant. The (n +1)-
cluster contribution is

U(n+1) = n dg.
II ~ (g 1 g20; 1 g;

(36)

The coe%cients can be expressed as

2 2

g y, (F 0)Q;(k) g y;(F —
ki gi)Q;(4)

i=1 i=1

2

X y;(F —k. -i g. -»Q;(4-i)
i=1

X ~ g y, {F—G, ,g„,)Q;(k„) y, (F g„4,g„) . —
F („1 F (~~F (1~F
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Now let us introduce a function v (g,g) satisfying the following integral equation:

J, 0 i(k g)Qi(k')+y2(C g)Q2(P)]v(F —g Y.g')
'g 0 g

(38)

Then summing over all clusters simply gives

uF=F+ g ui„+, i=u(F, g =0) .
n=0

(39)

We have thus reduced the problem of finding the stationary velocity of the particle in the presence of a finite bias to
solving the integral equation (38). The equation can be solved via a simple self-consistency requirement. To see this let
us rewrite it as

v(k g) =4 (I/v])t'yi(k g)~ i+y2(C g) ~2]

where

(40)

A;=, ; 'v F—g' ',g'
0 g

i =1,2 (41)

are just constants (independent of g and g) and thus can be obtained self-consistently. The final result for vF reads

yi(F, O)(g+ C22) —y2(F, O)CzivF=F+
( l+ Cii )( l+ C2q ) —CiqCqi

where the coeScients C;~ are given by
T

C,"=, - Fy F—g,g (43)

The various quantities here may be conveniently evaluated via Fourier transform. We find

and

1 oo f s1npQq Z pQ
y;(F, O) =—f dp S; sin

4
q

Q
q

Tp
2

exp ipF—
2

(44)

sin(gpQ ) Z gpQ

2
sin

q Q

sin(pQ ) Z pQ
SJ sin

Q,
exp[ipF(1 —g) —(1 g)Tp /2]— (45)

where

S,(x)=cosx, Sz(x) =sinx . (46)

We emphasize that our result is based on a complete
resummation over the formally exact series expansion for
vF and thus is applicable to almost the entire parameter
regimes of Q, T, and F in the small viscosity limit (cf.
below). Note also that by solving the integral equation
we overcome the divergence problem associated with the
original series.

We now try to give explicit criteria for the validity of
the result (42}. Clearly the small viscosity limit requires
T/q &&1. There has been no explicit requirement in the
derivation regarding the relative magnitude of Qq and g.
In the limit VQ~O where only the leading order in VQ is

kept, it is trivial to show that our result agrees with those
of Refs. 2 and S when g~O. However, including the
multicluster terms (which are all higher orders in Vv)
leads to a divergence problem for Q~ =0 (i.e., the pure
classical case} as two clusters become close. A short-time
cutofF for the intercluster separations may be introduced
to remove the divergence. It is not present either as soon
as finite Q (i.e., the quantum effect} is introduced. Nev-
ertheless this problem makes further comparisons with
the classical result of the Fokker-Planek equation very
diScult. In any case, since our main interest lies in the
quantum regimes we may as well propose a second cri-
terion for the vahdity, Q /g)) 1. Finally, although the
final expression for the velocity is well defined at g~O, to
justify how close it is to the exact one (which is not
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known) is an extremely difficult question. We shall not
proceed further in this direction.

V. NUMERICAL RESULTS AND COMPARISON
WITH EXPERIMENT

A. Numerical results

We now present some typical plots of the stationary ve-
locity UF vs the rescaled force F=—F/g computed from
(42). In Fig. 1 we present the dependence of the velocity
curve on the magnitude of the quantum frequency 0 ob-
tained from the g~O limit of (42); the latter is well
defined as long as we always rescale the force by I/g.
This is similar to the behavior in the corresponding clas-
sical limit which can be analyzed by the Fokker-Planck
equation. Figure 1 shows that in the classical-like re-
gime with nq (1, the velocity rapidly approaches F, the
stationary velocity in the absence of the cosine potential.
The effects of the potential are thus mainly confined to
the regime F & 1. However, as the quantum frequency in-
creases the effects quickly extend to regimes well above
F=1. The striking feature here is that a wide plateau ap-
pears when Qq ) 1, which resembles a typical feature of
the so-called Coulomb blockade discussed in the context
of small Josephson junctions. '

The structure of the plateau is further examined in Fig.
2, where we plot its evolvement as a function of the tem-
perature. At higher temperatures the height of the pla-
teau is small. As the temperature decreases a broad peak
appears near F=Q /2 with its height roughly equal to
0 /2. As we lower the temperature further, a second

peak appears at F=30 /2. Recall that in the absence of
the periodic potential the free particle would move with a
velocity UF =0, /2 at F=0 /2. The energy of the parti-
cle is then A' ko/Sm [after restoring the dimension via

(11)I. In k space it corresponds to the energy at the
boundary of the first Brillouin zone. Similarly the next
peak corresponds to the boundary of the third Brillouin
zone. The physical reason for this structure is thus quite
evident: When the particle moves close to the first Bril-
louin zone boundary, strong and coherent Bragg scatter-
ing occurs. The band structure of the Bloch states play a
role now. The particle could either move into the next
band or remain in the lowest band. As a result the sta-
tionary velocity of the particle shows a plateau or a peak
at these positions, depending sensitively on the tempera-
ture. The second peak occurs when the first band and the
second band come close again. Note that at higher tern-

peratures our result indicates a smaller height of the pla-
teau than that expected from the band-structure con-
sideration. The plateau is more like a highly resistive
state in terms of the I-V curve of a Josephson junction
(cf. below). Figure 3 shows the effects of the viscosity on
the plateau structure. We find that even a very small
viscosity could cause rather considerable changes in UF as
F becomes large. Raising the viscosity tends to destroy
the quantum effects at lower values of F.

B. Comparison with experiment

We now discuss the relation of our result to the experi-
mental observations in ultrasma11 Josephson junctions
summarized in Ref. 7. In a current-biased Josephson
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junction, the intrinsic parameters of the system m, ko,
and Vo are, respectively,

r 2
@o @oI,

m = C, ko=—l, Vo=EJ= (47)

with 4O =h /2e the flux quantum, C the shunt capaci-
tance, and I, the critical current of the junction. The
external driving force and the viscosity are proportional
to, respectively, the bias current I and the inverse of the
shunt resistance 8 (assuming the usual resistively shunted
junction model); their dimensionless forms read

' 1/24o
2+I, CR

IF=—
I,

(4&)

The dimensionless velocity uz and quantum frequency Qq
in this case are simply

u~= V(C/EJ)'~, Qq=+2Ec/EJ (49)

with Ec=e /2C being the Coulomb energy of the junc-
tion with a single electron charge. Note that because our
calculation is based on a stationary-state formalism, it is
expected to apply in the regimes where metastable states
are irrelevant. We shall thus restrict our attention to the
cases where the Josephson energy EJ, the Coulomb ener-

gy E&, and the temperature are comparable with each
other.

There are two basic features observed experimentally
for the outgoing I Vcharacte-ristics in this regime: (a)
When EJ and Ez are comparable, the metastable states of
supercurrent with zero voltage disappears. They are re-
placed by a highly resistive I Vcurve. (b-) Further reduc-
ing E& by applying a magnetic field results in a plateau at
V& —=e/2C. The critical current I„now defined as the
current at which the system makes a rapid switch to a
much higher voltage state, is greatly reduced.

It is clear that the above features also appear in our
analysis. In Fig. 1 both the resistive and the plateau
states are present. Note that the curves are plotted with
a fixed dimensionless temperature, while in the experi-
ment, lowering EJ will result in raising both the dimen-

sionless temperature and the quantum frequency. There-
fore the possibility of mestable states at large EJ is not in-

cluded in Fig. 1. The fact that the height of the plateau
-=e /2C is also evident: The dimensionless velocity at
Uz=—0 /2 corresponds to, using the Josephson relation
V(t)=P(t)&o/2~, precisely the same dc voltage. It is
thus natural to identify the observed critical current I,
with the rather abrupt switches in the theoretical curves
presented above. In Figs. 2 and 3, our analysis also indi-
cates some subtle structures in the plateau regimes. At
lower temperatures there are peaks representing the
effects of the boundaries of the Brillouin zones. Never-
theless since the negative slope parts of an I-V curve
should be unstable against fluctuations, ' experimentally
the system is expected to stay with a constant dc voltage
in these regimes, making the I-V curves truly plateaulike.
A jurnp is expected, however, if the second peak is sub-

stantially higher than the first one. This prediction

remains to be tested by experiment.
To quantitatively fit the experimental data, one is

forced to face several difficulties. Though the capaci-
tance of an ultrasmall Josephson junction can now be
determined with some accuracy from the height of the
plateau, we find that the determination of the intrinsic
critical current I, (which is different from the observed

one, I, ) is rather difficult (especially in the presence of the
external magnetic field). The high nonlinearity of the
quasiparticle damping also leads to uncertainties in, for
example, what resistance is appropriate to the theory.
Furthermore, the fact that the experiments seem to indi-
cate rather sudden transitions at I„much sharper than
that showed by our theoretical curves, may be related to
the metastability and fluctuations in the system. Finally,
if the present interpretation of the experiments is correct,
some of the estimates of the junctions' parameters need to
be reconsidered.

Despite these problems, let us nevertheless consider the
best sample used in Ref. 7. The observed I-V curve is
plotted in Fig. 3 of Ref. 7: it has EJ=0.15 K, i.e., the
zero-field critical current I,o= 6.5 nA —(this estimate, ob-

tained from the well-known Ambegaokar-Barato6' rela-
tion, ' may, however, be too small, cf. below), E&=0.9
K, T=0.03 K, and a leakage resistance RLO=3X10 A.
Letting the critical current in the presence of the magnet-
ic field be I,(H)/I, o=y, the dimensionless parameters
would then be T=0.2/y, Q—

e
=—3.5/y'~ . Since the junc-

tion always has a finite voltage, the local temperature at
the junction might be higher than 30 mK. We shall
therefore also plot the theoretical I -V curve at 60 and 90
mK, i.e., T=—0.4/y and T=—0.6/y. As one can see, rais-

ing temperature improves the agreement between theory
and experiment.

We now describe the fitting process. To solve the
problem of the nonlinear quasiparticle dissipation, we

note that F=F/q in our theory is nothing but the dimen-
sionless velocity u~ of the particle in the absence of the

Josephson potential. It may thus be reasonable to identify
it with the return part of the I-V curve which does not
seem to be affected by the Josephson coupling (this is

presumably due to the slow relaxation of the system into
the truly stationary state). The very small but finite rt

here is also important. To be consistent with our solution
for the nonlinear "free motion" we sha11 use g=F/Uz,
which corresponds to the inverse of the nonlinear resis-

tance at a given current, i.e., we use the g from the return
curve as an input for the fitting.

We find, however, that for y ~ 1 it is impossible to fit

the experimental curve in any reasonable way. In fact

y =—6 seems to fit the curve best (cf. below for more dis-

cussions). The result is plotted in Fig. 4 for T =30 mK
(in 6), T =60 mK (in 0), and T =90 mK (in 0). The
solid line there corresponds roughly to the observed out-

going I-V curve and the open line to the return curve.
The predicted" I, is roughly I, =—4—6 pA, which is still

smaller than the observed one I, —=6.5—7 pA. This may

indicate that metastability plays some role at currents
higher than I, .

Finally let us address the question as why the
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FIG. 4. Curves plotted in 6 (T =30 mK), 0 (T =60 mK), and 0 (T =90 mK) are generated using the parameters inferred from
Fig. 3 of Ref. 7 as discussed in the text. The actual experimental curves are represented roughly by the solid line for the outgoing I-V
characteristic and the open line for the return one (the "free motion").

Ambegaokar-Baratoff relation, which relates the critical
current I,o to the above gap normal-state resistance R„
and the superconducting gap energy 5 via

2R. """
2kT

(&0)

may not hold in this case. This relation is based on a mi-
croscopic tunneling Hamiltonian in which both normal
electrons and Cooper pairs tunnel through the same bar-
rier. While it seems to agree very well with a vast majori-
ty of measurements, its microscopic basis, i.e., the tunnel-
ing model in which 1/R„~ the square of the tunneling
matrix element, becoxnes problematic when the Coulomb
interaction between individual electrons near the tunnel-
ing barrier becomes important. The Coulomb blockade

responsible for the observed plateau in the I - V curve may
also greatly reduce the above-gap normal current, result-
ing in a considerable underestimate of the Josephson
current. ' In fact y=-6 is consistent with other analyses
in Ref. 7. In Eq. (9) of Ref. 7, I,o should be multiplied by
a factor of 72 while from Fig. 10 of Ref. 7 I,(H =0.2 T)
shou1d be off by a factor of order 10. Furthermore, once
I, is reestimated, most of the other apparent fitting prob-
lems in Ref. 7 would disappear.
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The identification of the theoretical turning point is rather
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vague. The problem here is similar to the classical one using

the Fokker-Planck equation: it is difBcult to judge from a cal-

culation based on a stationary distribution where the system

is to jump out of a metastable state. See Ref. 8.

~~The question why the Coulomb blockade is less significant for

the supercurrent remains to be studied. It is probably due to
the coherence of the Cooper pairs, cf. also Ref. 9.


