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Electron-correlation effects in one-dimensional large-bipolaron formation
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We study the effects of electron correlation on the ground state of a one-dimensional large singlet bi-

polaron. The electron-lattice interaction is taken to be the short-range interaction of Holstein s

molecular-crystal model. We represent the Coulomb repulsion with the Hubbard short-range repulsion.
This adoption of the Hubbard model is equivalent to replacing a strict one-dimensional system that has a
short-range logarithmic divergence of the Coulomb repulsion energy between overlapping charges, with

a quasi-one-dimensional system of finite width. Two types of electronic correlation are considered.
With "in-out" correlation, we permit one of the two self-trapped carriers of bipolaron to have a larger
radius than the other. With "left-right" correlation, we permit the centroids of the self-trapped carriers
to be displaced from one another. For both types of correlation, variational calculations are performed
to determine the magnitudes of the correlation effects in the ground state. There are three parameters in

the model: the electronic bandwidth parameter t, the electron-lattice coupling strength Eb, and the

Hubbard repulsion, V, . The electron-lattice interaction provides an indirect intercarrier attraction that
fosters the coalescence of the two carriers. In opposition, the carriers Coulomb repulsion and the kinet-

ic energy required for carrier confinement foster the carriers spreading. With bipolaron formation the in-

tercarrier attraction dominates the Coulomb repulsion. The electron-correlation effect on the
bipolaron s binding depends explicitly on only V, /Eb. The electron correlation also depends on the

shape of the local functions presumed in the variational calculations. Of course, the effects of electron
correlation on the bipolaron's ground state increase as the Coulomb repulsion between the carriers is in-

creased. Strikingly, we also find that the dependence of the confinement energy on electronic correlation
is critical to promoting electronic correlation in the bipolaron's ground state. This feature is discussed
in detail. At a maximum ratio of V, /Eb for which we have stable bipolarons, we find that electronic
correlation can lower the ground-state energy of our bipolaron by up to 30%.

I. INTRODUCTION

A carrier is said to be self-trapped when it is bound
within a potential well produced by displacements of the
equilibrium positions of a solid's atoms from their
carrier-free values. In the process of self-trapping the
lowering of the carrier s energy due to its binding over-
comes the strain energy required to displace atoms from
their carrier-free equilibrium positions. Thus, with self-

trapping the formation of the potential well in which the
carrier is bound is stabilized by the carrier's occupation
of a bound state. The quasiparticle comprising a self-

trapped carrier and the associated atomic displacements
is termed a polaron.

A bipolaron is formed when two carriers are self-

trapped within a common potential well. Bipolaron for-
mation can occur because the net electron-lattice interac-
tion, the driving force that stabilizes the atomic displace-
ments, increases as the number of carriers at a common
site is increased. By itself this effect leads to a deepening
of the self-trapping potential well as the number of car-
riers self-trapped within the well is increased. As a re-
sult, the deformation-related potential energy of each of
the two carriers is lowered. Since this effect lowers the
energy per carrier of each of the two self-trapped car-

riers, it fosters the coalescing of self-trapped carriers into
a common potential well. Of course this driving force for
merger of self-trapped carriers is opposed by the
Coulomb repulsion between the carriers. Nonetheless, if
the electron-lattice interaction is sufficiently strong com-
pared with the Coulomb repulsion, two carriers will be
bound in a common well, thereby forming a bipolaron.
As illustrated by curve a in Fig. 1, if the energy of the bi-

0-

Two
pg)gl ons

Qc
UJ

0

FIG. 1. The energy of two self-trapped carriers is plotted as a
function of their separation, 5, divided by their characteristic
size, L. In curve a, the bipolaron is stable with respect to disso-

ciation into two separate polarons. In curve b, the bipolaron is

unstable with respect to dissociation into two separate polarons.
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polaron is lower than that of two separate polarons, the
bipolaron will be stable with respect to dissociation. Al-
ternatively, as curve b of Fig. 1 illustrates, a bipolaron
will be unstable with respect to forming two separate po-
larons.

Since each of the self-trapped carriers of a bipolaron is
a fermion, it is generally favorable for the self-trapped
carriers to pair as a singlet in the lowest level of the self-
trapping potential well rather than as a triplet with one of
the carriers being promoted to an excited level of the
self-trapping potential. Furthermore, the Pauli principle
also ensures that excited states of the self-trapping poten-
tial well must be occupied if more than two carriers share
a common potential well. ' This effect reduces the ener-
getic favorability of carriers coalescing in units larger
than pairs. In other words, this effect impedes the coales-
cence of polarons and bipolarons into grander polarons.
Thus, we only consider the formation of singlet bipola-
rons.

There are two distinct types of polaron and bipolaron.
If the self-trapped state is confined to a single site, the po-
laron or bipolaron is referred to as small. For example,
the small polaron formed by a hole in KC1, also called a
V~ center, is associated with a bonding state centered be-
tween two Cl ions. If the self-trapped state extends over
multiple sites, the polaron is referred to as large. For ex-
ample, the large polarons formed by electrons in alkali
halides have radii that are estimated to be between 5 and
10 A.

Interest in the formation of both large and small bipo-
larons has been spurred by evidence that carriers in some
systems (l) have a charge of magnitude twice that of an
electron, and (2) lack a spin degree of freedom. ' The
question of bipolaron formation in ionic solids is also cen-
tral to the question of superconductivity in these systems
since the collectiue ground state of interacting mobile bi-
polarons superconducts. '

The formation of polarons and bipolarons involves a
feedback mechanism. That is, self-trapping is a nonlinear
phenomenon. In particular, the depth and steepness of
the stabilized self-trapping potential well increases as the
severity of the carriers localization is increased. Howev-
er, the severity of the carriers localization increases as
the self-trapping potential well is deepened. As a result
of this feedback mechanism, two distinct types of polaron
solution are found. These two types of solution corre-
spond to the formation of polarons and bipolarons that
are small or large, respectively. A small polaron or bipo-
laron is formed when the carriers' energy falls monotoni-
cally as the carriers' spatial extent is reduced. ' The
self-trapped state of a small polaron or bipolaron is that
for which the carrier or carriers collapse to the smallest
size compatible with atomicity, a single site (an atom or a
bond). A large polaron or bipolaron forms when the size
of a self-trapped state is determined by a competition be-
tween (l) the lowering of the carriers' potential energy
that accompanies increased localization, and (2) the in-
crease of the carriers' energy arising from carrier
confinement. '

Whether the polarons or bipolarons formed in a three-
dimensional system are large or small depends on the

range of the predominant electron-lattice interaction. '

In particular, a strong long-range electron-lattice interac-
tion results from the Coulomb interactions of charge car-
riers with the cations and anions of an ionic solid. In ad-
dition, a short-range electron-lattice interaction (i.e., like
the deformation-potential interaction) results even in co-
valent systems from the dependence of a carrier's energy
on the interatomic separation. When the long-range in-
teraction predominates, finite-size (large) polarons or bi-
polarons generally form. However, if the short-range in-
teraction is dominant, carriers either do not self-trap or
self-trap as small polarons or bipolarons. '

Resolving the issue of whether polarons and bipolarons
are large or small also depends critically on the dimen-
sionality of the electronic system. ' In particular, in
one-dimensional electronic systems with only short-range
electron-lattice interactions (like idealized polymer
chains) carriers generally form large polarons or bipola-
rons. Thus, large polaronic states form in ionic three-
dimensional systems and in covalent one-dimensional sys-
tems. In fact, at least within the adiabatic approach, the
problem of polaron formation in a one-dimensional sys-
tem with a short-range electron-lattice interaction is iso-
m orphic to that of polaron formation in a three-
dimensional system with the long-range Frohlich
electron-lattice interaction.

This paper addresses the role of electronic correlation
in the formation of a large singlet bipolaron. Electron
correlation effects occur in bipolaron formation when the
interactions between the two carriers causes the presence
of one carrier to alter the wave function of the other.
Here, we specifically study large bipolaron formation in a
one-dimensional system. In individual atoms correlation
effects arise from the (direct) Coulomb interactions be-
tween charged particles. However, in condensed matter
with bipolaron formation, correlation effects are also pro-
duced by the indirect interaction between electronic car-
riers that arises from their mutual interaction with atom-
ic displacements. Electron correlation depends on three
different tendencies. First, the atomic displacement-
induced potential well that binds the self-trapped carriers
is deepened as the net charge density of the carriers in-
creases. Second, the (kinetic) energy associated with the
confinement of a bound pair of carriers can be lowered by
reducing their electronic overlap with one another.
Third, the Coulomb repulsion between two carriers
confined within a common well favors keeping the two
electronic carriers of a bipolaron apart from each other.
That is, their confinement energy and their Coulomb
repulsion tends to reduce the carriers' overlap with one
another while the electron-lattice interaction favors their
merger. Thus, we ask if and how electron correlation
manifests itself in the electronic state of a one-
dimensional large singlet bipolaron.

The role of electronic correlation in bipolaron forma-
tion was broached previously in studying the ground
state of a small bipolaron in a three-dimensional system
with a short-range electron-lattice interaction. In that
system carriers either remain free or self-trap as small po-
larons or small bipolarons. In our one-dimensional sys-
tem, carriers either form large polarons or large bipola-
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rons. Thus, we are addressing the question of electron
correlation for a different type of bipolaron than that
studied previously. In addition, our treatment of correla-
tion, contained in our choice of variational wave func-
tion, differs from that of the earlier study.

We calculate the effects of electron correlation for a
one-dimensional large bipolaron. We minimize the ener-

gy of a one-dimensional singlet large bipolaron within a
model in which the self-trapped carriers are given the
freedom to be correlated. We consider the "in-out-type"
correlation analogous to that used to describe correlated
motion of the two electrons in the ground state of a heli-
um atom. Namely, we construct a trial wave function
for the self-trapped carriers of a singlet bipolaron in
which one carrier can move away from the core of the
self-trapping potential when the other moves closer to the
potential's core. "Left-right-type" correlation is also
considered. In left-right correlation one of the carriers
moves to the left of the core of the self-trapping potential
when the other carrier is to the right of the core of the
self-trapping potential. For each type of correlation, we
determine the magnitude of this electronic correlation in
a variationally determined ground state of a singlet large
bipolaron.

We perform our variational calculations with different
functional forms being presumed for the ground-state
wave function of the self-trapped carriers. As expected,
the presence of the direct Coulomb repulsion between
electronic carriers is necessary for correlation effects to
be present. However, in all cases the dependence of the
confinement energy on electronic correlation is also criti-
cal to promoting electronic correlation in the bipolaron's
ground state. In other words, we would find no correla-
tion effects if we were to ignore this kinetic-energy effect.
Thus, although correlation effects generally increase with
the strength of the Coulomb repulsion, correlation effects
should not be viewed as solely caused by the Coulomb
repulsion between charges.

In Sec. II we present the formalism we use to address
polaron and bipolaron formation in a deformable contin-
uum within the adiabatic approximation. In Sec. III, an-
alytic variational calculations are presented. The results
of numerical calculations are described in Sec. IV. Final-
ly, the meaning of our studies is summarized in Sec. V.

II. FORMALISM

To address polar on formation, we determine the
ground state of an electron in a deformable continuum
within the adiabatic approximation. To study bipolaron
formation within the same spirit, we calculate the ground
state of a singlet pair of electrons within a deformable
medium within the adiabatic approximation. Employing
the adiabatic approach means that we presume that the
electrons may be regarded as always adjusting to the in-
stantaneous configuration of the deformable continuum.

In the adiabatic approach the potential energy of the
deformable continuum is the sum of the vibrational po-
tential energy in the absence of charge carriers plus the
electronic energy: V,d

= V„;b+E, . The ground-state

configuration is that for which the net potential energy is
a minimum.

A. Formation of a one-dimensional large polaron

E„=tf dx FJ d—xi/(x)i'h(x) . (2)

The vibrational potential energy for the configuration of
the deformed chain corresponding to the self-trapped
state is

V„;b=(k/2) f dx 6 (x),

where k is the stiffness constant of the deformable strand.
In the ground state the total adiabatic potential energy,
E, + V„;b, is at its minimum with respect to changes of
the deformation, b,(x). Minimizing the total adiabatic
energy with respect to deformation, the displacement pat-
tern corresponding to the ground state of the polaron is
found to be

Fly«)l'
k

The adiabatic energy of the ground state is therefore

E1g =t dx Eb dx x (5)

where Eb =F /2k. —
We now employ the Emin-Holstein (EH) scaling argu-

ment. Specifically, we note that since P(x ) is the
ground-state wave function, any alteration of P(x) must
necessarily increase the ground-state energy. In particu-
lar, the energy of the system must rise if the scale of P(x)
is altered by a dimensionless factor L:
P(x)~&l/L P(x/L), where the presence of the prefac-
tor preserves the wave function's normalization. There-
fore, we may obtain an expression for the ground-state
energy by (i) introducing this scale transformation in Eq.
(5), and (ii) minimizing the resulting expression with
respect to I.. Carrying out this two-step procedure with
Eq. (5), we first obtain

E, , =c,t/I. —c2Eb/L,

where two dimensionless constants have been defined:

The Hamiltonian for a carrier in a one-dimensional de-
formable chain whose linear coordinate x is expressed in
units of the lattice constant is

a'
H = t — Fb(x—)e1

g 2 7

where t is the electronic transfer energy (a constant) asso-
ciated with the carrier's effective mass along the linear
chain, b, (x ) is the deformation of the chain at x, and F is
the force (a constant) between the deformed chain and
the excess electron. Taking this interaction to be local
means that we are presuming a short-range electron-
chain interaction. With the ground-state wave function
of the self-trapped electron being written as P(x), the
electronic energy is
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BP(x}
ci = dx (7a}

trapped carriers being written as y(x &,x& ), the electronic
energy is

and

c2 —=fdxi/(x)i (7b) E,2=t f fdx, dx~

2 2 '

By(x„x2) By(x„x2)+
Bx) BX2

Minimizing Eq. (6) with respect to L yields

Eis, = —[(c2) /4c&][(Eb) /t] .

Holstein has solved the one-dimensional adiabatic pola-
ron problem exactly in the continuum limit we are con-
sidering. He obtains

F—f f dx&dx&~y(x&, x&) ~ [b(x&)+b(x&)]

+f fdx, dx2V, 5(x) —x2)~y(x), xp)~' . (10)

P(x) =QEb/4t sech[(Eb/2t)(x —xo)],
where xo is the centroid of the large polaron. With this
wave function one finds that (c2) /c, =

—,'. We shall com-
pare results of our variational approaches with this exact
result.

To obtain the deformation pattern associated with the
ground state, we minimize the sum of the electronic ener-

gy of Eq. (10) and the strain energy of Eq. (3) to obtain

~(x)=—f d», ly(x&, x)l'+ f dx2ly(x, x2)l'F '

B. Formation of a one-dimensional large biyolaron

With two polaronic carriers in our one-dimensional de-
formable medium, we consider the electronic Hamiltoni-
an to be

B2 B2
H, 2= t —+ F[b (x, )+6—(x2 ) ]

Bx ) Bx2

+ V, 5(x, —xz) .

Here x, and x2 are the positions of the two carriers and
we represent the Coulomb interaction by a short-range
Hubbard-type repulsion between the carriers. The
electron-lattice interaction constant F and the electronic
transfer energy t are both assumed to be unaltered by the
presence of a second carrier.

The choice of a Hubbard-type Coulomb repulsion ener-

gy deserves some comment. In particular, since
quantum-mechanical particles always have some overlap
with one another, the integrand of the actual Coulomb
repulsion energy between two overlapping charges in a
strict one-dimensional system always has a nonintegrable
(logarithmic) divergence at zero interparticle separation.
That is, the Coulomb repulsion energy between the
charged particles of a bipolaron always diverges for a
strict one-dimensional system. For a quasi-one-
dimensional system, a deformable strand of finite width,
the Coulomb energy diverges as the system's width nar-
rows to approach that of a strict one-dimensional system.
In other words, as a system approaches one-
dimensionality, the magnitude of the Coulomb interac-
tion is determined by the system s geometry and is ulti-
mately dominated by the short-range repulsion between
charged particles. For this reason, we model the
Coulomb repulsion of a quasi-one-dimensional system as
short ranged: V, 5(x& —x&), where V, is a constant and
5(x, —x2) is the Dirac 5 function.

With the ground-state wave function of the self-

f dx ) ~y(x ),x ) ~

where the indistinguishability of the two particles is uti-
lized. Inserting the equilibrium displacement function,
Eq. (11), into the expression for the electronic energy, Eq.
(10), and adding the strain energy of Eq. (3), we find the
total energy of the two-carrier ground state:

2
By(x, ,x2)E„,=2r f fdx, dx,

Bx )

r

4Eb f—dx, f dx2ly(x „x,) I'

+ V, f fdx, dx25(x, —x2)iy(x&, x2)i (12)

To proceed, the two-electron ground-state wave func-
tion is written in terms of one-electron functions in a
manner that incorporates correlation. That is, the spatial
extents or centroids of the two one-electron functions,
defined as 1(+(x) and g (x), are permitted to differ from
one another. With each of the one-electron functions be-
ing normalized, the normalized spatial factor of the two-
electron wave function for a singlet bipolaron is written
as

[4+(x»4-(x2 }+0-(x i 4'+(x~ }]y(x„xz}=
&2(1+IS I')

where

(13)

S—= dx + x * x (14)

The bipolaron's ground-state energy is then expressed in
terms of these one-electron functions by incorporating
Eq. (13}into Eq. (12):
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B@+(x) (x)
~X(1+~S(2)

~dx +2@
~+(x) By (x)

~X

E
(1+~S~')' Jdx~~@+(x)~'+~y „z

2P

&+(x)g (x)]'

C

(1+[g(~)
f"xlf+(x)['[@ (x (2

46
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(1+r ) 1+ 8r
2(1+r) r (1+r~)2

1 (1+r ) 1 2cz(r}—:
4

1+—+4r
t/2~ (1+r) r 1+r

'3/2 ' ' 1/2

+2
1+r

+8
1+r

' 1/2
r 1

(1+3r )' (3+r )'

(17a)

(17b)

and

c3(r)=2(1+r )' /&rr(1+r) (17c)

The coefflcients ci(r) and c2(r} are plotted in Figs. 3 and
4. For weak correlation, r —1 & 1, ci(r}=1 (r ——1)
+(r —1},and

cz(r) =4[1 (r ——1)/2+15(r —1) /32]/&2m .

In the strong-correlation limit, r~~, one finds that
c, ( Do )=—,

' and ct( oc ) = 1/~2m These. values of c, and

c2 are those of a solitary one-dimensional large polaron in
the Gaussian approximation. The ground-state energy of
this large polaron is proportional to (c2} /c, . With the
values of c

&
and c2 obtained in the Gaussian approxima-

tion at r = ac, (cz) /c, equals I/m, a value comparable to
that of Holstein's exact solution, —,'. It is also noted that
the coefficients c,(r) and ct(r) for the bipolaron (r =1)
and polaron (r = Dc ) are related in the customary
manner: ci(1)jc,(ec)=2 and c2(1)/c2(ec)=4. In addi-
tion, we note that

c3(r) = [1 (r —1)/2+5(r ——1) /8] jV 2m

for(r —1)«1 .

Ez, (r)= —[Ei,ct(r) V, c3(r)] /—4tc, (r) . (18)

To find the minimum of E2g, near r =1, we insert ex-
pansions of ci(r), cz(r), and c3(r) about r =1 into Eq.
(18}. To second order in (r —1), we find

Examining the dependence of ct(r) on r, we find that
the potential energy associated with self-trapping energy
rises as correlation is imposed. Of course, the Coulomb
repulsion energy falls with increased electronic correla-
tion. Combining these two potential-energy efFects
through second order in the (r —1) expansion, we find
that for sufficiently strong electron-lattice interaction
such that 4Eb& V„ the net potential energy rises as
correlation is imposed. By contrast, from the behavior of
c, (r) as r is increased from unity, we see that the imposi-
tion of electronic correlation reduces the confinement en-
ergy. Whether or not it is energetically favorable for a bi-
polaron to assume a correlated state depends upon
whether the correlation-related fall of the kinetic energy
overwhelms the rise of the net potential energy. We now
investigate this question.

Minimizing Ezs, of Eq. (16) with respect to L, we
find

E2 g. s.
(4Eb —V, } 1 (r —1)+—(r —1) (19—6V, /Eb)/4(4 —V, /Ez)

4t (2m) 1 —(r —1)+(r—1)2

(4Eb —V, ) („1}t 3—2 V, /Eb1+4t(2') 4 4—V, /Ei,
(19)

1.00

" 0.65-

0.35-
0 50 100

0.4 '

0 50 100

FIG. 3. Curve a is the confinement energy coeScient c&(r)
obtained with the Gaussian approximation plotted against the
in-out correlation parameter r. Curve b is a plot of 3c&(r)/2
against r obtained with the secant approximation.

FIG. 4. Curve a is the deformation energy coeScient c2(r)
obtained with the Gaussian approximation plotted against the
in-out correlation parameter r. Curve b is a plot of 3c2(r) iv 2m

against r obtained with the secant approximation. In this in-
stance, curves a and b are virtually identical.
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The correlation dependences of the potential-energy
terms provide the r dependence of the numerator of the
r-dependent fraction that follows the first equality of Eq.
(19). By itself, the correlation dependence of the
potential-energy terms gives a minimum at r =1, corre-
sponding to the absence of electronic correlation. The r
dependence of the confinement energy is contained in the
denominator of the r dependent fraction that follows the
first equality of Eq. (19). This factor fosters a minimum
at r & 1, corresponding to the presence of electronic
correlation. As indicated after the second equality of Eq.
(19), the r dependence of the confinement energy may be
sufficient to stabilize a correlated state. In particular, if
(3—2V, /Eb)/(4 —V, /Eb) &0, the minimum is at r & 1.
Further comments on this minimum are deferred to Sec.
IV where numerical results are presented.

A bipolaron's energy must be less than that of two
separate large polarons for the bipolaron to be stable:
E2s, (2E,s, . From Eq. (16) with r =~ and V, =O
one finds the energy of a large polaron to be

(Eb )'
Ei

2t(2m)
(20)

Thus, for example, a quasi-one-dimensional bipolaron at
r = 1 is stable when Eb & V, /2.

B. "Left-right" correlation: Gaussian approximation

t(t+(x)=(1/&n'L)' exp[ —(x+5) /2L ) .

Using these functions in Eq. (15), we find that

td, (5/L) Ebd2(5/L) V, d3(5/L)
E +2 g. s. L L

(21)

where

To consider left-right type correlation rather than in-
out-type correlation, we consider trial functions of the
form

d, (5/L)=1 2(5/L) II —exp[2(5/L) )+1),
2[1+2exp[ 4(5/L) —]+4exp[ —5(5/L) /2]+exp[ —2(5/L) ])

&2njl+exp. [ —2(5/L) ]]

(22a)

(22b)

and

d3(5/L) = 2

&2m [ 1+exp [2(5/L ) ] j
(22c)

E
(4Eb —V, )

4r (2m )

1 —[2(2—V, /EI, ) /(4 —V, /Eb ) ](5IL )

1 —(5/L)

(4Eb —V, ) V, /Eb
1+(5/L)

4t (2m. )
(23)

It should be noted that the kinetic-energy coefficient ap-
proaches unity both as 5/L approaches the value corre-
sponding to an uncorrelated large bipolaron, 5/L =0,
and as 5/L approaches the value corresponding to two
separate large polarons, 5/L = ~. Between these limits

d, (5/L) has a minimum. Thus, the confinement energy
is reduced as correlation is increased from zero: as 5/L
rises from zero. This kinetic-energy effect, by itself, tends
to foster correlation. With sufficiently strong electron-
lattice coupling, this tendency is opposed by the potential
energy, Specifically, if 2Eb & V, the potential energy rises
as 5/L is increased from zero. Again, to find out if elec-
tron correlation is favored energetically, we ask whether
or not the correlation-induced lowering of the kinetic en-

ergy exceeds the raising of the potential energy.
Minimizing Ez, of Eq. (21) with respect to L and ex-

panding about 5/L =0, we find that

The correlation dependences of the potential-energy
terms produce the (5/L) dependence of the numerator of
the (5/L)-dependent fraction that follows the first equali-
ty of Eq. (23). By itself, the correlation dependence of the
potential-energy terms favors a minimum at 5=0, corre-
sponding to the absence of electronic correlation. The
(5/L) dependence of the confinement energy is contained
in the denominator of the (5/L)-dependent fraction that
follows the first equality of Eq. (23). This factor fosters a
minimum at 5%0, corresponding to the presence of elec-
tronic correlation. As indicated after the second equality
of Eq. (23), the (5/L) dependence of the confinement en-

ergy may be sufficient to stabilize a correlated state. In
particular, for V, & 0, the minimum value of Ez g, is not
at the uncorrelated value of 5, that is, at 5=0. It is
stressed that the minimum would be at 5=0 were it not
for the decrease of di(5/L) from unity as 5/L is in-

creased from zero. Thus, as in the case of in-out-type
correlation, the dependence of the confinement energy on
electronic correlation is critical to establishing electronic
correlation in this example.

To analytically determine the location and depth of the
minimum of E2, , we keep terms up to fourth order in

5/L in the expansion of Eq. (23). The algebra is messy,
so only the result is quoted here. The minimum is found
at

V, (4Eb —V, )
5/L =

36(Ei, ) —19Eb V, +2( V, ) ]

with an energy of
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Ez, (min)=—
(4Eb —V, ) (V, /Et, )

1+
4t(2n } 2[36—19V, /Eb+2(V, /E„) ]

To estimate the size of these effects, we consider
V, /Eb =2. This choice corresponds to the largest value
of V, for which the uncorrelated large bipolaron remains
stable with respect to separating into two large polarons.
Then, with this choice of parameter, 5/L= —,', a value

corresponding to nonminimal overlap between the two
separate local functions. At this value of 5/L the curly
bracketed factor of Eq. (24) has risen to a value of 1+—,'.
That is, even with this relatively large value of V, /E&
(=2), the increased binding of the bipolaron that arises
from electronic correlation is about 30%%uo.

C. Two noninteracting particles
in a harmonic potential well

—:(i~a L /2)[1+2(5/L) /(1+S )], (25)

where S= exp[ —(5/L) ]. The confinement energy with
our correlated wave function is just that of the bipolaron
problem with left-right-type correlation: td, (5/L)/L
The net variational energy for the two noninteracting
particles in the harmonic oscillator well is then

+ a.a L f (5/L)
var 2

where t:—A /2ma and m is the mass of each particle.
Minimizing this energy with respect to the variational pa-
rameter L, we obtain

E„„[L;„,5/L]=fico"}/ f (5/L)d, (5/L), (27)

where ~ =&a /m .
To look for the minimum value of E„„[L;„,5/L]

with respect to a variation in 5/L, we expand S and the
two functions contained within the radical of Eq. (27) for
small 5/L.

f (5/L) =1+(5/L) +(5/L) (28)

To understand the competing effects of electron corre-
lation on the confinement energy and the potential ener-

gy, we treat a well-known (nonpolaron} problem with our
procedure. We consider two noninteraeting particles
placed in a harmonic potential well of spring constant i~.

The potential energy of the two particles is

V(x„x2)=(isa /2)[(x, ) +(x2) ],
where a is the length scale and x, and x2 are dimension-
less. Using our correlated wave function, given in Eq.
(13), and taking the local functions to be Gaussians,

1(~(x)= (1/~nL )'~ exp[ —(x +5) /2L ],
we obtain the expectation value of the potential energy:

( V) =(isa L /2)f (5/L)

and

d, (5/L) =1—(5/L) +(5/L) (29)

Correlation has opposing effects on the two contributions
to the energy. The confinement energy, proportional to
d, (5/L), falls as 5/L is increased from zero, while the
expectation value of the potential energy, proportional to
f (5/L), rises with increasing 5/L. Incorporating Eqs.
(28) and (29) into Eq. (27), we see that the net energy rises
with increasing 5/L:

E„„[L;„,(5/L ) ]=iiico+1+ (5/L ) (30)

Thus, as is weil known, the minimum energy of two
noninteracting particles within a harmonic well is just the
value obtained without correlation effects, (when
5/L =0)A'c0. The absence of correlation in the ground
state of this problem may be viewed as due to the
correlation-induced lowering of the confinement energy
being overwhelmed by the increase of the potential ener-

gy. One should note that the term that drives the
minimum to 5/L =0 is only of fourth order in 5/L.
That is, there is a near cancellation of the effects of corre-
lation on the kinetic and potential energies. Thus, even
in this problem the kinetic energy plays a significant role
in determining the instability of the correlated state. In
addition, this example indicates the great sensitivity of
correlation effects to the choice of variational wave func-
tion. In particular, using a variational wave function that
did not reduce to the exact solution, one could readily
find the spurious result that electron correlation is
significant even in the absence of interaction between the
particles.

IV. NUMERICAL STUDIES

In addition to the analytical studies with the
Gaussian-based trial wave functions described in the pre-
vious section, we have carried out numerical studies with
the secant-based trial wave function. In these calcula-
tions, integrations are performed numerically. Here we
present our findings in a form similar to that used to de-
scribe our analytical results.

For the case of in-out correlation with
g~(x) =Q 1 /2L+ sech(x /L + ) we computed the
coefficients ci(r} and c2(r) that are to be used in the ener-

gy expression of Eq. (16). The values of these coefficients
found using the secant expression are smaller than the
corresponding values found with the Gaussian approxi-
mation since the Gaussian function is a more compact
function. In particular, with the secant function the
values of the confinement coefficient ci(r), at r =1 and at
r = ~, are smaller than those obtained with the Gaussian
function by the factor —', . Similarly, the values of the de-
formation coefficient cz(r), at r =1 and at r= ~, ob-
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FIG. 5. A bipolaron's ground-state energy, E&.. . in units of
(4Eb —V, ) /8m. t, obtained with the secant approximation, is
plotted against the in-out correlation parameter r for V, /Eb =0,
1, and 2 in curves a, b, and c, respectively. For V, =2Eb the
large bipolarons become unstable with respect to separating into
two independent large polarons.

FIG. 7. Curve a is the confinement energy coefficient
d

& {5/L ) obtained with the Gaussian approximation plotted
against the left-right correlation parameter 5/L. Curve b is a
plot of 3d &(5/L)/2 vs 5/L obtained with the secant approxima-
tion.

tained with the secant function are smaller than those ob-
tained with the Gaussian function by the factor &2m. /3.
To facilitate comparison of the r dependence of the
coefficients c, (r) and cz(r) obtained with the secant func-
tions with those obtained with the Gaussian functions, we
multiply the coefficients obtained with the secant func-
tions by the factors —', and 3/&2n, respectively. Thus, in

Figs. 3 and 4 we plot 3c&(r)/2 and 3c&(r)/&2m with the
values of c, (r) and cz(r) obtained with secant functions
along with the values of c&(r) and cz(r) found with the
Gaussian functions. Figures 3 and 4 illustrate the simi-
larity of the r dependences of the coefficients obtained
with the two different trial functions.

In Fig. 5, the ground-state energy obtained with the
secant function, in units of (4Eb —V, ) /8n. t, is plotted
against the in-out correlation parameter r for three values
of V, /Eb. For values of V, /Eb that are larger than
about 2, the large bipolaron becomes unstable with
respect to separation into two widely separated large po-
larons. We see that as V, /Eb is increased, correlation
effects become increasingly significant. In particular, as
V, /Eb is increased, a minimum is produced at r ) l.
Having the energy minimum at a value of r greater than
unity corresponds to having a ground state in which elec-

tronic correlation tends to keep the two charges some-
what apart from one another.

The ground-state energy obtained with the Gaussian
model with in-out correlation, shown in Fig. 6, yields a
correlation effect, a minimum at r & 1, even when V, =0.
However, as noted at the end of Sec II, the secant func-
tion reduces to the exact for our model in the limit of
V, =0. Therefore, we take the presence of a small corre-
lation effect in the Gaussian model even in the absence of
Coulomb repulsion to be an artifact of the Gaussian ap-
proxirnation to the local wave function. Thus, the
differences that exist between the coefficients obtained in
the two approximations are sufficient to introduce a
spurious minimum in the Gaussian approximation.

Computations have also been performed for the case of
left-right correlation with secant-based trial wave func-
tions: g+(x) =&I/2L sech[(x+5)/L]. In analogy with
the procedure described above, we again augment the
confinement coefficient, d, (5/L) and the deformation
coefficient dz(5/L) by the factors that are required to fa-
cilitate a direct comparison of the 5/L dependences of
these coefficients with those obtained with the Gaussian
approximation. In Figs. 7 and 8, the augmented
confinement coefficient 3d, (5/L)/2 and the augmented
deformation coefficient 3dz(5/L)/&2n. obtained with the
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FIG. 6. A bipolaron's ground-state energy, E&g, , in units of
{4Eb—V, ) /8m. t, obtained with the Gaussian approximation, is
plotted against the in-out correlation parameter r for V, /Eb =0,
1, and 2 in curves a, b, and c, respectively.

FIG. 8. Curve a is the deformation energy coefficient

d&{5/L) obtained with the Gaussian approximation plotted
against the left-right correlation parameter 5/L. Curve b is a
plot of 3d&(5/L)/&2~ against 6/L obtained with the secant ap-
proximation.
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FIG. 9. A bipolaron's ground-state energy, E&~, , in units of
(4Eb —V, ) /8~t, obtained with the secant approximation, is
plotted against the left-right correlation parameter 5!L for
V, /Eb =0, 1, and 2 in curves a, b, and c, respectively.

FIG. 10. A bipolaron's ground-state energy, E2~, , in units
of (4Eb —V, ) /8mt, obtained in the Gaussian approximation, is
plotted against the left-right correlation parameter 5/L for
V, /Eb =0, 1, and 2 in curves a, b, and c, respectively.

secant functions are plotted along with d, (5/L) and
dz(5/L) obtained with the Gaussian functions. The 5/L
dependences of the coefficients obtained with both pro-
cedures are very similar to one another.

The ground-state energies of the bipolaron using secant
functions is plotted against the correlation parameter for
left-right correlation in Fig. 9. For comparison, the re-
sults for left-right correlation in the Gaussian model are
shown in Fig. 10. The results with both approximations
are very close to one another. The increase of correlation
effects as V, /Eb is increased is evident in both figures.

V. SUMMARY

Bipolarons form when the indirect attraction between
charge carriers that results from the electron-lattice in-
teraction overwhelms the Coulomb repulsion between the
carriers. Then, two carriers find it energetically favorable
to be bound within the same potential well. Despite the
carriers' Coulomb repulsion being exceeded by their in-
direct attraction for one another, electron-correlation
effects are found to occur for a one-dimensional singlet
large bipolaron. That is, even though the carriers have a
net attraction for one another, their ground-state energy
can be lowered by separating the carriers somewhat from
one another.

We consider correlated singlet wave functions involv-
ing states with different spatial extents (in-out correla-
tion) and different centroids (left-right correlation). By
themselves the potential-energy contributions to the total
energy do not make a correlated ground state energetical-
ly favorable. Nonetheless, since our correlated states
have greater spatial extents than the uncorrelated states,
their adoption reduces the energy required to confine the
carriers within their common potential well. This
kinetic-energy effect is found to be essential to the ener-
getic stabilization of a correlated ground state.

Correlation effects in an energetically stable bipolaron
result from the competition between (l) the drive for
coalescence of the carriers produced by the potential en-

ergy, and (2) the tendency for charge to disperse associat-
ed with the kinetic energy. Altering the form of varia-
tional wave functions generally shifts the relative contri-
butions of the competing terms. Because of the delicacy
of the competition, spurious results may be readily ob-
tained. For example, the two functional forms presumed
in the correlated wave function, the Gaussian function
and the secant function, are seen in Fig. 1 to be similar to
one another. In addition, with both functions the depen-
dences of the correlation coefficients on the correlation
parameters, r for in-out correlation and 5/L for left-right
correlation, are seen in Figs. 3, 4, 7, and 8 to be similar to
one another. Nonetheless, for in-out correlation the
Gaussian approximation gives a correlated ground state
even for V, =O, Fig. 6, while the secant wave function,
the exact wave function in this limit, does not. Thus, we
emphasize the sensitivity of the results to details of the
trial wave functions.

Ground-state correlation vanishes when the on-site
Coulomb repulsion V, vanishes and the magnitudes of
correlation effects increase with increasing V, /Eb, where

Eb is the electron-lattice coupling strength. However,
V, /Eb cannot become greater than about 2 without de-
stabilizing our large bipolaron with respect to separating
into two separate large polarons. At a maximum ratio of
V, /Eb for which we have stable bipolarons, we find that
correlation effects can lower the ground-state energy of
our singlet bipolaron by up to 30%.
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