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Perturbation theory of superconducting micronetworks: Second-order and self-induction efFects
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The perturbation method to treat the nonlinear Ginzburg-Landau equations for micronetworks previ-

ously derived is extended to higher orders in the perturbation parameters, the temperature hT and mag-

netic field hH measured from the phase boundary. In this paper these two parameters are treated in-

dependently and the perturbation equations to all orders are analyzed. The theory allows for considera-

tion of self-inductive effects. The importance of these for the interpretation of experimental results in

micronetworks of type-I and type-II materials is pointed out. The Landau critical points have been dis-

cussed. Expressions for the relevant thermodynamic quantities are obtained. In particular, it is shown

that the phase boundary satisfies the Ehrenfest-Keesom relations for second-order transitions. The
theory has been explicitly worked out for simple geometries and compared with exact results, which

have been obtained numerically. The lines separating different modes have been evaluated to second or-

der for these cases.

I. INTRODUCTION

Superconductive micronetworks in a magnetic field'
show second-order phase transitions between normal and
superconductive states whose characteristics depend on
the geometry of each specimen. Regular as well as disor-
dered structures have been studied. Details of the phase
boundary can be predicted using the linearized version of
the Ginzburg-Landau equations (GLE) derived by de
Gennes and Alexander' for these systems.

Properties of the superconductive state can only be de-
scribed either numerically or by approximate methods.
To this end, Fink, Rodrigues, and Lopez have devised a
perturbation scheme and Wang, Rammal, and Pan-
netier have applied variational calculations. The
lowest-order calculation of Ref. 4 made use, for simplici-
ty, of a single perturbation parameter linking together
the temperature and magnetic field differences hT and
bH measured from the phase-transition boundary. It can
be seen that such a scheme cannot be easily extended to
higher orders.

In this paper we present results of a perturbation ap-
proach valid to all orders, using hT and b,H as indepen-
dent perturbation parameters. Relevant physical quanti-
ties are expanded in powers of two variables x and y
directly related to AT and hH. Perturbative equations
are obtained by substituting this expansion into both
GLE.

The perturbation equations obtained can be applied to
any network, finite or infinite. At the end of the paper we
compare with exact results the case of the bare ring and a
particular two-loop circuit. For infinite circuits the situ-
ation is still simple in the case of periodic boundary con-
ditions. At present, work on the infinite ladder is in pro-
gress.

The approach and general scope of this paper can be
compared with Abrikosov's theory of the mixed state in

type-II superconductors. The differences lie on the fact
that here we vary both T and H and also in that the to-
pology of the network imposes special conditions not
present in the bulk case. The perturbation equations for
networks contain three combinations of averages of the
order parameter rather than the single Abrikosov P„of
the bulk case. There appear averages of the squared or-
der parameter and of its fourth power as for the bulk
case, but also combinations containing the currents along
branches and the induction coef6cients. These enter
through a renormalization of the Landau-Ginzburg con-
stant ~ that could help one understand some recent ex-
perimental results which show different behavior for Al
or In samples.

The consistency of the perturbation expansions has
been checked by showing that the equations obtained are
special cases of general thermodynamic relations. In par-
ticular, we shall show how the line giving the phase
boundary as obtained through perturbation theory is a
special case of the Ehrenfest-Keesom relations for
second-order transitions.

In Sec. II, we give the basic perturbation equations.
Section III discusses the normalization conditions. Sec-
tion IV is devoted to an analysis of the self-inductive
effects and their contribution to the energy. In Section V,
we present explicit expressions within first-order pertur-
bation for relevant physical quantities. A discussion of
Landau critical points and of the relative stability of
different modes is given in Sec. VI. Section VII is devot-
ed to the development of the second-order perturbation
formalism and Sec. VIII contains the analysis of simple
physical systems and comparisons with exact numerical
calculations. Section IX summarizes the conclusions and
gives some perspectives for future work. The Appendices
contain explicit second-order perturbation equations.
These have been given in enough detail so they can be
used by any reader interested in applying them.
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II. PERTURBATION EQUATIONS

Throughout this paper we shall use normalized quanti-
ties as in Ref. 4, calling

conv

2m' conv
&G

4~
H Sgp

Here the label "conv" means quantities in conventional
cgs units. g„ is the zero-field bulk order parameter, S
the uniform cross section of the wires, and 40 the Aux

quantum. All lengths will be normalized by gp, the
coherence length at the phase boundary.

We refer the perturbation parameters to a point at the
phase boundary choosing x such that x =AT/(T, —Tp),
where AT=T0 —T, T0 being the phase-transition tem-

perature of the network and T, the critical temperature
of the bulk material. Defining v= 1 —T/T„we have
x =b,rlrp.

The other perturbation parameter is related to the
magnetic field. Calling A0 the vector potential of the ap-
plied field at the phase-transition boundary, the total vec-
tor potential A can be written as

A=A +A =A0+A&+A.

where Ai is the departure of the applied (external) field

A, from its value at the phase boundary and A; the con-
tribution from the induced (internal) currents. We
choose as the other expansion parameter the quantity y
such that y = I/gg, A i(s)ds =bP, where g is the GL
coherence length and c is a reference loop of area S, in

the network. It should be noted that y is the incremen-
tal external magnetic flux bP through c and is tempera-
ture independent.

Following Ref. 4 we define a complex modified order
parameter (mop) for branch ab by (see Fig. 1)

f (a, s) =e'~"'b, (s),
where y( , a)=s(1/g) J pA(s')ds'. This mop simplifies

the equations although it depends on the definition of a
reference point (a) and on the choice of the route. For
each branch it is defined from a starting node a, for
which s =0.

As stated above, we assume an expansion of all physi-
cal quantities in powers of x and y. In particular,

f (a,s)= g f„,(a,s)x "y'
k, l

(Ic + 1=1,3, 5, . . . , 2p —1, . . . ) (3)

and similar expansions are defined for h(s), j, A, (s), and

4G with coefficients hi,~(s), jl,l, AI,I(s), and GI,I, respec-
tively. Here p ~ 1 stands for the perturbation order to be
considered. We will call "zero"-order perturbation the
results of the linearized theory. ' For the complex con-
jugate of the mop f, it can be seen that

f*(a,s) = g o Ifz&(a, s)x y',
k, l

FIG. 1. Branches ab and ab'( of the network and geometry
used in the calculation of the self- ynd mutual induction effects.

where 0.&=0.0 or 0. , according~to whether l is even or
odd. In turn, Op=sgn(b. r) and cr, =sgn(b, P).

For the coherence length g( T)=g(x ) and penetration
depth A, (T) =A,(x), we have

x 3(=1— +—x — =$(—) C x4 k 2k

8 k (4)

s
yp(a, s) =—f Ap(s')ds'

and

s
yi(a, s)= Ai(s')ds' .

0

It is clear that yi(a, s) does not depend on the strength of
b,P but on the configuration of the incremental field A,
and on the geometry of the network. Taking this into ac-
count, the expansion of y(a, s), the circulation of the total
vector potential, is

y(a, s) = y yi, i(a, s)x "y',
k, I

where

ypp(a s) yp(a, s)

ypz(a, s) =yi(a, s)+ f Ap2(s')ds'
0

Otherwise

C
yi I(,s) = X (

—
)

' f A„,m(s')ds' .
2m &k 2m —1 0

It should be noticed that, in general, we have

2 1+x
K

where ~ is the temperature-independent GL constant.
For the circulation of the external applied vector po-

tential we have the relation which follows from the
definition of the perturbation parameter y:

] s
y, (a,s) =—f A, (s')ds'=yp(a, s)+y, (a, s)y

0

where
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fk&(a, s)=e ' g I ~q(a, s)bk &I q(s),
p&k
q&l

(6)

where j in terms off is given by

j=i (f"f' ff' '—)s,

where I
pq

can be readily obtained from ypq as indicated
in Appendix A.

In order to arrive at the perturbation equations we
must replace the above expansions in both GLE

g'f +(1—Ifl'}f=o

VX(VX A)= j,=1.

If the network has n nodes, Eq. (10) has to be solved
using the boundary conditions

g f k((a, O)=0 (a =l, . . ., n),
(p)

(12)

where (p) stands for all branches connected to a given
node a.

As in Ref. 4, with this perturbation scheme we can
solve Eq. (10) by a variation of the constants method:

f„,(a,s)=C„,(a, b, s) sin(L s)+—Dk&(a, b, s) sins, (13a)

where L is the length of the branch and

fkr (a, 0)—Zkl( a, b, s)
Ck((a, b, s)=

sinL

s being the unit vector along the wire. The dot stands for
the derivative with respect to s. From the first GL equa-
tion we obtain, for a given branch ab,

fkI(a, L) Zki(b—,a, L —s)
Dki(a, b, s) =

sinL
S

Zk&(a, b, s)= cok&(a, b, s') sins'ds' .
0

(13b)

f ki(a, s)+ fk&(a, s) =coki(a, b, s),
where

(10}

~kI(at brS) = g +qfk —p —m, i —
q

—nfpqfmn
p&k, q&l
m&k —p
n&1 —

q

)(k —p)/2(
p&k —2

(k —p even)

The dependence of cokl on b comes through the lower or-
der mop's at the nodes according to Eqs. (13a) and (13b).
We shall leave the analysis of the perturbation equations
that follows from (8) for the next sections.

Note that cokl has the important property
cokI(b, a, L s) =co—kr(a, b, s)

When the form (13a) for the mop is replaced in the
boundary conditions (12), a set of equations determining
the mop's at the nodes fk&(a, O) in a given order (k, l) in

perturbation theory is obtained. In terms of the normal-
ized order parameter b,(a), at each node a we have

~ " ' '~„,(p)
hk&(a) g cotL& —g . = IIk&(a)

(p) sinL&

(a = 1, . . ., n }, (14}

where

Ilk&(a)= g . e ' ' g I'~q(aL&)hk ~ I q(P) Zkr(PaL—&)
(p) S1MP p&k

q&1
(p+q &0)

(15)

These equations are similar to Eqs. (13) of Ref. 4, except that now we have two independent expansion parameters x
and y.

III. NORMALIZATION OF THE ORDER PARAMETER

The lowest-order equations (10) or the discrete form (14) are homogeneous equations and do not fix the amplitude of
the order parameter, a situation similar to that encountered by Abrikosov in the analysis of the mixed state of type-II
superconductors. As discussed in Ref. 4, the orthogonality condition in the form used by Abrikosov for the differential
equation cannot be applied to networks.

For each order of perturbation theory, Eqs. (14) can be written as

A Vki=IIki, A =[A(a,b)],
where A is an n Xn Hermitian matrix with components A(a, b) To lowest ord.er we have II,0=IIO, ——0 and the corre-
sponding equations are homogeneous, identical to the de Gennes —Alexander linearized equations. Calling h.0 the solu-
tions of the homogeneous equations, the complex scalar product of the vectors ho and IIk& vanishes: (ho, IIki ) =0, a re-
lation similar to Abrikosov's for the mixed state. The ensuing relations for the modified order parameter are

Lp
I ~q(a, L&)[fk ~ & q(P, O)f o(P, O) —fo (P,O)fk ~ & q(P, O)]—I fo (a, s)cok&(a, P,s}ds

p&k 0
q&1

(p+q &0)

=0
7 (16)
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where the summation is over all branches. Here f (b, s)
stands for f measured from the node b and fp(a, s) is the
"zero"-order mop. These relations allow us to determine
the amplitude of the order parameter at the di6'erent
nodes and, from Eq. (13), the amplitude at any place in
the network.

We give now the explicit form of Eq. (16) for the lowest
order. The first amplitudes to be determined correspond
to the normalization of the "zero"-order solution.
Choosing a reference node a = 1 at which fo(1,0)= 1, all
other amplitudes associated with the linearized GLE are
determined from the homogeneous Eqs. (14). The physi-
cally relevant order parameter to lowest order is

f, (a, s) =f&o(a, s)x +fp, (a, s)y,

where f&p(a, s) =a&ofp(a, s) and fo, (a, s) =ao&fo(a, s), alp
and ao& being constant amplitude factors. The normali-
zation conditions allow us to determine a,o and no, . For
this order the values of k and 1 to be used in Eq. (16) are
such that k + I =3. From Eq. (11) we obtain explicit ex-
pressions for co3p C02l Cols and cpo3 in terms of f,o and

fo&. Now, in terms of these variables we get from Eq.
(16) four relations:

2iap& g I zo( a, L&j)o&+2ia&op I »(a, L~)j pp
P

+(2lrol~lol ~pl+a'l~loo'o&)B3 ~olBl =0

2ia&op I oz(a, L&)jo&+2iap& g I &&(a,L&)j pp
P

(17b)

+(2al i~oil'vip+~pap, alp)B3:0 (17c)

2iao& g I pz( aL&j)pp+crl lap~i &olB3 =0 (17d)

where the quantities B, and B3 are defined in Eqs. (30)
and

and

fkl(1, 0) =~kl

fkl(a 0)= [~kl Xkl(a)]fo(a 0) (a& I)
(18)

jp&
= (i/2) [fo (a, 0)fo(a, O) —fo(a, O)fo (a, O) ]

is the "zero"-order current density in each branch. Since
the a's are complex, we need the four equations (17) to
determine aio and a'o& ~

For higher orders we have, from Eqs. (14) and (6), rela-
tions of the form

2ialo+ I pp(a, L&j)p&+op~a, p a,pB3 —a,pB, =0,
P

(17a)
I

fkl(a, L)=[akl Xkl(b)+ —Ykl(a, b, L)]fo(a L) .

Here

(19)

Xkl(a) =
A(2, 2)
A(3, 2)

4

A(n, 2)

A(2, a —1) A(2, 1) A(2, a +1)
A(3, a —1) A(3, 1) A(3, a +1)

4

A(n, a —1) A(n, 1) A(n, a+1)

A(2, 2) A(2, a —1) ilkl(2) A(2, a +1)
A(3, 2) A(3, a —1) IIkl(3) A(3, a +1)

4

A(n, 2) A(n, a —1) IIkl(n) A(n, a +1)

A(2, n)

A(3, n)

A(n, n)

A(2, n)

A(3, n)

A(n, n)

(20)

and Ykl(a, b, L) stands for the sum

Ykl(a»L)

I;q (a L)[&k p, l q Xk p, l q(—b)]—. —
p~k
q~1

(p+q )0)

The constant amplitude factors akl can be determined us-
ing condition (16) as previously done in lowest order.
Knowledge of fkl(a, O) and fkl(a, L) allows us to deter-
mine fkl(a, s) along any branch ab using Eq. (13). Note
that, because of our definition of the mop, the value of f
at a given node is not uniquely determined. It can be
shown that this gives an ambiguity in the definition of the
f's which is limited to a phase difference.

IV. SELF-INDUCTION EFFECTS

At the phase-transition boundary, the superconductive
currents are zero and only the external magnetic field
acts on the system4 Away from the phase boundary the
currents become finite, creating induced fields. It is im-
portant to take proper care of these and to study their
contribution to the free energy.

The fields created by the currents are determined by
the second GL equation [Eqs. (8) and (9)]. The total vec-
tor potential is the sum of the applied field A, plus the
induced field A, . This last part is formally given, as solu-
tion of Eq. (8), by (see Fig. 1)
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S . L~' s-s'
A;(s) = A, (p) s= g j&f, ds' .

Ip
—p'I

(21)

Using Eqs. (21},(3},and (5},we can find the following re-

In general, we are interested in the component of A(p)
along a given wire in the network. For A; this is given

by a sum over all branches of the network:

lation between the perturbation coemcients for field and
current density:

S P S S
~kl(S} 2 g [(Jp'}kl+(Jp')k —2, I )4' p ~p p

jk& are independent of s because of current conservation

along each branch. In a given branch P,

jkl= —g g (
—} o,c [f;q(I2,0)fk, 2~, 1 q(a, o) —fk, 2~, I, ( n0)f,'q( u0)1

p k2m k —p
q~l

(22)

SG=S-' fa11 space

~4—lal2+ I +g' IV—
2

2

The free energy of the system, measured from the nor-
mal state, is given by G.l= 2 f Ifl'„+— "'+(4'Ifl')kI ds

p 0

S+,g g I:(j„)k—,I — +(J )k — —2, I — j

q~l

+ Ih —H dV, (23) X(j„.) M„„, . (27)

where H is the applied field and h is the total field,
h =A, V' X A. In terms of the mop

—Ifl + f +g' Ifl d
2

aG=y f '

+S-' fall space

The inductive effects are contained in g lfl and also in
the last term in (24). This can be written as

(24)

bG, =S ' f lh —Hl dV=S ' f j A, dV,

where V is the volume of the network and can be
transformed into

S
b, G,.= g jp f A, (s)ds =

2 gjpj&Kp&, (25)
p 0 4m', pp

where

Lp Lp' s s
Kpp= f f, dsds

Ip
—p'I

The geometrical factors Epp are related to the self- and
mutual inductances of the network. In fact, the sum over
branches in (25) can be replaced by a sum over loops p
and transformed into

V. FIRST-ORDER PERTURBATION RESULTS

A. Order parameter and current density

From the normalization conditions (17), we obtain

B1 2 B2 2 S
+0 I 01I +I 3 2 B4

K

(28)

The following relation also obtains

0 0+01&1O+ 0 1&0110 (29)

which is essential to ensure that lfl is real. In these
equations

B,=g f f0I ds,
0

(30a)

The self-induction effects can be neglected whenever
S/lr ~0, i.e., when one assumes that the wires of the
network are really one-dimensional elements or the ma-
terial is extreme type II. When L /$0 is small, the M» 's

and the self-induction effects can also be neglected.

EG;= —gAJ„+ g M„„j„j„2 ~
p )p

This is the Neumann formula for the magnetic energy of
a system of linear currents. A„and M„„are the self- and
mutual induction coefficients

B2 =2 g y1(&,Lp)j op
p

B', =g f 'If, l'ds,
0

B4= g AP0„+2 g M»j0„j 0„
P P

} '&v

(30b)

(30c)

(30d)

1
t) „(d /san

ds', ,I, A„M„„.
The total free-energy expansion is EG =gkIGklx "y',
where Gk& can be written as

Here jo„ is the "zero'*-order current density in loop p.
The coefficients B are similar to the P's obtained in Ref.
4, but B4 as written above shows explicitly the self- and
mutual induction effects.

One can determine from Eqs. (28) and (29) for both a10
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and ao, their square amplitude and relative phase. For
the mop to first order we have explicitly

[B,(br/rO)+B~AP jf (a,s)
D Ifo(a, »l'

=&' Ifo(&,s) I' (31)

For the current density using Eq. (24) we obtain similarly
2J =& Jo.

The perturbation coefticients B can be interpreted in
terms of different contributions to the lowest-order ener-
gy. So, taking g= 1 at the phase boundary, the kinetic
energy of the supercurrents is related to B, :

f ho(iV A—o) b,odV
To 2S v

FIG. 2. Portion of the phase diagram indicating normal (N)
and superconductive (S) regions. A point like P in region S can
be reached from a point A at the phase-transition line through
increments hr„ in the reduced temperature and b,P„ in fiux or
from point B through increments b,rq and b,P~.

the interaction energy of the currents with the external
field increment is related to B2.

1 f jo' A@V

magnetization, g, is the isothermal susceptance, and C&
is the specific heat at constant field, defined by

the superconductive condensation energy is

f I& I'&v=-,'g f 'IfoI'&s=
(34)

and the magnetic energy of the induced field is

In turn,
S 1—g Ajo„+ g M„„jo„jo„'

p

S
2K BG= —SC

Finally, D/2 can be identified with the equilibrium free
energy of the system: D /2 = —AGo.

and

aG
O'T

(35)

B. The Khrenfest-Keesom equations
for the phase-transition boundary

Equation (31) gives the order parameter at a point
separated from the phase boundary a certain distance AP
and h~. If these values were chosen such that the end
point is again on the phase boundary, the order parame-
ter must vanish. This gives a relation between b,P and
A~, which gives rise to a differential equation for the
phase boundary; in terms of L =L„„„/go(To) this reads

L B2

2 Bi
(32)

1 dp bE

S, d~

b, C&

S, dr o (1—ro) be

(33)

where c is the coe%cient for the thermal variation of the

This equation can be identified with one of the
Ehrenfest-Keesom relations for second-order phase tran-
sitions. Written with the variables we are using, these re-
lations are

C. Free energy and thermodynamic relations

The free energy in first-order perturbation is

8 8z

D ~o D
a4D

2

DAG= ——
2

This result, when the self-induction effects are neglected,
reduces to Eq. (21) of Ref. 4.

are the total magnetic dipole moment and the entropy,
respectively.

Since we are using two independent expansion parame-
ters to describe the properties of the superconductive
phase a given distance away from the phase boundary,
the question arises whether this description is unique. As
shown in Fig. 2, a point P in the superconductive phase
can be reached from more than one point at the phase
boundary. Neglecting second-order terms in b,r and b,P,
it can be seen that the Ehrenfest-Keesom equation (32)
implies that Eq. (31) gives a unique result.
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(~Ca }t,.tk = To @2

16m. P„(2s —1 ) g (0)T

(g)2

(HACH )network=
16m P'q(2rc 1) g (0—)T,

(37a)

1 40
( ~&)s.u,

=
8&P„(2it —1) g (0)T,

1 40
8n P'q(2K —1) g (0)T,

(37b)

Using Eqs. (34)—(36), we can calculate the values of the
different thermodynamic variables in the superconductive
state relative to the normal state, so explicit forms for
bAf, , hS, hs, by„and b C& can be given in terms of B„
Bz, and D. Since hG above refers to the whole system,
JK in (35) is the total magnetic moment of the network.
For networks there is no meaning for a local magnetic
moment so the relevant thermodynamic quantity is the
susceptance and not the susceptibility.

For the sake of comparison with Abrikosov's theory
for type-II bulk materials, we can give the expressions of
the jump in the specific heat, thermal variation of magne-
tization coefficient, and magnetic susceptance across the
phase boundary in cgs units:

and (32) that the thermodynamic quantities, independent-

ly calculated, satisfy the Ehrenfest-Keesom relations (33).

VI. PHYSICAL RESULTS

A. Landau critical points (LCP)

D )0 (second order),

D =0 (LCP),

D (0 (first order) .

(39)

We can see from (31) and (36) that, whenever
D(r o, P o)= 0, there is a change in the behavior of the
solutions. It can be seen from (31) that

~f ~
is always pos-

itive when the increments b,r and AP bring us from a
point at the phase boundary to another point inside the
superconducting region. A special situation arises when

D (ro, Po} changes sign. In that case, in order to have a
positive definite

~f~, b,r and b,P must bring us out of the
superconducting region and into the "normal" region.
When this happens, the free energy as a function of h~
(or b,P) undergoes a change in curvature, which indicates
that the system goes through a Landau critical point (see
Fig. 3). The transition changes to first order and the per-
turbation approach gives the supercooling limit.

The change in sign in D allows for the classification of
the transitions as follows:

(~mr )s.tk=
4mP„(2~ —1)

(bn )~ T network
4 p„,(2 p 1)

(37c}

B2

B SB1 c 2

III 2 y'
B2

(38)

where p„ is Abrikosov's factor, g(0) is Gor'kov's coher-
ence length, and

B2

B2
1

We see from (28) that S/v and B4, which contain the

self-induction effects, are important to determine the kind

of transition to be expected. In a first-order transition
the positive energy associated with the magnetic field of
the induced currents overcomes the negative contribution
from the condensation energy. Superconductivity is only
possible with a finite and large order parameter so the
system makes a jump to meet that condition.

We checked our results against exact calculations for a
hollow cylinder. Using the values given in Fig. 7 of Ref.
7, we obtain TLCP=0. 961T,. This is slightly different
from the result in Ref. 7 (TLCP—-0.987T, ) due to the fact
that the exact calculation takes into account field expul-
sion effects (Meissner currents) which are neglected in the
de Gennes —Alexander model which we use.

It can be seen from (28) that I/a amplifies the self-

v'2S B,
We see that, instead of a single factor like Abrikosov's
p„, there are three different factors related to ratios of
different contributions to the energy which are specific to
the network structure. Besides, the topology and the
geometry of the network require a renormalization of the
GL constant s.. The factors p'„, p'„', and p~" are related
by the Ehrenfest-Keesom equation (33).

The specific heat at constant magnetization can be ob-
tained from the usual thermodynamic relation
C~ —C&=4m(1 r)E /r)„using —Eqs. (37') we have, for
the specific heat AC~ in the superconductive state rela-
tive to the normal state, b, C~ =( I +4m )b C&. As a check
of the perturbation expansions we can see from Eqs. (37)

(a)
b,G(+)

/ (b)
/

(f/2

h,G(-)

m() 0 m() z~( ) 0 a~(-)

FIG. 3. Instabilities of (a) the order parameter and (b) free
energy near a Landau critical point. The LCP is given by the
condition D =0 (see text). h~(+ ) means a positive temperature
change from the phase boundary.
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inductive effects given by B4. Recent experimental work
on the critical currents and I-V characteristics in the
resistive transition of micronetworks suggests a strong
dependence on the type of material. In particular, in
Ref. 8, In and Al are used, which have K values differing
by a factor of 10. Although we have not addressed the
question of critical currents in this paper, our results sug-
gest that induction effects help understand the difference
in the experimental results of Ref. 8 for In and Al.

2

I&l'=~'l~ I'+ I&l'
70

+ l~l'„'ay+ Ial,',(ay)'
7p

and for the currents the result is
'2

J =~ Jo+j4o +j22 ~4+j o4(~0)
70 7Q

(41)

(42)

B. Relative stability of different modes

g (n) /D (n + 1) g (n +1)/D (n)
1 1

g(n)/D(n+1) g(n+1)/D(n)
2 2

$21—
L2

In general, for any network, different condensation
modes are characterized by the value of the integer n in
the fluxoid quantization condition. " Within the super-
conductive region a given mode will be stable when its as-
sociated free energy is lower than that of any other mode.
The boundaries separating different modes are deter-
mined by the condition bG'"'(P, r)=KG'"+"(P,r). Us-
ing the variable I =L,»„lg( T), it can be shown from (36)
that, to first order in perturbation theory, the line along
which this is satisfied obeys the equation

where a is defined in Eq. (31). Note that
I
5

I » =
I
5

I i 3
=0

and j3&
=j» =0, which ensures that the squared order

parameter and the current density are always real.
The free energy reads

aD
2 70

60

3

+G42
70

2

b,P

+6~4 (bP) +Gos(hg)
70

(43)

In this case, 65] 633 G]5 0, and AG is always real.
The explicit expressions for the coefficients are given at
the end of Appendix C. In the following sections we sha11

apply these perturbation calculations to simple systems
and compare the ensuing results with numerica1 calcula-
tions.

(40)

The stability lines drawn in Figs. 2 and 3 of Ref. 4 were
obtained numerically from Eq. (40) neglecting self-
inductive effects.

VII. SECOND-ORDER PERTURBATION FORMALISM

A. Second-order expansions

In the previous paragraphs we have discussed the
lowest-order perturbation expansion in detail, having ob-
tained explicit results for the coefficients in the expansion
for the order parameter, current, vector potential, and
free energy I'see Eq. (3)j.

From Ref. 4, we know a comparison of these results
with exact calculations shows that very good agreement
is obtained in first order for the slopes of current and or-
der parameter as function of temperature or field. This is
also true for the phase separation lines for different
modes in the (H, T) plane.

In order to explore the superconducting region further
apart from the phase boundary, it is necessary to go up to
second-order terms. From these we expect to predict the
curvature of the different variables quoted above as func-
tions of field and temperature. Once the formalism is
developed and checked against exact results in some sim-
ple cases, the theory is equipped with a trustful procedure
to study more complicated systems.

The second-order contribution to the mop follows from
Eqs. (11) and (13) with k + I =3. Detailed expressions for
the coefficients fk&(a, s) are given in Appendix B. For the
squared order parameter, the expansion up to second or-
der is thus

B. Normalization of the order parameter

The normalization coefficients ak&(k+I =3), which
give the part of the mop which is proportional to the
"zero"-order solution, are determined using the norrnali-
zation conditions (16) with k + I =5. After some algebra,
the relations (Cl) given in Appendix C are obtained. In
principle, the linear system of equations (C 1) can be
solved for a30, a2„a&2, and ap3 but this is not necessary
because all physically observable quantities (I b, l, j, b, G,
etc.) depend on the linear combinations of the ak&

coefficients given by (Cl) and it is possible to make use of
these equations without any more algebra.

VIII. APPLICATION TO SIMPLE SYSTEMS

In this section we apply our approximation scheme to
two simple nontrivial systems for which exact results are
available. The first is the bare ring, the most elementary
multiply connected system, for which flux quantization
applies. The second one is a two-loop system which
shares with the loop the quantization conditions and adds
the complication of multiple modes at the phase bound-
ary

The exact solutions for this last system require numeri-
cal integration of the differential equations, which give
rise to Jacobi elliptic functions. Due to these complica-
tions, any approximate solution should be welcomed.

For more complex systems numerical integration is
generally out of the question and so only perturbation or
variational methods are of any applicability. It is in these
systems that the formalism developed here can be used.
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A. Superconducting bare ring

b6= — + —hP
L hw 2
2D vp L

(45)

As discussed in Sec. VI, the condition for a LCP in this
model is D =0, which in cgs units corresponds to

Fink and Griinfeld have explicitly solved the GL
equations for a simple wire ring of length L; ~ f~ is uni-
form around the ring and is simply related to tempera-
ture and magnetic flux. The self-induction coefBcient
A=L [ln(4L/v'n. S ) ——,']/n is different from Fock's for-
mula' because here the current is assumed to be uni-
formly distributed in the cross section S of the wire.

The first-order perturbation coe5cients can be calcu-
lated from Eqs. (30): B,=B3=L, Bz=2jo=+2,
84 =Ajp =A. So, in first-order perturbation, we have

Ifl'= — + —&(t, J =+— +—a(t, (44)
L Aw 2 . L hv' 2
D 7Q D D 7P D

where D =L —(S/a )A. If the self-induction effects are
moderate, D )0, ~f ~

is always positive in the supercon-
ductive region and j changes sign according to the mode
considered. The Ehrenfest-Keesom equation (32) now
takes the simple form dL/dgo=+I or L =+go+const
which is just the characteristic equation for the phase-
transition lines.

For the free-energy difference in first-order perturba-
tion, we have from (36)

Furthermore, the supercur rent velocity field is

q =g(d8/ds+dy/ds) where 8 is the phase of the nor-
malized order parameter; in first-order perturbation we
have

L b,r
q =+1+

2D ~p D
(48)

From Eqs. (46)—(48) we can verify that, neglecting
powers higher than (hr, b,p}, the relation j = q~f—

~

holds. " Having calculated j, q, and ~f~ independently,
this relation proves the consistency of the perturbation
expansion. At the phase boundary, j is zero but q
remains finite, as shown by Eqs. (47) and (48).

Using formulas (C2) of Appendix C, we can calculate
the free energy explicitly up to second order; from (46}
and (47) it is possible to verify that, neglecting powers
higher than (b,r, AP), the relation"

)II'
2S v A2 2

= ——Ifl — jL 4 (L D) .z—
2

(49}

holds, which links the equilibrium free energy to the or-
der parameter and current density. As above, this rela-
tion verifies the consistency of the perturbation expan-
sion.

In Fig. 4, we have compared our results given by the
perturbative equations with the results obtained from the
theory of Fink and Grunfeld. A detailed analysis of the

nA, (0)
S(ln(4L/&nS ) —7/4

XQ

The lines separating regions of stability for different
modes (different values of n}, as obtained from Eq. (51),
are given by P=(()o meaning that the lines are parallel to
the T axis.

Now, we will consider second-order perturbation re-
sults. For a network with only one node, as is the case
for the ring, the system of equations (14) is homogeneous
to all orders. The second-order coeScients for the bare
ring can be evaluated using the formulas in Appendix C.

Using (41), the formulas of Appendix B, and relations
(Cl), we have for ~f~ up to second-order perturbation
the result

L b,r 2 ~ (3L 6L D+7LD')—
D ro D 4D

1.00

I&I (q}

0.8

0.6

0.4

0. 2

1.05 1.10 1.15 t/L (b) 1 25
0. 5

Al)b}

0.4

03

0.2

0.1

+ (3L 4LD+3D ) b,r—~
D TQ

QO
0.0 0.1 0.2

0.0
03 (2)/2n (a) 05

(3L 2LD+3D ) b,r 3L-
D3 (47)

(&p)' . (46)

Using (42), we have for the current density in the wire up
to second-order perturbation

L br 2 + (3L 4L D+7LD2)—
Dro D 4D 7 p

FIG. 4. Comparison of exact and perturbation theory results
for a bare ring. ~h~ (a) shows the variation of the normalized
order parameter at constant temperature as a function of flux.
~h~ lb) corresponds to the same quantity at constant flux and as
a function of the variable I/L =(T,—T)/(T, —To). The inset
shows the paths in the phase diagram. In these plots ~=1/&2,
and D =0.9m., Po=nfor (a) and D =0.4875m, go=sr/2 fo. r (b). .
Lines (1) are the exact results of Ref. 9; lines (2) and (3) are first-
and second-order calculations. The arrows point the scales to
be considered in each case.
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comparisons show that the perturbation approach gives
quite good agreement with the exact results. In particu-
lar, if self-induction effects are neglected, the perturba-
tion scheme to second order gives the exact results.

For the case of Fig. 4 we see that the perturbation fol-
lows the general trend of the exact result for a wide range
of field or temperature variation. In Fig. 4(a), a change
of 50% in the variable P gives a departure of the order of
10% in ~b,

3TT

4 I

Su pe rconductor, I

II I

(2)=@(t )

B. Suyerconducting two-loop system

The superconducting two-loop system is a particular
case of the Wheatstone bridge discussed in the literature. '

The solutions in the linearized theory can be analyzed us-

ing group theory. The balanced Wheatstone bridge is a
planar two-loop network with point symmetry group D2&
in the absence of an external magnetic field; when in a
magnetic field, the system remains invariant only under
those point operations that leave H invariant' and the
new point symmetry group is C2&. In fact, the only ac-
ceptable point groups for regular superconducting net-
works are of the form C„C„, C„h, and S„ in the
Schonflies notation. ' Recent theoretical work on the
second-order phase transition of regular infinite networks
has invoked mirror symmetries in p4gm and c2mm space
groups to explain cusps in the phase boundary, ' but the
pseudovector character of H prevents such an explana-
tion.

In the presence of a magnetic field, the two-loop sys-
tem and the balanced Wheatstone bridge have the same
symmetry C21, (see Fig. 5). The two-loop system adds the
advantage of equal length branches. The phase boundary
is determined by two eigenvalues of the linearized equa-
tions which cross one another as shown in Fig. 5. The
possible modes of b,o(s) transform under symmetry opera-
tions as the irreducible representations Ag (symmetric) or
B„(anti symmetric) of Czh. The equations for the phase
boundary lines are cosL =+(1+2cosgo)/3, where L is
the length of the branches (normalized by go) and Po is

the external magnetic flux linked by one elementary loop.
The upper (lower) sign holds when the "winding number"
n for the order parameter around the external ring is even
(odd). For a complete group-theoretical analysis of net-
works see Ref. 13(b).

The first-order perturbation coefficients (30) can be cal-
culated analytically. The Ehrenfest-Keesom equation
(32) reads, in this case, dL/dPo=+ —', singo/sinL and,
when integrated, gives the characteristic equation. The
LCP can be found using condition (39) with the explicit
form of the coe%cients.

To analyze the second-order effects, we note that the
symmetry properties of the two-loop system imply that
Eqs. (14) are hoinogeneous to all perturbation orders, i.e.,
IIki(1)=IIki(2)=0. We shall consider a two-loop system
made of an extreme type-II material, a case whose exact
solution can be obtained from numerical calculations. '

The coefficients ~b, g& in Eq. (41) for the nodes, the
coefficients jkI in Eq. (42) for the external branches, and
the coefficients Gki in Eq. (43) for the whole two-loop sys-
tem have been calculated and the ensuing second-order

1 1
3

1
2

g 1
4

FIG. S. Phase diagram for the two-loop system. The inset
shows the micronetwork geometry. The shadowed region indi-
cates where second-order perturbation results depart less than
15% from exact ones. Shown also are the equilibrium lines be-
tween modes (see text).

perturbation results have been checked by comparison
with exact calculations made by Fink, ' as can be seen in
Fig. 6.

We have studied the stability line separating both
modes in the superconductive region. This line begins at
the point go=2m. /3 on the phase boundary and goes ini-

1.00
0.5- 1.05 1.10 (/L (b) 1.25

0.125

)(b)

0.100

0. 3 0.075

0.2 0.050

0, 1 0.025

0.0
0 0.1

OOOO
0.2 (t) /2m (a ) 0.3

FIG. 6. Comparison of exact and perturbation theory results
for the two-loop system. Shown is j(a), the current density vs

applied Aux at fixed temperature for the mode n =0; in this plot
the starting point is at $0=2rr/3 Also shown is . j(b), the
current density vs l/L =(T, —T)/(T, —To) at a fixed magnetic
field for the mode n = 1; in this plot $0=2.47. Lines (1) are the
exact results of Fink; lines (2) and (3) are first- and second-order
perturbation results, respectively. The inset shows the paths in

the phase diagram. Note that the second-order results repro-
duce the correct curvature at the starting points (see text). The
arrows point to the scales to be considered in each case.
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tially parallel to the temperature axis, then it bends into
values of Po greater than 2m. /3, as we have indicated in

Fig. 5.
In the case of Fig. 6(a}, we should point out that the

perturbation scheme reproduces a peculiar feature of the
exact solution. The overall curvature of the j vs P line
seems to be negative. Near P/2n. = ,', ho—wever, the cur-
vature is slightly positive, a fact reproduced by the per-
turbation results. Because of this good behavior near 3,
the overa11 quality of the approximation seems to be
poor. As a rule, second-order perturbation gives good
agreement for the initial curvature. On the other hand,
we see that the second-order result is a very good approx-
imation for the case considered in (b).

IX. CONCLUSIONS AND PERSPECTIVES

We have shown how a consistent perturbation scheme
can be devised to treat the superconductive phase of mi-
cronetworks. The procedure can be extended to all or-
ders in hT and b,H and applied to any type of network.
The complications of the algebra suggest, however, that
beyond second order some other procedure should be ap-
plied if additional physical properties of the networks are
sought. In this sense we feel that a variational approach
of the kind developed by Wang, Rammal, and Pannetier,
if self-induction effects are properly included, could be
more adequate to describe the vortex structure. In this
particular aspect it would also be desirable to have exper-
imental results obtained through decoration techniques
to compare with.

The subject of this paper is relevant to the theory of
high-T, superconductors considered as granular systems,
in which there is an intrinsic network structure, with su-

perconductive islands interconnected via weak links.
This would bring us back to the original ideas of de
Gennes and Alexander, who proposed their theory as a
model for heterogeneous superconductors.

One of the theories' for granular high-T, supercon-
ductors interprets the phase diagram of these materials
using an averaged GL framework with renormalized
coherence length and penetration depth. This approach
is successful in describing the static properties of the
magnetic flux within the material. Recent experimental
results, ' however, show that such an approach cannot
account, neither qualitatively nor quantitatively, for the
dissipative effects caused by Aux motion induced by a
transport current. It has been suggested' that both the
depinning and the motion of the vortices are related to
the topological characteristics of the intrinsic network,
which are not included in an averaged theory. For this
reason a possible extension of the present work is towards
the inclusion of transport currents and a study of the in-
duced vortex movement. Work in that direction is in
progress.
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APPENDIX A: THE I MATRIX

To second order the matrix I' (a, s) in Eq. (6) is given

p 0

1

l 720

2
V20

l $40

l V11

l 'V31 V20/11

lf 02

2
3 11

F22 3 20 V02

l V 13 V 11/02

2
V02

This can be reduced further by taking into account that the normalization conditions (16) imply yk&
——0 for k (or I) odd.

APPENDIX B:
SECOND-ORDER PERTURBATION FORMALISM

We will use the notation fo(a, O)—=a, fo(a, L)=b, and-
fo(a, O)=a. The general explicit form of fkI(a, s) for a
branch is

fkl(+ s} +klfo(~ s}

[Zk&(a, b, s)+aXk, (—a}]sin(L —s)
sinl.

—{Zk&(b,a, L —s)

+b [Xk&(b) Ykl(a, b,L)]]—
sinL
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Z«(a, b, s) = sinL
(ah* ba —*)

X [ U«[aI, (s) a'I—2(s)]

—V„,[aI (s) —a "I (s)]],
where Uk&=a a „ia i, Vk&=pa „,and

I, (s)= f ifpi ds', I,(s)= f if()i'fpds',

I,(s)= f ifpi'ds', I4(s)= f fpds' .

(B2)

APPENDIX C:
SECOND-ORDER PERTURBATION COEFFICIENTS

The second-order normalization relations can be ex-
plicitly written in the form

CI
ap( alpa30+ alpa30)

BIC4
D2 D3

ap( pla30+ lpa21 ) +a 1(a 10 21+ap1a30)

ap( 10 12+ 10 12)+a 1( 01 21+ 01 21) (C1)

C2

D

(B,C, +B2C4)
D2

2B (B2C6
D3

al( 10 03+ 01 12 ++0(apl 12+ 10 03)

In second-order perturbation, taking k =m +2p,
l =n +2q, and mn, pq =10,01 we have

Y«(a, b, L) =i a „@2~2 (a,L)

and

and

slnL p
N, =g

p
ab* —ba ' J,(Lp),

a *b *sinL
p

N2 =2 Q I3(Lp)I4(L p),(ab* ba'—)

(ab'+ba')sinLp
N3= g I3(Lp),

p (ab" —ba *)2

(ab "+ha ')sinL pN4= Q iI4(Lp)i
(ab ' —ba *)

ah*+ha *
N3= g y, (a, Lp)I3(Lp),ab* —ba*

a*b*
y, (a,Lp)I4(Lp),ab* —ha*

R4 Ns (N9+N9 ) (Nlp+Nlp )

—(N„+N*„)+ (N, 2+N12 ),
R5=i [N, 3 (N—,4 N—,*4)],

R 6
= i [N—, 5 (N—,6 N—,'6 )],

R7 =XI7,

Rll —(Nls+N, s )+(N19+N;9) —
N20 —N2, ,

R 9
= —i [N22 —(N23 —

N23 ) ],
R1O =%24

C3
a 1(apl 03+ 0 1 03 )

where

RI
C, =BI+

C2 =B2+R2,
R3

C3=

C4 =2R4+ —R q,
S
K

B2C5 B2C6
D2 D3

N7= g
p

ab" +ba'
S1 p

(ab '+ba *)sinLp
I, (Lp)I3(Lp),(ab' ba')—

a *b *sinL
pN9= g I2(Lp)I3(Lp),(ab' ba *)—

a *b *sinL
pNlp= g, , I, (Lp)I4(Lp),(ab' ba*)—

slnL pN„= g J2(Lp),ah* —ba *

C5 =2R6+ —R7,S
K

C6= —', R8+ —,'—R9+—,'—Rlo .S S
2 K2 8 K2

In turn,

R, =(N, +N, )*+(N2+N2 ) —N3 —N4,

R 2
=i [N5 —(N6 N6 )], —

R3 =%7,

ah*sinL p
N, 2

—g 2I2 (Lp)I4(Lp),
(ab * ba *)—

1 ah*+ha*
X . . I 'Lp» p~pir

2m p p
ab' —ba'

1 a*b*
X . . I4(Lp»pir~pp
p p~ ab* ba*

ab*+ba*
y, (a, Lp)I, (Lp),ab' —ba *
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N, s
= g y, (a,Lp)I, (Lp),

p
ab* —ba*

l ab'+ha'
2~

p p simp y, (a,Lp)j op Kptr,

s1IlL p&is=
p

ab* —ba * J3(Lp),

a *b *sinL p
N, 9 =2+, , I2(Lp)It (Lp),

(ab' ba—')
(ab '+ ba ' )sinL p

Nqo= g It (Lp),
p

(ab' ba')—2

(ab '+ ba '
)sinL p

Nzt =g, , z I2(Lp)(ab' ba')—

1 ah*+ha'
N22 = g It(Lp)j oirKptr2~ p p

ab* —ba*

1
N24= ~ X4 ppp"

Jo Jop-~ppI pp-

=1 a*b*
N»= g I,(Lp)jo&Kp&,

2m ab* —ba'PP'

ab*+ba*
slnL p

In these formulas

B)C, B )C4 B )C6
G60= + +

D

(BtCq+B2Ct ) (Bt Cs+2Bt B2Cq ) B tB2Cq+ +
D 2D D

(B2Cq+Bt C3 ) (B2C4+2B t B2C5 )
+

D 2D
(C2)

B2B)C6+
D

B2C3 B2C5 B2C6
Go6= + +

2D 3D

Gsi =G33 =
&5

=0 .

Lp
J,(Lp)= f fo I4ds,

Lp
J2(Lp) = f if oi fo I4ds,

Lp
J3(Lp)= f Ifpl fo I2ds

0

The coefficients Gkt in expression (43) can now be writ-
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