
PHYSICAL REVIEW B VOLUME 46, NUMBER 17 1 NOVEMBER 1992-I

Quantum particle in a washboard potential. I. Linear mobility and the Einstein relation
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The Einstein-Kubo relation between the diffusion constant D and the linear mobility v is investigated

for a dissipative quantum particle in a potential V(x) = —Fx+ Vocos(kox). This system is directly relat-

ed to a current-biased Josephson junction. It is shown that D =kTv holds to all order in Vo for a gen-

eral dissipation spectrum J(co), as long as J('co) is linear near co~0 and is not pathological. A general-

ized version of the Einstein relation is shown to hold also for sub-Ohmic dissipation, J(co)-co, 0 & s & 1

at co~0 where the motion is subdiffusive. The super-Ohmic case 1 & s & 2 is also discussed.

I. INTRODUCTION

We continue here our study of the dynamics of a quan-
tum particle moving in a periodic cosine potential with
dissipation. ' The mobility of the particle subject to an
external driving force is of special interest —it corre-
sponds directly to the I-V characteristic of a current-
biased Josephson junction. In this paper we investi-
gate the Einstein relation, which links the linear mobility
v to the diffusion constant D, for more general environ-
ments than before. In a companion paper we consider
the general nonlinear mobility for the case of an Ohmic
dissipation with small viscosity.

Although Kubo has presented a general formal
derivation of linear response theory to which. the Einstein
relation belongs, there are problems with the derivation
and even the precise formulation of the mobility for the
type of systems considered here, see Ref. 2. We therefore
follow the approach of Ref. 2, start with a localized ini-
tial state, and define the mean velocity vF in the presence
of a constant driving force F via

(x- )(t,F)
VF llm

t~a)

The ( ) is the average with respect to the reduced
density matrix of the particle in contact with the dissipa-
tive environment, in the presence of the external field F.
The linear mobility is given by v=limF o[u~/F]. Like-
wise we define the diffusion constant via

(2)

where the time evolution now takes place without any
external field.

The usual formulation of the Einstein relation D =kTv
implicitly assumes that the limits defined above exist with
D and v )0 for T)0. This clearly depends on the nature
of the environment, which is here represented by a boson
bath. We are interested in the case where the dissipation
spectrum of the environtnent J(to)-to' for small to. We
shall see below that for the free case, i.e., no cosine poten-
tial, both (x )(t,F) and (x )i(t, F =0) increase in time
like t'. Thus it is only when s =1, corresponding to

Ohmic-like dissipation near co=0, that the above limits
are well defined. Nevertheless it is easy to show, in the
free case, the existence of a generalized Einstein relation
between limy 0(x )(t,F)/F and (x )(t,F =0) when
0&s &2. Problems arise, however, in the presence of the
cosine potential, Vocoskox. We show that a generalized
Einstein relation still hold for s ~1, although only for
s & 1 does the zeroth order in Vo contribute to the long-
time behavior of (x )(t).

The Einstein-Kubo relation was studied recently by
one of the authors where it was proved that it holds to
all orders in Vo for strict Ohmic dissipation, i.e.,
J(co)=geo. A similar result was obtained by Weiss
et al. for a quantum particle moving in a one-
dimensional periodic lattice, a tight-binding version of
the continuous model considered here. The analysis in
Ref. 8 also included certain cases of super-Ohmic (s & l)
and sub-Ohmic (s ( l) dissipation with, however, no
modifications in the Einstein relation. This is very
different behavior from that found for the continuous
problem in this paper where an Ohmic behavior at small
frequencies is required in order to have a well-defined
linear mobility and diffusion constant. The difference is,
we believe, due to the fact that the two models work in
different regimes of parameters. Although there exists a
dual transformation between the mobility of the two sys-
tems in the Ohmic damping case, a general mapping be-
tween the two is impossible. In fact since the tight-
binding approximation ignores the excited states at each
lattice site, it might be insensitive to some aspects of the
quantum dynamics seen in the continuous model. Note
also that the proof of the Einstein relation presented in
Ref. 8 is different from ours; it uses a rather abstract for-
malism in which the original double-time path integral is
employed. It is not clear that the formalism can work in
our model.

It is possible to verify the Einstein relation directly by
experiment as well (though it is often assumed in con-
densed matter physics). For example, in a current-biased
Josephson junction the external force F corresponds to
the bias current I, whereas the voltage across the junction
corresponds to dx /dt [V( t) =40ttt( t) /2' where
40 =—e/2h is the flux quantum and P(t) is the Josephson
phase]. Therefore for the Ohmic-like dissipation the Ein-
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stein relation reduces to

2

~e 2~k ~k ~k (6)

dt'V t'
llm

2t
kT
R

(3)

II. GENERAL FORMALISM

The total Hamiltonian of our system consists of three
parts,

where both V (t) and the linear resistance 8 are measured
at I =0 (we consider here the states I()I) ) and I/+2m. ) to
be different). Note that the quantities in both sides of (3}
are experimentally measurable. It would thus be interest-
ing to check this relation.

The outline of the paper is as follows. In Sec. II we re-
view briefly the general approach of Ref. 2 where we
developed a general real-time description of the system in
terms of the Wigner distribution. Then in Sec. III we in-
vestigate the generalized Einstein relation for free
Brownian motion. In Sec. IV we add the periodic cosine
potential and show that the same relations also hold in
the Ohmic and sub-Ohmic dissipation with 0&s 1 for
every order in V0, but do not prove the convergence of
the series.

and

C'2

g, =x+Ck(ctk+ctk }+x g
k ACOk

the coupling between the two subsystems. Note that a
counter term is included in 8, to cancel the adiabatic po-
tential shift induced by the coupling. The damping spec-
trum

J(co) =m.+Ck [5(co cok )
—5(co—+cok )]

k

will be taken, in the thermodynamic limit, to be a piece-
wise continuous function.

Given an initial density matrix d(0) at times 0, we
define a reduced density matrix at time t for the particle
alone by p(t) =Tr, [d (t) ] (here the subscript "e" indicates
the "environment") and introduce the coordinate repre-
sentation

p(Q, r, t) = (g+(r/2)lp(t)lg r l2) . —

A'=A, +8, +H, ,

where A' is the particle's Hamiltonian,

8 =P /2m+ Vocos(kox) Fx . —

8, is that of the environment (a boson bath),

(4)
Assuming an initial state of the product type,

P(0)exp( —P8, )
d(0) =

Tr, [exp( —PB, ) ]
(10)

and a switch-on of the coupling at t =0+, the final

Wigner distribution at time t & 0 is given by, see Ref. 2,

co(gf Pf t)= p(gf rf t)exp — Pfff-Gfrf

2mB

= 5(gf —Q(](t))5(Pf —Po(t))
'n

f~

+ y ' I'dt„ I "dt„, f 'dt,
n=1

n

x x 5(()f—()„()))5(p) p (())ttrr—;s(n„[k Q„( )]()
I~ =+li

J
j=l

P„(t)=mQ„(t), Q„(0)=Q, , P„(0}=P, , (13)

The quantities Q„(t) and P„(t) are solutions of the follow-

ing modified "classical Langevin process"

mQ„+ J dt'a, (t t'}Q„(t')—
0

k0 n

=F+a, (t)Q, + g o 5(t t )+f(t), (12)—
2

(g(t)g(t') ) = (tat') . — (14)

a,(t)=2f dco J(co)
cos(cot },—oo 2' CO

(15)

( . ) in (11) refers to averages over both the initial

Wigner distribution of the particle co(g;,P;,0) and the
Gaussian random process g(t). The functions a](t) and

a~( t ) are related to J(co ) by

where F is the external force and g(t) is Gaussian noise
with covariance

a~(t)= I J(co)A'cothGEO 13fico

(x) 2' 2
cos(cot) . (16)
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The solution of (12) can be written as

Akp
Q„(t)=Q&(t)+ g cr,g(t —t, ),

j=1
(17)

half plane either}

g (t) =8(t) 2f J(co)~g(co+iO+ )~ sin(cot)
21T

where QD(t} is the solution in the absence of the 5 forces,

Q, (t) =QQ(t}+Q&(t)+ f dt'Fg (t t')—
++A exp[ i—co t] (26)

with

Q0(t)=Q, + ' g(t)+ f dt'a&(t')Q;g(t t')—, (19)

Q&(t)= f dt'g(t')g(t t'),— (20)

and g(t) is the Green's function of the homogeneous
part,

mg(t)+ f dt'a, (t t')g(—t') =5(t) (21)

with g(t) =0 for t (0. The Green's function g (t) can be
solved by Fourier transform,

g (t)=f g (co) exp[ icot]—, (22)—o0 + I p 2'

The second term on the right-hand side of (26) results
from the poles on the real axis which preserve the infor-
mation of the initial state of the particle. We shall return
to this below where one finds that these poles break a cer-
tain analyticity essential for the proof of the Einstein re-
lation. Therefore we shall require throughout this paper
the absence of poles in g (co). This imposes constraints on
the damping spectrum J(co) at higher frequencies.

III. FREE MOTION

We consider now the case when Vp=0. The long-time
behavior of the corresponding Brownian motion is con-
trolled by the small frequency part of J(co), which we
shall assume to have the form

where J(co)=rico'[I+o (co)] . (27)

—1
g(co) =

m co +ico7'(co)

with

dco' 2J(co')/co'
7' co = +leo

CO CO

(23)

(24)

When s ~ 0 the damping is so strong that the particle is
basically localized near its initial position. On the other
hand, for s ~ 2 the damping is almost negligible and as
t ~~ the particle behaves essentially as a free particle. '

Therefore we shall confine ourselves to 0 &s & 2.
Using (27) the small frequency limit of g(co) given in

(23}can be readily obtained,

The boundary condition for g(t) is satisfied provided

g (co} is analytic, i.e., has no poles, in the upper half plane
of co. Poles if any would arise when the denominator of
g (co) vanishes, i.e.,

sin(so /2) [1+
rico'exp( —i m.s /2 )

which gives for large t

(28)

dco 2J(co )co

—~ 2mm (co~ —co'~(~

—
~

~'f" "~ ~~ "=0 (2g)—~ 2nm.
Clearly the solutions have to be real since J(co')/co' is
positive. For t )0, the integral over co in (22) has to be
closed in the lower half plane. Note that there are
branch cuts on the real axis as well as possible poles sit-
ting between the cuts where J(co) vanishes. This then
gives (using the fact that there are no poles in the lower

sin(sn /2)
Vp qsr(s)

(30)

where I'(s) is the usual Euler's gamma function. The cal-
culation of (x (t,F=O}) can be similarly performed.
For large t,

(29)
riI s

Thus to leading order, (x )(t,F) for the free motion in
the presence of the external force F has the generalized
form, '"

(x )(t,F)=(Q0(t)) =v ta'F(1 o+(t)),

I

t 2(x')(t,F =0)= (Q', (t) )~ f dt'g (t t')g(t')—
=f fiZ(co) coth ~g(co+iO+ }exp( icot) 5g(co), ~— —

2& 2

where

5g (co), = exp( i co't) . —d co' g ( co'+i 0+ )

co+$0 co

(31)

(32)

Note that in (32) the upper branch limit of g (co'+i 0 } should be taken first. It is evident that 5g (co), is essential for the
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convergence of the integral (31). Using the small frequency limits (27) and (28), the long-time behavior of (x ) (t,F =0)
can be obtained (to leading order in t),

:2D,"t'[1+o (t ) ]

with the generalized diff'usion constant (the subscript zero indicating the zeroth order in Vp)

2

(33)

kT. 2 sn f~ dxDo' = sin
g 2 —~ 2&X

exp( —ix) f ~ dx' exp( i—x')
x' —~ 2~ (x+i0+ —x')x" (34)

For s =1 (34) reduces to the simple Ohmic linut with Dp ' =kTvp"=kT/rt Fo.r all 0 & s &2 a generalized Einstein re-
lation holds in the sense that

(x )(t,F =0) D(s)
(independent of T) .

2kT(x )(t F)/F ( cc F p kTvp
(35)

We shall also use below the mean-square displacement
after a long time for the classical Langevin process intro-
duced above. It is defined by

C(t)= lim ([Qp(t+t') —Q, (t')]')/2 .
E ~oo

(36)

5g(co), -(t'/cot )[1+0(t)] . (37)

It can be explicitly shown that for s (2 the long-time
effect of 5g(co), vanishes [one needs also to take some
care of the small frequency part of 5g (co),]. The result-
ing C(t) simply reads

C(t) = f AJ( c)o~g ( co+iO+)
~ [1—coscot] coth2' 2

(38)

The existence of the limit in the right-hand side of (36)
depends on the behavior of 5g(co), given in (32). For long
time and finite frequency,

The result coincides with C(t)=([x(t)—x(0)] )/2 [x(t)
is the coordinate operator in the Heisenberg picture] of
the free motion obtained by genuine quantum-mechanical
considerations. ' It is interesting that if we define the
generalized diff'usion constant by Dp" =lim, „C(t)/t'
(as has been proposed in Ref. 10), then Dp" =skTvp"
However, Dp" is in general not equal to Dp" for s%1.
Since C(t) involves calculations of correlation functions
to which our general formalism is not readily applicable
(when the periodic potential is present), (33} will be em-

ployed throughout this paper.

IV. EINSTEIN RELATION
IN A PERIODIC POTENTIAL

A. General expressions

We now generalize the result of the last section to in-
clude the periodic cosine potential. It is a straightfor-
ward matter to obtain from the general formalism in Sec.
II that

and

a oo

(x)(t,F) = g A„(t)Vp= (Qp(t))
aF ' , , „ , " ' aF

n

+ g kpA' f dt„g(t t„)g, „(t—„)
F~O n =1

0 (39)

n
oo oo

(x )(t,F =0}=Q B„(t}Vp=(gp(t))+ g kpR dt„g(t t„)f,„(t,t„), —
n=0 n=1

where

(40)

n n —1 E2 n E(

p) „(t„)= f dt„,f dt„2 f dt, g JIM, f dt'g(tt —t')
2 0 0 0

I +)I I ) 0
J

n —i k20X g sin g p„g(t„t,)—
j=1 k) j2

n ~ ~
n

Xexp ikp g p,
——+Qp(t ) —— kp g p Q&(t}.

(41)



QUANTUM PARTICLE IN A WASHBOARD POTENTIAL. I. . . . 10 747

and

t~
~ f dt

0

kpfg n —1 k fii—Qo(t) i— g g(t —ti}cot g pkg(t ti—)
I=1 k&I

P, „(t,t„)=f dt„,f dh„

x
II, =+1I . .

n —1

+ g piko ( Q~(t)Q((ti ) & g sin
I=1 j=1

kpA
QPkg( k ti)
k&j

r

n

xsxp ikoxy, ,
——+Q {0t )—— k. 0xy, .g{{{.{ }j=1 j=l

(42)

with Qo(t} containing the information of the initial state and Q&(t} denoting the random noise part of Qo(t) [see (19)
and (20)]. To simplify these expressions, we first notice that for large t, 's,

kp
gwkV, (Qq(tk) & .
j,k

k QIh, Q((t ) g P PC(t . t )——
j=1 j,k =1

(43)

(44)

we can then rewrite (41) and (42) in the following form (for long times and even n)

Therefore one needs g p =0 (thus n =even) when 0 & s & 2 for the integrands above to survive at long time. Once this
is imposed, the other exponent ikon", p [ —m/2+Qo(t )] vanishes for large t 's and s &2 since Qo(t, )-t' ' The.
preexponential term —iQo(t) in (42) will then vanish too by symmetry ({M ~—p, ). Let

n —1 k2g n kp
F((t, i, ])= g»n Xt kg(tk t'} exp

2 Xp''pkC(t'
j=1 k& j j=1 ~i "i

kp 'n —1
n t(

q, „(t„)= f dt„,f dt„2 f dt, g ~ gp, f dt'g(t( t')F((ti—,pi])2 0 0 0
I ~ 1 I I 1

0
J

while

p, „(t,t„)= I(,"{„'(t„)+I(,"i„'(t,t„),
with

kp 'n —i f2
f2'„'(t„)= f dt„ i f dt„~ f dt, g g pi(Q((ti) &F((t, , Ih,, ] )

, .=+1I 1=1

and

'n —i f2
f2'„'(t, t„)= k, f dt„—, f dk„, f dt,

g n —i k2oi)i n n

X g i gg(—t ti}cot —gihkg(t —ti) + QIhiC(t tt) F((t, ,p—])
Ip, .=+11 1=1 k &I I=1

One immediately notes the similarities between ltd, „(t„)and gi2'„'(t„). In fact,

lim f, „(t„)lg'z'„'(t„)=vz '/2Dio' .~ oo
n

To proceed further, it is most convenient to write

y,"„'(t,t„)=— f "dt„,f" dt„, . . . f dt,
kp 0 0 0

(45)

(46)

(47)

(48)

(49)

where

{'

n —1 n —1 n —1

X g p„k C(t t„}g{Mklm[Sk]+—g Im[R (t ti}Si] g pklm—[Sk]
Ip. =+1I k=1 l=1 k =1,k+1 g.i . =o

J J

(50}

Sk((ti,pi } )=exp pk g piR (t tk)— .

j&k
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and

R(r)= C(r)+ —Ag(r) k,'

o h(P &/2) osh[(0&/2 'r) ]
—ao 21T sinh(@cori/2 )

(52)

In the last step of (52) we have used (26) and (38).
These expressions are analogous to those for the Ohm-

ic damping spectrum except for the dependence of R (r)
on the general damping spectrum J (co). It is most impor-
tant that R (t) can be analytically continued into the
striplike regime pfi&l—mr &0 in the lower half plane
and satisfy

where tz and tj belong to different clusters. Therefore
the convergence is sufficient for the sub-Ohmic dissipa-
tion as well as for the Ohmic dissipation [g (r) —const as
t ~ ao in the Ohmic case]. For 0 & s & 1 the preexponen-
tial factors in f& „and gz „do not afFect the intercluster
suppressions either except for the terms associated with
the cotangent factors in Pz „' which substitute

R (t —i') =R "(t' ) for Pfi& Imt &0,

R ( i~—)=R'( iw—) for Imp=0 .

(53)

(54)

Aka
sin g p~g (t t&)—

j=1+1

In what follows we shall show that for t„~ao the contri-
bution due to P~z „'(t,t„) is negligible to the leading order
in t when compared to that of g", „'(t,t„) for sub-Ohmic

and Ohmic-like dissipation. We then briefly discuss the
case of super-Ohmic damping in which the integrals over
t 's diverge at long times.

B. Sub-Ohmic and Ohmic-like dissipation

It is necessary to check erst the convergence of the in-

tegrals in these expressions. The integrands can be divid-

ed into many "neutral charge" clusters each of which has

gpj =0 (viewing each t as the. position of an object with

charge p~). Large distances between intracluster
"charges" are exponentially suppressed by C(t~. tz) (it-
behaves as -kT~t tz~'/7} for . la—rge ~t~ tz~). B—ut this

does not work for intercluster separations. In the latter
case, the suppressions come from the sine factors in

F([t,pj] ) that connect neighboring clusters. Since the
clusters are "charge" neutral and "compact, " g p, in-

side the sine factors reduces to taking derivatives when

the intercluster distances are large. The suppressions
then have the form

(55)

fiko~ cos g p, g(t t, )—
j=1+1

The right-hand side does not decay for large intercluster
separation. In this case the convergence question is
somewhat subtle: It results from summing over pj's with

j ) l (l =even). If there is no correlation at all between
the upper and lower parts the summation simply yields
zero by symmetry (p ~—p. , j ) I). Taking this into ac-
count, the suppression will then have the form

a'
or ~ [C(r —

r& )]
dry drj

g(r, r)—
[the second quantity is related to the short-range part of
C(t)'s]. The integral over t, is thus also convergent for
s &1.

It remains to show that the contribution of /~2 „' does

vanish to leading order in t for all n. This is done by con-
verting the real-time integrals into imaginary-time in-

tegrals over a finite interval. It involves a number of con-
tour deformations in the striplike regime —PA'& Imr &0
and repeated use of the analytic property of the function
R (t). In the case of sub-Ohmic and Ohmic dissipation,
we can safely put the lower limit of the integrals to —00;

we shall return to this point in the super-Ohmic dissipa-
tion where the integrals are not convergent. For the
lowest order

2, 2(r2 )

E2

Im J dt& [
—kQC(t t2)exp[ —R (t2 ——r, }]+R(t t~ )exp[ —R (tz ——t, )]] (56}

We note that the integrand is odd under r
&
~t &+ipfi Therefore a co.ntour deformation

( —oo ~t2} :(—oo +iPA~i Pfi+ t2 ~r2 }

for t
&

converts it to an integral over the imaginary axis,

i
fz z(t2 ) = Re 1 dr, [

—kQC(t —t2 )+R (t —t2 i &)]exp[——R ( i ~,}]— (57)
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For the higher-order terms the procedure becomes much more involved. It contains basically step by step integra-

tions over t 's. The central idea here is to rearrange the integrands so that they are odd under some contour deforma-
J

tions similar to the one used above. This was first applied in Ref. 3 to the case of strict Ohmic dissipation. It is

straightforward to generalize the procedure to our case. The resulting expression reads

f,"„'(,„)=— Jkp pfi 2

X g Re
n

II&J'

n —1 n —1

. g p,, R t —t„ig—r„—k,'C(t —t„,) .exp(E„)
k=j

(58)

where the exponent E„ is obtained via the recurrence relation,

Ek=Ek )~(„,-(„+.„,+vk &u, R(tj tk—)
j)k

with

(59)

E(=p, , gp, R(t, t, ) . —
j)1

Note that exp(E„) is purely real. Recalling the expression for R (t) one finds that for finite r
de . +,2 cosh[(P —2r)(oA'l2] —cosh(Ptoi)1/2)

cosset
00 2)r sinh to()t'/2

-t' for large t .

(60)

(61)

Therefore

f dt„g (t t„)g,"„(—)t, t„)—t" (62)

Therefore

g j —I (1) t t -t2' 1 (64)

Finally, using (49) it is readily established that to leading
order in t the nth-order coefficients of (39) and (40) in Vo
are related by

v,"
B„(t) 2D(')'

[1+o(t)] for all even n, (65)

where vo" and Do' are given in (30} and (34). We there-
fore arrive at the conclusion that

(x )(t,F)~
a

llm „2(x )(t,F =0)

(x )(t,F)F ()

cl

11m „2(x )(t,F =0}
V(s)
Vp

2D (s)
0

Vo =0

(66}

In the Ohmic limit, all the coeScients increase linearly in

We now show that this is indeed of higher order than
the integrals over P). Since (Q~&(t ))-t' and g p, =0
has to be imposed all the time, we have from (47}

(63)

t, while for sub-Ohmic damping the coefficients of n%0
grow as t ' ', which is slower than that of the corre-
sponding free Brownian motion.

It ought to be repeated that the result holds only when
the finite-frequency part of J((o) is not so pathological
that poles appear in g(to). Otherwise the analyticity of
R(t) as well as the convergence would be destroyed.
Such a case might occur if the particle interacts strongly
with a particular harmonic oscillator in the bath so that
it is driven to move along with the oscillator. Such a case
should be generally excluded at the point of modeling the
heat bath since one would then rather consider the bare
system as two dimensional.

C. Super Ohmic dissipation

The case of the super-Ohmic dissipation cannot be dis-
cussed within the same framework when the periodic po-
tential is present. Though it seems that one can formally
apply the calculation of the last subsection here as well,
there are several inevitable problems due to the diver-
gence inherent in the integrals g) „and g2 „. Note that
the intercluster suppression of (55) is insufficient for s ) l.
Consequently, the lower integral limit of $2( „' cannot be
taken to infinity. One therefore is forced to consider the
rather messy behavior of the integrands around t =0.
Furthermore, A„(t}and B„(t)grow faster in time as n in-
creases. This point can be checked by a simple argument.
Consider, for example, the "charge" configuration
pj. =( —1)J. There are then nl2 neutral charge clusters.
The connections between them decay as ~tk t,~'—
This leads to a dependence of A„(t) and B„(t)on time as

tst (s —)n/)2l(
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