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Effects of the exciton dispersion on the properties of polariton solitons in gyrotropic and nongyrotro-
pic crystals are investigated. Bell- and kink-type solutions are obtained, and the conditions for their ex-
istence are determined. For excitons with a positive effective mass, a change of the type of the solution is
shown to take place at a critical point on the lower polariton branch, accompanied by a critical behavior

of the soliton’s width and amplitude.

I. INTRODUCTION

Since the works of McCall and Hahn"? on self-induced
transparency (SIT), intensive investigations of optical sol-
itons formed in the process of interaction of intensive
light pulses with elementary excitations in condensed
media have been carried out. The theory of SIT is based
on the interaction of an electromagnetic pulse with a sys-
tem of two-level atoms, where the electric field couples to
the dipole moments of the transitions through the popu-
lation inversion and the nonlinearity of this interaction
forms the steady shape of the pulse. The influence of the
medium on the dispersion of the carrier wave was
neglected in the earlier works, and the dispersion relation
of light was used instead. A generalization of the SIT
theory for electronic excitons in solids has been carried
out in Refs. 3-7.

When the linear exciton-photon coupling is taken into
account, it leads to the formation of mixed states known
as polaritons.®~!! The role of the polariton effect on the
properties of optical solitons in the exciton region has
been investigated in Refs. 12—-15 where the dispersion re-
lation for the carrier wave has been obtained in a self-
consistent way. It has been shown to depend on the non-
linearity and the soliton parameters such as the pulse
width or amplitude. For short pulses it approaches the
dispersion relation of light while for long pulses it is simi-
lar to that of the linear polaritons.

The formation of polariton solitons in nonlinear optical
processes has been studied in Refs. 16-20, transmission
and reflection of polariton solitons at a boundary has
been considered in Refs. 20 and 21, and surface and
guided-wave polariton solitons have been investigated in
Refs. 22 and 23.

Due to their mixed character, polariton spectra exhibit
a strong intrinsic dispersion in the resonance region,
where the frequency and the wave vector of light are
close to those of the excitons. Polariton spectra in this
region change in a continuous manner from a photon to
an exciton type on the lower polariton branch and from
an exciton to a photon type on the upper branch. For
larger values of the wave vector (k >>w,,/c), the lower
polariton branch may show a dispersion associated with
the wave vector dependence of the exciton energy. This
kind of spatial dispersion has been studied extensively for
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linear excitons and polaritons (see, for example, the re-
view articles®* ™26 and the references therein). The effects
of the exciton dispersion on polariton solitons however
have not been investigated in such detail. In Refs. 13-15
a quadratic dependence on the wave vector has been con-
sidered within the effective-mass approximation and is
shown to play a minor role for the soliton properties in
the polariton region (k ~w,, /c).

The investigation of polariton solitons in this paper is
extended to larger values of the wave vector, where
effects associated with the exciton dispersion may become
important. Besides nondegenerate excitations, the treat-
ment includes degenerate excitations in gyrotropic crys-
tals, which are characterized by a linear in k dependence
of the exciton energy.?* 2% Moderate intensities are con-
sidered, when the induced polarization is proportional to
the electric field and the only nonlinearity in the system is
associated with the exciton-exciton interaction. In addi-
tion to Refs. 13-15 where fixed amplitude or fixed
temporal-width solitons have been studied, solitons with
a fixed spatial-width or a fixed exciton number are inves-
tigated in this paper. Bell- and kink-type solutions are
obtained corresponding to bright and dark optical soli-
tons, and the conditions for their existence are deter-
mined.

II. BASIC EQUATIONS

The formation of polariton solitons in gyrotropic
media may be looked upon in the following way. Consid-
er a circularly polarized light pulse propagating along the
optical axis of a gyrotropic crystal. The electric field of
the pulse couples to the dipole-active excitations of the
media (vibrational or electronic excitons) having the same
frequency, wave vector, and polarization to form polari-
ton states. For nondegenerate excitations as well as for
degenerate excitations in nongyrotropic crystals there is
no linear in k splitting and the results for circular and

linear polarizations coincide. The presence of a nonlinear

exciton-exciton interaction leads to an interaction be-
tween the corresponding polaritons and causes the forma-
tion of polariton solitons. Obviously such a picture is
valid for long enough pulses, whose temporal width is
greater than the inverse polariton gap frequency.'? As
shown in Refs. 12 and 15, short light pulses are not very
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sensitive to the polariton effect and are more of a photon
rather than of a polariton type.

We shall consider in some detail the formation of po-
lariton solitons associated with intramolecular vibration-
al excitons (optical phonons). A similar approach can be
applied also to electronic (Frenkel) excitons. The in-
tramolecular vibrations have narrow energy bands and
the Hamiltonian for them can be written in the Heitler-
London approximation as?*?’

H=#wySB/B,— 3 (V:,+VZ BB,

n,m

-2 3 B/B}B,B, , (M
n

where fiw, is the molecular excitation energy and B: (B,)
are the corresponding creation (annihilation) Bose opera-
tors (only one molecule per unit cell and only one vibra-
tional mode of the molecule are taken into account).
Vom=Vu, and V5 =—V;: are the symmetric and an-
tisymmetric parts of the matrix elements of the inter-
molecular interaction operator. V,, characterizes the
resonant dipole-dipole interaction between the molecules
n and m, while V72 as associated with the dipole-
quadrupole interaction which is different for intermolecu-
lar exchange of left and right circularly polarized excita-
tions.?”»?® Tt is the nonvanishing V2%, which causes the
optical activity of the system. A is the quartic anhar-
monicity constant. The terms associated with the cubic
anharmonicity do not conserve the number of particles
and their contribution to the energy of narrow-band exci-
tations is negligible. The nonlinear interaction between
left and right circularly polarized excitations has also
been neglected.

For moderate intensities and low exciton concentra-
tions the exciton-photon interaction can be considered to
be linear in both the exciton operators and the electric
field. The Hamiltonian of this interaction can be de-
scribed in a semiclassical way by

Hyn,=—d3 (BEf+B,E; ), 2)

where d is the dipole moment matrix element for the
transition from the ground state to the excited state of
the molecule and E,} (E, ) is the positive (negative) -fre-
quency part of the macroscopic electric field. The latter
is related to the macroscopic polarization of the medium
through Maxwell’s wave equation which can be
represented as

+ 4wd azBII
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where c is the velocity of light and a is the lattice con-
stant.
The equation of motion for the operator B, yields

iﬁ—aa;B,, =#w,B, — 3 (Vi + V% )B,,— AB}B,B,

—dE,} . 4)
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The quantities V;,, and V,,, depend in general on the
molecule displacements from the equilibrium positions
but in what follows we shall consider fixed molecules
only, thus neglecting the influence of lattice phonons on
the properties of polariton solitons.

In writing the interaction term (2) we have assumed
that the number of the excitons Ny is small compared
with the total number of the molecules N in the crystal
(Ng <<N). Now we shall take into account that a macro-
scopic number of exciton states are occupied (N >>1).
Apparently, as N ~10%, the inequality 1<<Np<<N
holds for a wide range of exciton concentrations.

We can calculate the average exciton amplitudes using
a wave function of the form

1BY=T118.) , B.|B.,)=B,IB,) , (5)

where IB,, ) are Glauber’s coherent states.?’ Turning to a
continuum approximation which is valid for excitations
localized in a region L much larger than the lattice con-
stant, the following equation for the complex wave ampli-
tudes B(x,?) is readily obtained:

] %= — 2__823__- 9B _ 20 g+
i# ” #iw,B—Va e iyay A|BI*B—dE™T , (6)
where
1 S| ’ ’
ﬁa)1=ﬁw0—-;fV(x —x")dx", (7a)
V=#fV‘(x —x")(x —x")dx’ (7b)
a
i Z%fVas(x —x'Nx—x")dx' . (7¢)
a

The coefficient V is related to the exciton effective mass
m., =#/(2Va?) (8)

and v is the gyration constant.

An equation similar to (6) can be obtained for molecu-
lar electronic excitons, in which case 4 has to be
identified with the sum of the dynamic and the kinematic
exciton-exciton interaction, the latter emerging from the
nonboson character of the electronic excitons.

We shall consider the case of a weak phase modulation
and look for solutions in the form of amplitude-
modulated waves:

ﬁ(x’t):ei(kx~wt)¢(§) ,

) 9)
E+(x,t)=e‘lkX7m”6(§) , §-=—x—vt ,

where the amplitudes ¢ and & are real slowly varying
functions of position and time and v is the velocity of the
solitary wave.

With the help of (9) Egs. (6) and (3) are transformed
into

_"iqi_.__ﬁ_éz_ﬂ_.i‘; 3_1(5’:0 ,
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where
fiw, =#w,+ V(ak)?+yak ,
b,=a(y+2Vak)/# .

(12)

From (10) and (11) the following equation for ¢ is ob-
tained:

92 A . 3
Xk¢’_Mk‘(:)_§%"7¢3‘-l(Pk—-Qk<p2)5§=0, (13)
where
_ Qowz
Xk —wk—w—m ’ (14a)
M, =aX V+W)/#, (14b)

W=[2(c*k —awv)(b, —v)+(c2—v* )0, —)

—Qu?)(ck?—w?) " H/a?, (14c)

P, =(by—v)+[2(c*k — v )0, —o)
—2Qq0v J(c2k2—?) 7!, (14d)
0, =64(c*k —wv)(ck?>—w?)" /%, (14e)
Qo=4mrd?/#a’ . (14f)

The coefficients (14) are complicated functions of the
frequency and the wave vector. The expression for M,
derived in Ref. 13 corresponds to the first term in the
square brackets in (14c) for y =0. Thus the results in
Ref. 13 are valid in the resonance region only (w=w,
k =w;/c) while our expression holds in a much wider
range of frequencies and wave vectors.

Equation (13) decomposes into two equations for the
real and the imaginary parts: Neglecting the term Q, ¢?
in comparison to P, we get

9?2 A
Xk¢_Mk?§%—?(P3=O , (15)
P, =0. (16)

These are the basic equations which describe the prop-
agation of pulses of coupled nonlinear excitons and pho-
tons.

III. SOLITON SOLUTIONS

The form of the solution of the nonlinear equation (15)
depends on the sign of the ratio M;/A4. When
M, /A >0 Eq. (15) has the well-known hyperbolic-secant
solution

@(x,t)=@gsech[(x —vt)/L], 17

which corresponds to a bell-type envelope function with
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an amplitude ¢, and a spatial width 2L. The substitution
of (17) in (15) leads to two algebraic equations, which to-
gether with (16) give a set of three equations for the five
quantities o, k, v, L, and @

A(pé Qow2 _
Ok T g =0, (18a)
L*=2M,#/A¢}, (18b)
2¢%k (0, — o)+ (c2k*—0?)b,
= (18¢)

' dolop —o+ Q)+ (cki—a?)

It is convenient to choose the wave vector or the frequen-
cy as an independent variable and one of the other three
unknown quantities (v, L, or @) as an external parameter.
For solitons having a fixed amplitude ¢, Eq. (18a) gives
the dispersion relation of the carrier wave. This is the
well-known dispersion relation for polaritons, in which
the exciton frequency w; contains a nonlinear shift
A@}/2#. The velocity v of the soliton can be obtained
from (18c); and the width L, from (18b). In all other
cases (solitons with a fixed spatial or temporal width or a
fixed exciton number) Egs. (18a)-(18c) have to be solved
simultaneously.

When M, / A <0 Eq. (15) has a solution with the shape
of a kink

@(x,t)=g@ptanh[(x —vt)/L] . (19)

The amplitude @(x,?) of the kind has a finite value at
infinity

lp(x,t)] ——@p>0, asx—tco . (20)

As the exciton density is proportional to @? kink-type
solutions correspond to a region with a decreased exciton
density (dark soliton), while bell-type solutions corre-
spond to a region with an increased exciton density
(bright soliton).

In the case of kinks, Egs. (15) and (16) lead to

A(pé Qow2
W= T TR =0, (21a)
L?>=—-2M,#/A¢}, (21b)

_ 2k — @)+ (k2 — )by
T el —ot Q)+ (cki—a?)

(21c)

The nonlinear terms in (18a) and (21a) are usually small
compared to all other terms and the dispersion curve
(k) of the carrier wave for both bell- and kink-type soli-
tons practically coincides with the dispersion curve of the
linear polaritons (Fig. 1). It consists of a lower and an
upper branch, separated in the resonance region by a gap
of the order of ). In some cases however, as we shall see
below, the nonlinear terms may become large which leads
to considerable changes in the dispersion curves.

The conditions for a slowly varying envelope function
are

|d@/ox | <<k, |3p/dt| <<wp . (22a)
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FIG. 1. Polariton dispersion curves for ¥y =0 and V' =0. 1#iw,
(solid line) or V= —0.1%iw, (dashed line). ky=wy/c and
Aw=w—wo, [note that w, is different for ¥ >0 and ¥ <0, Eq.
(N].

Taking into account that |d¢p/dx|~1/L and
[d¢/dt| ~1/T where T=L /v is the temporal width of
the soliton, the conditions (22a) turn into

L>A and T>71, (22b)

where A=2m/k and 7=27 /o are the wavelength and the
period of the carrier wave. For frequencies far from the
exciton resonance, A(w) approaches the wavelength of
light and the solitons are of an optical type. In the large
wave-vector region of the lower branch A <<c¢/w, and the
soliton’s spatial width L may become of the order or even
smaller than the corresponding wavelength of light but
still (22) may hold. These solitons are of a mechanical
type and their properties are similar to the properties of
exciton solitary waves.’®3! In the resonance region
(w~w, and k ~w,/c) the solitons are of a mixed polari-
ton type.

It is important to note, that there are two types of
transport mechanisms in the system under consideration.
One is associated with the propagation of the electromag-
netic wave and the exciton-photon coupling and the other
with the intermolecular interaction and the delocalization
of the excitons. These two mechanisms lead to charac-
teristic spatial dispersion effects in the polariton spectra
and in the properties of the corresponding solitary waves.

As mentioned above, the type of the solution depends
on the sign of the ratio M, /A. The coefficient M,
[(13)-(15)] plays the role of an inverse effective mass of
the polariton and contains contributions from both the
polariton and the exciton dispersion. On the photonlike
parts of the dispersion curves and in the resonance region
the polariton-type dispersion dominates |W|>>|V| and
M, is negative on the lower branch (k > w/c) and positive
on the upper one (k <w/c). Hence for 4 >0, kink-type
solutions are possible on the lower branch and bell-type
solutions on the upper one. For A4 <0 the solutions
change places.

For large values of the wave vector on the lower
branch the exciton-type dispersion dominates and the
quantity M, reduces to Va?/#. The type of the solution
in this region is governed by the sign of ¥/ A4 and bell-
type solutions exist for ¥/ A >0, while kink-type solu-
tions exist for ¥/ A <0. Usually 4 is positive and corre-
sponds to exciton attraction, while V is positive for elec-
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tronic excitons and negative for vibrational excitons (op-
tical phonons).

The competition between the two dispersion mecha-
nisms may lead to a change of the type of the solution
along one and the same polariton branch when W and V
have different signs. On the lower branch | W| decreases
with the increase of the wave vector and when V>0 the
coefficient M, changes sign at a critical value k. of the
wave vector. Thus for 4 >0, kink solutions exist in the
region k <k, and bell solutions in the region k > k.. For
A <0 the solutions on the lower branch change places.
A similar spatial dispersion effect (although with a
different nature) has been obtained for surface polariton
solitons in layered systems by Boardman er al.?* At the
critical point, M, goes through zero, the polariton
effective mass (~M, ) becomes infinite, and soliton solu-
tions do not exist. In the close vicinity of k., as we shall
see in the next section, a critical behavior of the soliton
parameters is observed.

The polariton-type dispersion usually dominates along
the whole upper branch and a change of the solution may
occur only for ¥V <0 and very weak exciton-photon cou-
pling (%Q,/|V|<1073). When the sign of V coincides
with the sign of W, the type of the solution does not
change along the corresponding polariton branch and no
critical behavior of the soliton parameters is to be expect-
ed.

IV. NUMERICAL RESULTS

A. Fixed amplitude solutions

In this part we present the results of numerical calcula-
tions of the parameters of solitons with a fixed amplitude
@,=1073. The other parameters have been given the
values A4 =10.01%w, Q,=0.0lw, and V==0.1%w,,
where #iw, is the molecular excitation energy. These
values are appropriate to both vibrational and electronic
excitons.?* The lattice constant is chosen a=10"kg ",
where ky=w,/c is the wave vector of light at resonance
with the molecular excitation.

The dispersion curves for the carrier wave are shown
in Fig. 2. For the chosen value of the amplitude, the non-
linear term in the dispersion equation is very small and
the dispersion curves for bells with 4 <0 and for kinks
with A4 >0 practically coincide. The type of solution on
the upper branch and on the small wave-vector part of
the lower branch (k < k_) depends exclusively on the sign
of A. The type of solution on the large wave-vector part
of the lower branch (k > k_) depends also on the sign of
V. Thus for 4 <0 and V >0 a transition from a bell- to a
kink-type solution takes place at k,=~21k,, while for
A <0 and V <0 the whole lower branch corresponds to a
kink-type solution. For A4 >0 the bell- and kink-type
solutions change places. As in Ref. 13, only the reso-
nance region k =, /c has been investigated; such a criti-
cal behavior has not been obtained.

The presence of gyrotropy (Fig. 2, dashed curves) leads
to a characteristic linear in k dependence of the lower po-
lariton branch frequency in the region 5=k /k, =100,
where y is positive or negative for right or left circular
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FIG. 2. Dispersion curves of the carrier wave of fixed ampli-
tude solitons with V'=0.1%iw, and ¥ =0 (solid line), y =0.2%w,
(long-dashed line), or y = —0.2%iw, (short-dashed line).

polarization, respectively. The type of the solution
changes in the same manner along the lower branch and
the gyrotropy changes the frequency of the transition but
not the critical value k. of the wave vector. It might
seem curious that, although the effect of the finite exciton
effective mass on the polariton spectrum in this region is
negligible (k2a?~107%), it should play such a crucial role
for the properties of polariton solitons. This behavior
can be understood if we take into account that the
coefficient M, is essentially the second derivative of the
dispersion relation (M, ~d’w/dk?) and the linear term
vka in the exciton energy gives negligible contribution.
The type of the solution changes at the inflex point of the
dispersion curve where the curvature changes sign.

The velocity of the solitons (Fig. 3) is close to the
group velocity of the corresponding linear polaritons
(v~dw/dk). On the lower branch, it decreases rapidly
with the increase of the wave vector and for ¥ >0 has a
shallow minimum at k =k,. The presence of gyrotropy
changes the large wave-vector values to v~vya/A. It is
interesting to note, that for ¥ <0 as well as for ¥ <0 the
velocity may become negative and the soliton will move
in a direction opposite to this of the carrier wave.

The relative width of the soliton L /A is shown in Fig.
4. For V>0 (solid curves) when a change of the type of
the solution along the lower branch takes place, L /A ex-
hibits a critical behavior with a narrow deep minimum at
k=k,. In the close vicinity of the minimum L becomes
of the order of the wavelength A of the carrier wave and
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FIG. 3. Soliton velocity for ¥=0. 1#iwy and y =0 (solid line)

or y=0.2%iw, (dashed line). The curve for k/k,<1 corre-
sponds to the upper polariton branch.

Wave Vector k/k,

FIG. 4. Relative spatial widths of the solitons for V' <0
(dashed curve) and for ¥ >0 (solid curves); curve 1: ¥=0. 1%,
and Q,=0.017%w,, curve 2: ¥=0.05%w, and Q,=0.01%w,, and
curve 3: ¥=0. 1#w, and Q,=0.05%w,.

the assumption of slowly varying amplitudes (22) fails.
As could be expected, a decrease of V (curve 2) or an in-
crease of ), (curve 3) leads to an increase of k.. For
¥V <0 no change of the type of the solution takes place
and the soliton width is a smooth function (dashed
curve). The soliton width corresponding to the upper
branch has a maximum in the resonance region.

We would like to point out, that the change of the type
of the soliton and the critical behavior of its parameters
take place in a region which is accessible in optical exper-
iments like stimulated Raman scattering and frequency
mixing.

B. Fixed spatial-width solutions

Equations (18a) and (18b) describing bell-type solitons
may be rearranged in the following way:

Qo0 M,
wk—w—m—F—O ’ (23a)
pt=2M,#i/AL? (23b)

while these for kinks (21a) and (21b) change into

Qoo k _

0 — 0 ko2 +2F— s (24a)
@3=—2M,#/AL? . (24b)

For sufficiently long solitons (L >>10%k !), the nonlinear
terms in (23a) and (24a) give negligible contribution in the
dispersion curves of the carrier waves. The conditions
for the existence of bell- and kink-type solitons is the
same as for fixed amplitude solitons and the change of the
sign of M, leads to a change of the type of the solution at
a critical value k_ of the wave vector which is close to the
corresponding value for the fixed-amplitude case. The
dependence of the amplitude of the soliton on the wave
vector (Fig. 5) has a critical behavior for ¥ >0 (solid
curve) and changes in a monotonous way for V<O
(dashed curve).
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FIG. 5. Amplitude of fixed spatial-width solitons with y =0
and V > 0 (solid curve) or ¥ <0 (dashed curve).

C. Fixed temporal-width solutions

Solutions with a given temporal-width T have been in-
vestigated by Goll and Haken."> For short pulses they
obtain a dispersion curve of the carrier wave which con-
sists of two polaritonlike branches, a backbent branch
with anomalous dispersion and an excitonlike branch.
For long enough pulses only the two polariton branches
remain.

Our results for fixed temporal-width solitons are con-
sistent with these in Ref. 15. We calculated the disper-
sion curve of the carrier wave, the velocity, and the am-
plitude of the solitons using (18c), (21c), (23a), (23b),
(24a), and (24b) and taking into account that L =Tv. For
short pulses (7=10000w, !, Fig. 6) the dispersion curves
for bell- and kink-type solutions differ considerably. In
the case of bells (solid curve), the lower polariton branch
exhibits a backbending at k =6k, and the excitonlike
branch has a weak dispersion. The solutions with
k <21k, correspond to 4 <0 and those with k > 21k, to
A >0. For kink-type solutions (dashed curve) the back-
bending of the lower polariton branch takes place at
k =24k, and the excitonlike branch shows a stronger
dispersion. The polaritonlike and the backbent branches
correspond to 4 >0, while the excitonlike branch corre-
sponds to A4 <O0. For long enough pulses
(T'>100000w;, ') the backbent and the excitonlike
branches disappear and the dispersion curve contains
only the two polariton branches. It is interesting to note

o
P

Frequency Aw/0
o
o

|
©
o
o

10 20 30 40
Wave Vector k/k,

FIG. 6. Dispersion curves for the carrier waves of solitons
with a temporal width T=10000w; ', ¥ =0.1#w,, and y=0.
Solid curves — bell solutions, dashed curves—kink solutions.

FIG. 7. Frequency dependence of the relative spatial width
for the values used in Fig. 6. Solid curves—bell solutions,
dashed curves—Kkink solutions.

that we did not obtain a backbending of the dispersion
curve in the case of solitons with fixed short spatial
widths (L <A).

We would like to point out that, due to the dramatic
decrease of the soliton velocity away from the lightline
w=kc, the soliton spatial-width on the backbending part
of the dispersion curve and on the lower-frequency part
of the excitonlike branch becomes smaller than the wave-
length of the carrier wave (Fig. 7). The assumption for
slowly varying in space amplitude fails in these regions
and the corresponding solutions may not be valid. Reli-
able short-width solutions can be obtained outside the
slowly varying amplitudes approximation (22) if the
higher derivatives in Eq. (13) are taken into account. Un-
fortunately, the corresponding nonlinear equation can be
solved only numerically. The short pulses investigated in
Ref. 15 have a temporal width of the order of 10°w; ! and
they correspond to solitons with very short relative spa-
tial widths (L /A <1) in the resonance region w=wy.
Our calculations show, that the presence of gyrotropy
(y50) increases the absolute value of the velocity and the
spatial width of the solitons and in such a way improves
the conditions for the existence of solutions with slowly
varying amplitudes.

It might be interesting to note that a similar backbend-
ing of the dispersion curve w(k) of spatially damped
linear polaritons has been discussed in Ref. 32 and is
shown to have a dubious physical meaning. The polari-
ton response functions derived in Refs. 32—-35 show no
traces of such a backbending.

D. Fixed exciton-number solutions

We can consider (at least in principle) solutions corre-
sponding to a fixed exciton number Np. The exciton am-
plitude in this case has to be normalized as

ko [ 7 @*x,dx =2¢3Lko=Ny /N , (25a)
for bells and
ko [ 7 [@3—¢*x,0))dx =2¢3Lko=Ng/N  (25b)

for kinks, where N is the total number of molecules in the
crystal. Equations (25) are similar to the condition for a
fixed area under the envelope function and provide an ad-
ditional relation between the amplitude and the spatial
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width of the solitons, which together with (18b) or (21b)
allow for both @y and L to be determined as functions of
the wave vector for a given exciton number. For small
enough number of the excitons (Nz <10™*N) the spatial
width of the solitons is large compared with the wave-
length of the carrier wave and the dispersion curves for
bells and kinks practically coincide. For ¥ >0 there is a
change of the type of the solution at a critical point k. on
the lower polariton branch and a corresponding critical
behavior of both the soliton width and amplitude (Fig. 8,
solid curves). The spatial width of the soliton (curve 1)
exhibits a minimum for k =k_, while the amplitude @,
has a maximum (curve 2). For V <0 there is no change
of the type of the solution and hence no critical behavior
of the soliton parameters (dashed curves).

V. CONCLUSION

We have investigated the effects of the polariton- and
the exciton-type dispersion on the properties of polariton
solitary waves. We have shown that the competition be-
tween the two dispersion mechanisms in the case of exci-
tons with a positive effective mass leads to a change from
a bell- to a kink-type solution or vice versa at a critical
point on the lower polariton branch. The critical wave
vector depends on the exciton effective mass and the
exciton-photon coupling constant, but not on the gyra-
tion constant. The change of the type of the solution is
accompanied by a critical behavior of some soliton pa-
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FIG. 8. Normalized spatial width (curves 1) and squared am-
plitude (curves 2) of solitons with a fixed exciton number. Solid
lines— ¥V >0, dashed lines— ¥V <0.

rameters such as the width or the amplitude. An en-
couraging feature of this dispersion-induced critical be-
havior is that it takes place in a region which is accessible
for optical experiments.
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