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Structure and stability of quasicrystals: Modulated tiling models
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A modulated tiling model for the structure of an icosahedral quasicrystal of the Al-Zn-Mg class
is proposed. Idealized structure models for quasicrystals are constructed on the basis of three-
dimensional Penrose tilings with a Henley-Riser decoration of the basic structural units. The stability
of these structures is investigated by an isothermal molecular-dynamics annealing of a hierarchy of
crystalline approximants to the quasiperiodic structure, based on realistic pair forces derived from
pseudopotential theory. We fin that quasicrystals are stable only at compositions leading to an
electron-per-atom ratio of e/A 2.1-2.2, thus confirming the existence of a Hume-Rothery or
Peierls mechanism for the stability of quasicrystals. Because of the large number of different atomic
environments in quasicrystals, any set of interatomic forces leads to a displacive modulation of the
idealized quasiperiodic structure. For a stable quasicrystal, the displacement field has the symmetry
of the quasilattice. The structural characteristics of the displacively modulated Penrose tilings are
investigated in detail. We show that the modulation of the structure substantially improves the
agreement of the models with experimental observation.

I. INTRODUCTION

Since the discovery of quasicrystalline alloys by Shecht-
man et aL' theoretical investigations have focused on the
structure of these materials. It has been shown that these
alloys share two characteristics: the diffraction patterns
can be indexed using the set of basis vectors appropriate
to an icosahedral quasilattice, and nearly all exhibit a sig-
nificant degree of disorder signaled by broadened diffrac-
tion peaks. Several structural models that account for
the gross features of the diffraction patterns from icosa
hedral alloys have been proposed. Qussiperiodic descrip-
tions such as the thr"=-dimensional Penrose tilings and
the icosahedral glass models 4 both yield scattering func-
tions with icosahedral symmetry. A relatively large de-
gree of disorder is intrinsic to the icosahedral glass model.
The Penrose tiling also produces broadened diffraction
peaks, if modified by the inclusion of a random phason
strsins (the phason momentum describes a degree of free-
dom that appears due to the fundamental incommensu-
rability of the quasiperiodic lattice).

Another important open question is why nature should
prefer quasiperiodic to periodic order. A phenomenolog-
ical approach to this problem is based on Landau-type
expansions of the free energy in powers of the Fourier
components p(q) of the mass density. s s It was found
that stable qussiperiodic solutions may exist. Micro-
scopic treatments are based mostly on computer simula-
tions. For example, Landon and Billards ~o and Sasajima
et al~~ found that a two-dimensional Penrose pattern
is unstable under Lennard-Jones forces and relaxes to
a hexagonal network. However, a Penrose-tiling deco-
rated with two different types of atoms and Johnson-
type potentials was found to be stable at sufBciently
low temperatures. s ~o A similar result was obtained by
Widom et aL~z in Monte Carlo simulations of two-

dimensional binary quasicrystals. Special types of pen-
tagonal and dodecagonal lattices were investigated by
Jansen~s and Leung et aL~4 Jansen also drew attention
to the fact that the relaxation introduces a displacive
modulation of the quasiperiodic tiling.

For thr""-dimensional systems Szebo and Villain~s
showed that a hard-sphere model does not have
quasiperiodic solutions for the ground state. Qn the
other hand, Burkov and Levitovm proved that under cer-
tain conditions the ground state of an n-dimensional lat-
tice with codimension 1 can be qussicrystalline if the
interactions are long ranged enough. Computer simula
tions of thr==dimensional Penrose tilings with Lennard-
Jones forces have been presented by Landon and Billard~o
and by Roth et aL~" It was found that when all vertices
of a Penrose tiling are occupied by atoms, the system re-
laxes to a glassy state. However, if certain vertices are left
vacant according to the unit-sphere packing of Henley, ~s

even a monoatomic quasicrystal is metastable.
Stability or metastability of quasicrystals has also been

discussed from an electronic point of view. It has been
pointed out that the stoichiometry of many quasicrys-
talline alloys appears to be governed by a Hume-Rothery
rule, placing the Fermi surface near an effective Brillouin-
zone boundary. The existence of a strong electron-
lattice interaction was confirmed through band-structure
calculations for rational approximants to quasicrystals
that demonstrate that the Fermi level is indeed in or
near a minimum in the electronic density of states. s4

A link between arguments based on the calculation of
the electronic ground-state energy and coxaputer simula-
tions based on classical pair interactions is based on mod-
eling studies based on interatomic forces derived &om
quantum theory. 2s so These investigations extended ear-
lier work on the relation between trends in the in-
teratomic forces and trends in the crystallines~ sz and
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liquidss structures to quasicrystalline alloys. In rnetal-
lic systems, the form of the interatomic potentials close
to near-neighbor distances is determined by the inter-
play of a short-range screened Coulomb repulsion and
a long-ranged oscillatory potential whose wavelenth is
given by A~ = 2n/2k~ (where k~ is Fermi momentum).
A given crystal structure is stable if the periodicity of
the lattice matches the Friedel wavelength A~—this con-
dition is precisely the same as that for the occurence
of a Hume-Rothery or Peierls pseudogap at the Fermi
level. Hafner and Heines~ had shown that, in a parameter
space spanned by the ion valence Z, the atomic volume 0,
and the "core-radius" r, (the one parameter characteriz-
ing the electron-ion pseudopotential) close-packed crys-
tal structures with high coordination numbers (N, & 10)
and "open" structures with low coordination numbers
(N, & 7) are neatly separated. Smithsa was the first to
point out that in a narrow stripe separating open- and
close-packed structures, a quasicrystalline structure may
be lower in energy than any crystalline lattice (see also
Ref. 34). Although no element falls into this region of
parameter space, the virtual-crystal parameters of many
quasicrystalline simple-metal alloys fall very close to the
region of predicted quasicrystalline stability.

In this paper we extend the simulation studies to re-
alistic models of icosahedral alloys, at the example of
quasicrystalline Al-Zn-Mg alloys. An idealized structural
model is constructed by a three-dimensional Penrose
tiling, decorated as proposed by Henley and Elser. ~s ss

Interatomic potentials are calculated by pseudopotential
perturbation theory, based on ab initio orthogonal-plane-
wave pseudopotentials. s~ Molecular-dynamics studies are
performed for a series of rational approximants to the
quasicrystalline lattice, with up to about 12000 atoms in
the periodically repeated cell. Our molecular-dynamics
simulations show that the quasicrystalline structures
are metastable only at the stoichiometry leading to an
electron-per-atom ratio in accordance with a general-
ized Hume-Rothery rule. The relaxation of the idealized
structure under realistic pair forces leads to a displacive
modulation of the quasicrystalline structure. The effect
of the molecular-dynamics annealing on the pair corre-
lation functions, bond-angle correlation functions, and
powder and Bragg diffraction patterns is studied in de-
tail. We show that the displacive modulation of the ide-
alized structure greatly improves the agreement with ex-
periment. We conclude that a computer-relaxed Penrose
tiling with a Henley-Elser decoration yields a very accu-
rate description of the structure and stability of icosahe-
dral Al-Zn-Mg alloys and a reliable starting point for the-
oretical studies of the electronic and vibrational proper-
ties. Some of our results have been discussed very briefiy
in a previous paper.

II. QUASICRYSTAL AND CRYSTALLINE
APPROXIMANTS

Henley and Elserss have proposed a model for Al-
Zn-Mg —type icosahedral quasicrystals based on the as-
sumption that the structural framework of the icosahe-

is deformed for crystalline approximants, but its topology
is conserved. The lattice created by this projection is a
periodic Penrose lattice (PPL). It can be viewed as a
tiling of two kinds of golden rhombohedra: prolate (PR)
and oblate (OR) ones. The lattice has cubic symmetry.
The period of the cubic symmetry is

a„= (2 + 2/+5)r" aR, (2)

where aR is the length of the rhombohedron edge. The
number of constituent rhombohedra, N~ = 4F3 +3 in-
creases with increasing order n of the approximant. We
shall denote the approximants by F„+q/F„, the pair of
Fibonacci numbers corresponding to the approximation
r„ to the golden mean r.

Even if the form of the acceptance domain D is fixed,
there are additional degrees of freedom associated vrith
a shift t of D in the space Es (Ref. 41). The shift of
the acceptance domain changes the configuration of the
basic structural units of PPL (PR's and OR's) but not
their relative frequencies. For each approximant there
exists a periodically repeated cubic zone Z of nonequiva-
lent shifts in Es. The edge of this cubic zone has a length

of z = 1/ Fz+~ + F2. Note that the zone of nonequiv-

alent shif'ts shrinks to a point in the quasiperiodic limit.
The shift t, = 0.5(1, 1, 1)z which places the center of the
acceptance domain on the body-centered position of the

dral phases is the three-dimensional (3D) Penrose tiling.
An atomic decoration of the Penrose lattice is derived
from the crystal structure 6 of the Frank-Kasper phase
(Al, Zn) 4s Mgs2.

The 3D Penrose lattice can be generated either by the
dual method, s s or by the projection method. The
projection method is based on projecting a "strip" of a
six-dimensional (6D) hypercubic lattice La onto the 3D
physical space Es. The strip is defined by extending a
unit cube in Ls parallel to Es. The orientation of Es
is defined in such a way that the projection of a star of
orthogonal basis vectors in Ls forms an icosahedral ba-
sis in Es, e~ = C(0, 1,r)+ cyclic permutations (c.p.):
l = 1, 2, 3; e~ = C(0, —l, r)+ c p , .l .= 4, 5, 6, where

(1 + ~5)/2 is the golden mean, C is a constant
normalizing the basis vectors to unity. The projection of
the 6D unit cube onto a 3D space Es perpendicular to
Es is a rhombic triacontahedron, the acceptance domain
for vertices of the quasilattice. A vertex of Ls belongs to
the quasilattice only if its projection onto Es falls into
the acceptance domain.

The lattice of the crystalline approximants is obtained
if, in the icosahedral basis in Es, e'~ = C'(0, r, —1)+-
c.p. : l = 1, 2, 3; e'~ = C (O, r, 1)+ c.p. , l = 4, 5, 6, the
golden mean r is replaced by a rational number r„=
F„~q/F„, where the F„are Fibonacci numbers, Fo = 0,
Fq ——1, F„+q = F„+F„q. The icosahedral basis in Es
is unchanged. The form of the acceptance domain in Es,
the rhombic triacontahedron
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TABLE I. Structural characteristics of the rational approximants: number of vertices N„„of
PPL, number of basic structural units PR, OR, and composite units RD, number of atoms N, t, ,
composition x, number of atoms with coordination Z, symmetry, and period of cubic symmetry a„
in A for aR = 5.13 A [see Eq. (2)].

Approximant: w„
Shift of AD: (2/z)t

overlaps of RD

Nver

NPR
NOR
NRo
Nat.

N(A1, Zn)
N(Mg)

N(Z = 12)
N(Z = 13)
N(Z = 14)
N(Z = 15)
N(Z = 16)

Z
Symmetry
Period a„

1/0

8
4
4
0
40
32
8

0.8
0
32
0
0
8

13.60
Pa3
8.728

1/1
(0, 1, 1)

32
20
12
6

162
98
64

0.605
98
0
12
12
40

13.36
Im3
14.12

1/1
(1, 1, 1)

32
20
12
0

168
128
40

0.762
32
96
0
0

40
13.52
I2y3
14.12

2/1
(0, 1, 1)

No

136
84
52
20

692
444
248

0.642
348
96
40
40
168

13.40

22.85

2/1
(0, 1, 1)

Yes

136
84
52
32

680
384
296

0.565
288
144
56
80
112

13.39

22.85

2/1
(1, 1, 1)

136
84
52
24

688
424
264
0.61
392
32
48
48
168

13.37
Pa3
22.85

zone Z defines a special class of symmetrical models. 4i

They possess special self-similar scaling properties: per-
fect 12-fold vertices in the 3/2, 5/3, 8/5, ... approximants
are exactly rs rescaled 1/0, 1/1, 2/1, ... approximants,
respectively. Note that the projection algorithm works
only from r ri ——1/1 onward, and the 1/0 approxi-
mant can be found only by rescaling the 3/2 symmetric
approximant. Rescaling of the perfect 12-fold vertices of
an approximant with t g t, does not provide a tiling.
For more detailed discussion of the PPL's, we refer to
the paper of Mihalkovic and Mrafko. 4i

For the icosahedral alloys of the Al-Zn-Mg class, the

Penrose tiling is decorated as proposed by Henley and
Elser. ss In adition to the PR's and OR's, a rhombic do-
decahedron (RD) consisting of two PR's and two OR's is
proposed as a composite structural unit. In the Henley-
Elser decoration Al(Zn) atoms occupy all vertices and
midpoints of all edges of the structural units. Two Mg
atoms are placed along the trigonal axis in each PR, in-

cluding the PR's inside the RD. A special decoration is

proposed for the fourfold vertex inside a RD: four Mg
atoms are placed on edges originating from the fourfold
vertex. Altogether eight Mg atoms inside a RD form a
slightly distorted hexagonal bipyramid. The distribution

TABLE II. Structural characteristics of the rational approximants: continuation of Table I.

Approximant: 7.„
Shift of AD: (2/z)t

Overlaps of RD

Nver

NPR
NoR
NRo
N~g

N(A1, Zn)
N(Mg)

N(Z = 12)
N(Z = 13)
N(Z = 14)
N(Z = 15)
N(Z = 16)

Z
Symmetry
Period a„

3/2
(0, 1, 1)

No

576
356
220
92

2924
1844
1080
0.631
1556
288
184
184
712

13.39

36.97

3/2
(0, 1, 1)

Yes

576
356
220
136

2880
1624
1256
0.564
1336
464
240
336
504

13.38

36.97

3/2
(1, 1, 1)

No

576
356
220
96

2920
1824
1096
0.625
1600
224
192
192
7I2

13.38
Pa3
36.97

3/2
(1, 1, 1)

Yes

576
356
220
120

2896
1704
1192
0.588
1480
318
190
336
568

13.40
Pa3
36.97

5/3
(1, 1, 1)

No

2440
1508
932
384

12380
7780
4600
0.628
6660
1116
792
792

3020
13.39
I2y3
59.82

5/3
(1, 1, 1)

Yes

2440
1508
932
552

12224
7000
5224
0.573
6696
936
806
806
2980
13.38
I2y3
59.82
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of the Al and Zn sites over possible lattice sites is assumed
to be random. The definition of the RD is not unambigu-
ous. Each two neighboring OR's in Penrose tiling can be
uniquely completed by two PR's to a RD. However, if
three or more OR's are aligned around a common edge,
this configuration of OR's allows overlapping of neigh-
boring RD's (sharing one OR). The overlap is restricted
if only each second pair of OR's defines a RD. If the over-
laps are eliminated the number Nitro of RD's is reduced
(in the quasiperiodic limit) by a factor of 0.6869 (Ref. 18).
As isolated OR's are decorated relatively loosely, a higher
number of RD's in the model yields a higher packing
fraction. Since the shift t of the acceptance domain
changes the configuration of PR's and OR's and hence
the number of RD's, the choice of t has also a con-
siderable influence on the stoichiometry of a quasicrys-
talline approximant. The number of atoms in a model
may be expressed as N(A1, Zn) =4(NpR, + NoR, ) —5NaD,
N(Mg) = 2NpR + 4NRD, where NpR ——4F37I+3 and
NOR —483~+i are the numbers of PR's and OR's before
grouping to RD's. Hence a higher number of decorated
RD's yields a higher concentration of Mg atoms. The
structural characteristics of our models of quasicrystals
based on PPL approximants from 1/0 to 5/3 are com-
piled in Tables I and II.

III. INTERATOMIC FORCES FOR
MULTICOMPONENT ALLO'YS

Interatomic forces are calculated using pseudopotential
perturbation theory. We use the optimized orthogonal-

y = Q. 2

I I I I I

10

PIG. 1. EfFective interatomic potentials C(R) in the qua-
sibinary (Al„Zny I,)p.535Mgp. 375 alloy for the compositions

y = 0.8 and y = 0.2. Pull line: Al(Zn)-Al(Zn) interactions;
dotted line: Mg-Mg interaction; dashed line: Al(Zn)-Mg in-

teraction.

plane-wave-based pseudopotential33 43 and the Ichimaru-
Utsumi43 local-field corrections to the dielectric function.
For any details we refer to Refs. 32 and 42. For bi-
nary systems these pair potentials have been shown to
be very realistic. For example, they have allowed us to
discuss solid solubility and phase changes in crystalline
Al-Mg alloys, s to predict the structural energy differ-
ence between different Laves phase stacking variants of
the compound MgZnz (Ref. 32), and to calculate ac-
curate partial static and dynamic structure factors for
glassy Mg-Zn alloys. 54 For simplicity the ternary alloy
(Al, Zn)Mg is treated as a quasibinary system. We cal-
culated two sets of interatomic potentials for the binary
alloys Al, Mgi and Zn, Mgi . For the ternary alloys
(Al„Zni „),Mgi ~ the two sets of potentials are aver-
aged in the ratio y: (1 —y). Figure 1 shows the inter-
atomic potentials for (Al„Zni „)Q.535MgQ 375 alloys for
the compositions y = 0.8 and y = 0.2. The changes
in the interatomic potentials with a varying Al/Zn ratio
y (and hence with the electron/atom ratio which varies
from e/A = 2.45 for y = 0.8 to e/A = 2.11 for y = 0.2)
are rather small. Substitution of Al by Zn (and hence
reduction of mean electron density) results in a smaller
average diameter of X atoms and more attractive pair
interactions. Nonetheless, our simulation studies show
that this makes the difFerence between unstable and sta-
ble quasicrystalline alloys.

IV. MOLECULAR-DYNAMICS ANNEALING

The metastability of the idealized quasicrystalline
structures was investigated using a simulated molecular-
dynamics (MD) annealing at room temperature. The
MD simulations were performed for the 1/0 to 5/3 ap-
proximants, i.e. , for ensembles with N = 40 to N =
12 380 particles in a periodically repeated cubic box. The
simulations were performed in the microcanonical ensem-
ble, temperature was controlled by a scaling of the veloc-
ities. Later MD runs were made in the canonical en-
semble, using Nose dynamics. 44 We found no essential
differences in the microcanonical and canonical simula-
tions. The Newtonian equations of motions have been
integrated using a fourth-order predictor-corrector algo-
rithm in the Nordsieck formulation, 45 with a time incre-
ment of b.t = 0.5 x 10 i5 s. An effective network-cube al-

gorithm was used for generating and storing the nearest-
neighbor information. 46 47 With this algorithm, the com-
puter time increases only linearly with the number N of
particles at a constant interaction radius. For further
details, see, e.g. , Ref. 48. For the lowest-order approx-
imants, the potential was truncated at the largest dis-

tance compatible with the minimum image convention,

R«t = 7.00 A.. For the larger models, the cutoff was ex-

tended to R,„i —11.50 A.. This means that in the smaller
models each atom interacts with about 65 neighbors. In
the largest models, the interaction-sphere contains nearly
300 atoms. Hence the sum over the damped oscillatory
part of the pair potential should be well converged. To
extend the interaction radius beyond the upper limit set

by the minimum image convention could lead to a dis-
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tortion of the structure which would be more serious
than that caused by the unavoidable cutoK Between
5000 time steps (for the largest model) and 20000 time
steps (for the smallest model) were used for production
runs. The structure was controlled by calculating partial
pair correlation functions, bond-angle distributions, and
bond-angle correlation functions.

A structure was considered to be metastable if the
potential energy and the partial correlation functions
showed no systematic drift over the entire production
run. Of course the MD simulation alone does not allow us
to distinguish between stability and metastability. Sta-
bility can only be discussed with respect to competing
phases, but of course it is quite impossible to calculate
the enthalpies of all possible competing crystalline and
amorphous phases.

V. STABILITY OF QUASICRYSTALLINE
LATTICES UNDER REALISTIC PAIR FORCES

6

E
2

CCL 6-
4

2

Ce

CCL 6-
QO

4

2

312 S

I I I I I I I I I I

I I I I I I

y = 0. 8

AB

.Lt, ]l.li.lL. .l ..i.,i

Our first task is to test the stability of the idealized
structure model in the dependence from the interatomic
forces, and hence from the electronic properties. We
performed MD studies for the 3/2 approximant with
t = 0.5(1, 1, 1)z and no overlapping RD's. The vector
t and the decoration of the rhombic dodecahedra were
chosen such that the composition (Al„ZnI „)qs24MgIIIss
(x = 0.625) comes close to the (Al, Zn)/Mg ratio of the
observed icosahedral alloy. 4s s~ The Al/Zn ratio wss
changed from y = 1 to y = 0 in steps of 0.2. Figure
2 shows the partial pair correlation functions after MD
relaxation into equilibrium. We find that for y = 1.0
and y = 0.8 the room-temperature annealing leads to
an amorphous state, hence the quasicrystal is clearly
unstable. For y = 0.6 we find an intermediate state
with at least some medium-range order. For y & 0.4 we
find that the quasicrystalline long-range order is at least
metastable, this is clearly refiected in the long-range os-
cillations in the partial pair distribution functions. The
stable composition corresponds to electron-per-atom ra-
tios of e/A - 2.1—2.2, in accordance with the experimen-
tal evidence that s, p-bonded icosahedral alloys have an
electron concentration range e/A = 2.1 —2.4 (Refs. 19—
23) and the best single-phase icosahedral crystals are ob-
tained at the composition Alq7Zns2Mgs2 (Refs. 51 and
52).

An exhaustive discussion of the metastability or sta-
bility would require a calculation of the enthalpies and
chemical potentials of all possible competing crystalline
phases or phase mixtures. In our case we find that the
quasicrystal is stable with respect to the pure metals.
However, as the crystalline Frank-Kasper (FK) phase
and the rational approximants to the quasicrystal have
slightly different compositions, it is not meaningful to
compare their energies directly. In this case stability of
the quasicrystal requires that it has a lower energy than
the mixture of the FK phase and a neighboring crystalline
phase that has the same composition as the quasicrystal.
It is clear that such calculations that are equivalent to
a theoretical calculation of at least a part of the ternary
phase diagram exceed by far the scope of the present

+]lJl. ii)l.. II ~ lhl I a AL

I I I I I I I I

0 2 4 6 8 10 12 14

R (A)

312 S y = 0. 2
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I

I

I

I

I
I

I
I
I
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QQ
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AA

0 2 4 6 8 10 12 14

R (A)
FIG. 2. Comparison of the interatomic potentials (dsshed

lines) with the psr'tisl pair correlation functions g s(R)
(full lines) for the 3/2 spproximsnt of the icosshedrsl
(Al„Znq „)0.62sMg0. 375 phase with y = 0.8 snd y = 0.2 after
MD annealing st room temperature [A stands for Al(Zn), B
for Mg atoms]. For y = 0.8 the icosahedral alloy relaxes to s
glassy phase, for y = 0.2 the icosahedral alloy is found to be
stable (cf. text). The vertical lines represent the interatomic
distances (with heights proportional to their frequencies) for
the ideal structure of the 3/2 spproximsnt.



10 674 M. KRAJCI AND J. HAFNER 46

work. However, in the present context it is sufhcient to
establish the metastability of the quasicrystal by a MD
simulation.

Figure 2 also compares the interionic distances of an
ideal 3/2 lattice with the pair interactions. For the Al-
rich alloy, the closest Al(Zn)-Al(Zn) distance falls high on
the steeply repulsive slope of the potential. This leads to
a relaxation into a random-close-packed structure, even
though the remaining interatomic distances are rather
well adapted to the interatomic potentials. At a reduced
Al content, a minimum exists in the Al(Zn)-Al(Zn) po-
tential close to the quasicrystalline nearest-neighbor dis-
tances and this stabilizes the structure. Note that the
appearance of this minimum is related to the reduction
of the mean electron density and the ensuing reduction
in the screening. At this composition the distance be-
tween the first- and the second-neighbor shells is close to
the Friedel wavelength AF = 2m/2k~, so that the atomic
arrangement in the quasicrystalline structure is energet-
ically favorable even for the interactions with the more
distant neighbors.

This is precisely where the electronic factor appears:
the Friedel wavelength depends on the electron density,
and the matching of the interatomic distances d and the
Friedel wavelength AF of the pair interactions is possi-
ble only at a certain value of the electron-per-atom ra-
tio that depends on the geometrical properties of the
structure under consideration. The criterion d = AF
is precisely a real-space formulation of Hume-Rothery
criterionss for the stability of an electron compound. It
has also been shown that a similar argument applies to
the stability of an amorphous metallic alloys. s4 The q-
space formulation of this criterion asks for ~Q~

—2kF
(where Q is a reciprocal-lattice vector) and the exis-
tence of a structure-induced minimum in the electronic
density of states. In this form the existence a Hume-
Rothery-like mechanism for stabilizing quasicrystals has
been claimed by different groups, ~s ~s and the existence
of the density-of-states minimum at the Fermi level has
been demonstrated, at least for the lowest-order crys-
talline approximants. ~4 z~ Figure 3 shows the difFraction

pattern of the relaxed 3/2 approximant. We find that
the Bragg peak corresponding to the (111101)reflection
of the quasiperiodic phase agrees well with the diameter
2k~ of the Fermi sphere. Thus our molecular-dynamics
results are in accordance with the conventional interpre-
tation of the Hume-Rothery rules.

The MD studies also show that the annealing leads
to a displacive modulation of the idealized structure, al-
though it preserves the long-range order. In the following
sections this modulated structure is investigated in detail.

VI. DISPLACIVELY MODULATED
QUASICRYSTALS

The PPL's with Henley-Elser decoration represent ide-
alized structures. The 1/1 approximant corresponds
to an idealized structure for the (Al, Zn)4sMgsq Frank-

15
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x (A)
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40
fA
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20
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q (A )

FIG. 3. X-ray-diffraction diagram for the relaxed 3/2 ap-
proximant of Al-Zn-Mg. The arrow marks the diameter 2k~
of the Fermi sphere.

10 15
x (A)

FIG. 4. Projection of the atomic positions in a 2/1 ap-

prox&mant on an (2;, y) plane. (a) Ideal structure, (b) dis-

placively modulated structure. Full circles represent Al(Zn)
atoms, broken circles represent Mg atoms, The size of the cir-

cles is scaled with the z coordinates. The straight lines show

the edge of the Penrose tiles.
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Kasper phase. M ss For the real structure the rms devia-
tions from the ideal locations are for Al(Zn) atoms 0.24
A and 0.18 A. (sites on vertices and edges, respectively)
and for Mg atoms 0.25 A. Similar deviations are to be
expected for the higher-order approximants and for the
quasicrystal, because each basic unit appears in a large
number of different local environments. Hence any in-
teratomic force field must lead to a modulation of the
idealized structure.

Figure 4 shows a comparison of the idealized struc-
ture with the modulated structure resulting from a room-
temperature MD annealing at the example of the 2/1
approximant. The 688 atomic sites are projected on
the (z, y) plane, the size of the symbols representing the
atoms is scaled with the z coordinate. The edges of the
Penrose rhombohedra are also drawn. We see that the
modulation results in small displacements from the ide-
alized sites, without destroying the quasicrystalline lat-
tice. In the following, we investigate the manifestation of
these displacements in the pair correlation functions, in
the bond-orientational order, and in the diffractograms.
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A. Partial pair correlation function

The lowest-order 1/0 approximant is obtained by rs
rescaling of the symmetric 3/2 approximant with t = t, .
This structure is stable under the given set of interatomic
forces (Fig. 5). However, the stoichiometry is relatively
far from the ideal quasicrystalline composition and the
structure shows a preferred heterocoordination, which is
not observed in the Frank-Kasper phase or in the qua-
sicrystal.

For the low-order approximants both the idealized
structure and the displacive modulation depend quite
sensitively on the shift t of the acceptance domain, i.e.,
on the configuration of the basic structural units. For
the 1/1 approximant there exist two different configu-
rations of the basic structural units. Each configura-
tion corresponds to a region of equivalent shifts of the
acceptance domain in the zone Z. The symmetric ap-
proximant with t = t, has a relatively high Al(Zn) con-
tent, the structure is marginally stable, as indicated by
the broad and overlapping peaks in the pair correlation

FIG. 5. Partial pair correlation functions g p(R) for the
1/0 approximant. A =Al(Zn), B =Mg.

functions [see Fig. 6(a)]. The second configuration is
the Frank-Kasper phase, which is obtained by a repre-
sentative choice of, e.g. , t = 0.5(0, 1, 1)z. The Frank-
Kasper phase is less strongly modified by the relaxation
[see Fig. 6(b)], the displacive modulation is strongest for
the Mg-Mg pair correlations, because the idealized struc-
ture contains some very short Mg-Mg distances which are
incompatibile with the Mg-Mg pair potential (cf. Fig. 2).
The shortest Mg-Mg distances are those between the
apices of the hexagonal bipyramids inside the rhombic
dodecahedra. It is clear that the bipyramid can be elon-
gated somewhat without breaking the local symmetry In.
the bcc Frank-Kasper phase the Al(Zn) atoms at (0, 0, 0)
and 0.5(1, 1, l)a have a fractional occupation probabil-
ity (a is the lattice constant). If these Al(Zn) atoms are
eliminated from the model, the widths of the peaks in

TABLE III. Coraparison of the coordinates of atoms of the Frank-Kasper phase. The first col-
umn represents the notation for atomic positions (Ref. 35) with the number of equivalent positions.
The second column lists the coordinates for an idealized decoration of the 1/1 periodic Penrose
lattice, the third column the results of the molecular-dynamics calculation, and the last column
those determined by difFraction studies (after Refs. 35 and 36).

A2
C24
B24
F48
D16
E24
G12
H12

Ideal

( 0.000, 0.000, 0.000 )
( 0.000, 0.191, 0.309 )
( 0.000, 0.096, 0.154 )
( 0.154, 0.191, 0.404 )
( 0.191, 0.191, 0.191 )
( 0.000, 0.309, 0.118 )
( 0.427, 0.000, 0.500 )
( 0.191, 0.000, 0.500 )

Relaxed

( 0.000, 0.000, 0.000 )
( 0.000, 0.173, 0.318 )
( 0.000, 0.099, 0.157 )
( 0.163, 0.186, 0.405 )
( 0.188, 0.188, 0.188 )
( 0.000, 0.305, 0.119 )
( 0.405, 0.000, 0.500 )
( 0.201, 0.000, 0.500 )

( 0.000, 0.000, 0.000 )
( 0.000, 0.175, 0.301 )
( 0.000, 0.091, 0.150 )
( 0.168, 0.186, 0.403 )
( 0.184, 0.184, 0.184 )
( 0.000, 0.294, 0.119 )
( 0.400, 0.000, 0.500 )
( 0.180, 0.000, 0.500 )
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the Al(Zn)-Al(Zn) correlation functions is reduced: the
rms deviations of the Al(Zn) vertex atoms from their
idealized positions are 0.272 A and 0.269 A for the two
models, respectively. For the Al(Zn) edge positions the
corresponding numbers are 0.123 A. and 0.107 A. , for the
Mg atoms, 0.157 A and 0.163 L. The atomic coordinates
determined by the MD relaxation compare very well with
the diffraction data for the Frank-Kasper phasess (Table

III). This confirms that our pair forces are indeed very
realistic.

For the higher-order approximants the effect of a shift
in the acceptance domain is gradually reduced. This
is demonstrated in Fig. 7 with the example of the 2/1
approximants with t = (0, 0, 0), t = 0.5(0, 1, 1)z, and
t = t, = 0.5(1, 1, 1)z. After the relaxation, there are
only minimal differences in the correlation functions.
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FIG. 6. Partial pair correlation functions g p(R) for di6'erent 1jl approximants: (a) symmetric structure (label 8) with
t = t, = 0.5z(1, 1, 1); (b) t = 0.5z(0, 1, 1), Frank-Kasper phase (label F); and (c) Frank-Keeper phase (label FW) with no Al
atoms at (0, 0, 0) and 0.5u(1, 1, 1).
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The decision whether to allow for the overlapping
of rhombic dodecahedra has a larger influence on the
Al(Zn)/Mg composition and hence on the structure and
the stability of the model. This is demonstrated in Fig.
8 for two variants of the 5/3 approximsnts with t = t,
without and with overlapping RD's. With 12380 [7780
Al(Zn) and 4600 Mg], respectively, 12224 [7000 Al(Zn)
and 5224 Mg] atoms in the cubic cell these are the largest
models covered in our study. If overlapping of RD's is
allowed, the relaxation leads to a considerably stronger

broadening and damping of the higher-order peaks in the
)

gap s
The observed broadening of the b-function peaks of

the idealized structures has a static and dynamic compo-
nent, it is marginally larger for the best higher-order ap-
proximants than for the Frank-Kasper phase. The static
displacements relative to the idealized structure are an
intrinsic property of the decoration model for quasicrys-
talline structures: the locations of the atoms in the ideal
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FIG. 7. Psrtisl pair correlation functions g p(R) for dif-

ferent 2/1 spproximsnts: (s) symmetric structure (8) with
t = t, = 0.5z(1, 1, 1), (b) t = 0.5z(0, 1, 1) marked (F).
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FIG. 8. Partial pair correlation functions g p(R) for the

5/3 spproximsnt with t = t, : (s) model S is decorated with
no overlapping of rhombic dodecahedrs (RD) sud (b) model
SO allows overlapping RD's.
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lattice are solely controlled by the geometrical nature
of the rhombohedral tiles and not by the overall envi-
ronment of the atomic sites. The forces acting on the
atoms of course depend on the global environment and
hence yield static displacements which may be difFerent
for equivalent sites in different tiles. The point group
symmetry however is not destroyed since the displace-
ment field has the symmetry of the PPL. The result is
what Jansen s has called a displacively modulated qua-
sicrystal.

The dynamic component of the displacement field is
just the usual Debye-Wailer broadening. Our result of
a slightly larger broadening in the higher-order approxi-
mants to the quasicrystal than in the Frank-Kasper phase
is in agreement with the observation of low-energy vibra-
tional modesss in quasicrystals. Of course, the existence
of low-energy modes is directly related to some degree of
disorder.

B. Total pair correlation functions

The total pair correlation function may be measured
in x-ray- or neutron-diffraction experiments on a poly-
crystalline or powdered sample. Since the interatomic
distances in the Frank-Kasper phase and in the icosahe-
dral differ only for R & 10 A. , the experiment has to be
performed with a large range of momentum transfers to
yield the neccessary high resolution in r space.

Figure 9 shows the partial and x-ray-weighted reduced
radial distribution function G(R) = 4xnR[g(R) —1]
of the Frank-Kasper phase [1/1 approximant with t =
0.5(0, 1, 1)z], and the 5/3 approximant for distances up
to 50 A. . For comparison we show on the same scale the
experimental G(r) of Mizutani et al. s7 for the Frank-
Kasper and icosahedral phases. It is evident that in the
computer simulation as well in the experiment the distri-
bution functions of both phases are almost identical up
to distances about 15 A.. In the range between 15 A. and
50 A, the significant differences between the crystalline
and the quasicrystalline phases are correctly reproduced
by our model, even within details. The only difference
is that the peaks in the simulated G(R) are somewhat
sharper. This is due to the fact that the resolution of the
experimental G(R) is still limited by truncation effects.

The almost perfect agreement of the theoretical model
with experiment is to a large extent due to the displacive
modulation of the idealized model. The results also show
that by computer simulation as well as by experiment it
will be very hard to difFerenciate between the higher-
order approximants and the limiting quasicrystal.

It is expected that the model based on a Penrose
lattice with Henley-Elser decoration applies not only
to A1-Zn-Mg, but with minimal modifications to a
wide class of the metastable (Al-Cu-Mg, Al-Zn-Li,
Al-Ag-Mg, . . . ) (Refs. 58—62) and stable (Al-Cu-Li, Ga-
Zn-Mg, . . . ) (Refs. 62—65) qussicrystals. Earlier attempts
to use the Henley-Elser model to describe this class of al-
loys were considered at best partially successful. so How-
ever, these attempts were based on the idealized decora-
tion. The obvious defect of the Henley-Elser decoration
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FIG. 9. (a) Partial and (b) and (c) x-ray-weighted re-
duced radial distribution function for the Frank-Kasper phase
and the 5/3 approximant to the quasicrystalline structure, as
obtained by molecular-dynamics relaxation (b), and for the
Frank-Kasper and icosahedral phases as measured by Mizu-
tani et al (Ref. 57) (c). .
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Bond-orientational order may be characterized in var-
ious ways: on a local scale by the bond-angle distribu-
tion functions f(8) measuring the probability that two
nearest-neighbor bonds around a given central atom form

an angle 8.rz On a global scale, bond-orientational order
is characterized by the rotational invariants

FIG. 10. Comparison of the x-ray-weighted pair correla
tion function g(R) for (Al, Zn)Mg (3/2 approximant to the
quasicrystal), full line, with the experimental result for icosa-
hedral A16CuMg4 (after Refs. 59 and 60), dashed line.

is the presence of short distances between two Mg atoms
in RD's. This defect is, however, removed during MD
annealing. A comparison of the present model for Al-
Zn-Mg with the experimental resultsss se for Al-Cu-Mg
(scaled to match the position of the first peaks) shows al-
most perfect agreement (Fig. 10). The displacive modu-
lation of the structure is found to be very essential. This
suggests that the relaxed Henley-Elser model is a sat-
isfactory model of universal validity for the metastable
quasicrystals of the Al-Zn-Mg class.

For the stable Al-Cu-Li quasicrystals, the Henley-Elser
model was commented on rather critically. ss Instead,
models based on a decoration of large rs-infiated Pen-
rose rhombohedra with triacontahedral units have been
proposed s4essr. The problem with these cluster-type
models is that they define only about 80% of the sites of
the quasilattice. The interstices between the triaconta
hedra remain ill-defined and have to be filled with "glue"
atoms. Recently, we have been able to show that the
Henley-Elser decoration may be modified to describe, af-
ter suitable MD annealing, the icosahedral structure of
Al-Cu-Li. s4 It can also be shown that, at least on a local
scale, the two models are not necessarily contradictory.

of the directions of bonds relative to some fixed
direction. re 8 and p are the azimuthal and peripheral an-
gles of a bond, Yj~ are spherical harmonics. The brackets
symbolize an average over all bonds. We consider only
the bonds between nearest-neighbor atoms. The near-
est neighbors are defined from the condition that their
distance is shorter than the distance to the first min-
imum after the main peak of the relevant partial pair
correlation function g~p(R). As in quasicrystals the first
and second peaks are well separated (see Fig. 2), this
definition is sufficiently accurate. Another common def-
inition of nearest neighbors proceeds by the definition
of Voronoi"s or radical-plane polyhedra. r Especially for
the large models, this is a very time-consuming calcula
tion. For the close-packed alloys considered here, both
definitions are almost equivalent.

Correlations between bonds at a distance R are
described by the the bond-angle correlation function
Gi (R):ro

l

G'&(R) = ) (Y~~[8(R),P(R))Yj~[8(0),P(0)]).
m=-I

R is the vector connecting the center of gravity of the two
bonds forming angles O(R), P(R) and 8(0),P(0) relative
to a fixed axis. The average is over all bonds at a fixed
distance R.

C. Bond-orientational order 1. Bond angle distribu-tion functions

The existence of long-range bond-orientational order
is a distinguishing feature of quasicrystals. Orientational
order is not independent of translational order. In crys-
tals the existence of perfect translational order restricts
the orientational order, in particular it excludes long-
range icosahedral orientational order. In liquids thermal
disorder restricts bond-orientational order to short dis-
tances. For supercooled liquids and glasses, computer
simulationsss re indicate the onset of long-range orienta-
tional order with icosahedral symmetry. The existence of
noncrystallographic (i.e., icosahedral) bond-orientational
order in liquids and small clusters has been discussed. as
early as 1S52 by Frank. In the quasicrystals, icosahe-
dral bond-orientational order coexists with quasiperiodic
translational order.

Figure 11 shows that the main characteristics of the
Prank-Kasper phase are preserved in the relaxed higher-
order approximants: the Al(Zn) atoms occupy the cen-
ters of slightly distorted icosahedral coordination poly-
hedra, the Mg sites are coordinated in the form of Fri-
auf polyhedra (Z = 16) and Frank-Kasper polyhedra
(2 = 14, 15), see also Table I. Correspondingly, the bond-
angle distributions around the Al(Zn) sites peak close
to the bond angles of 0 = 63.5', 114.5', and 180' cor-
responding to an ideal icosahedron, the bonds around
the Mg atoms are distributed around the bond angles of
the Friauf and Frank-Kasper polyhedra (8 50' —63',
90' —100', and 140' —145'). This distribution is hardly
changed on relaxation and on going from the Frank-
Kasper phase to the higher-order approximants. Note
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whereas Q4 is strongly reduced relative to the Frank-
Kasper phase (Fig. 12). For the largest model, only the
icosahedral component of the bond-orientations survives.
Upon relaxation, Qs is slightly reduced (indicating a cer-
tain smearing of the icosahedral correlations). This con-
firms that these models are predominantly icosahedrally
oriented and that this is preserved on annealing.

2500

2000

1500

1000
C

C0
Cl

8. Bond an-gle correlation fijnctions
500

Bond-angle correlation functions Gi(R) have been first
studied by Steinhardt, Nelson, and Ronchettiro for liquid
and supercooled liquid Lennard-Jones systems. Stein-
hardt et al. measured the correlation functions by assign-
ing each bond to a nearest vertex of a discrete mesh in
the cubic MD box, the Gi's are then calculated by three-
dimensional fast-Fourier-transform techniques. The in-
troduction of a cubic mesh leads to a coarse-grained sam-
pling and a smoothened decay of the correlation func-
tions with distance. We calculated the G&(R) by ex-
plicitly performing the average over all bonds within the
model. Therefore the bond-angle correlation functions
reflect the shell structure of the atomic packing. Fig-
ures 13 and 14 show the bond-angle correlation functions
Gs(R) and G4(R) for pairs of AA —AA, AA —BB, and

FK PHASE, i d.
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FIG. 11. Bond-angle distributions in the Frank-Kasper
phase and in the higher-order approximants to quasicrys-
taliine (Al, Zn)Mg. Full line: total distribution; dashed lines:
around Al(Zn) sites with peaks close to the bond angles in an
icosahedron; dotted lines: around Mg sites. See text.

that the distribution of the bond angles in the quasicrys-
talline model is similar, but more structured than that
in amorphous alloys of comparable composition. rz
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Q&, l = 2, 4, 6, 8 in the hierarchy of crystalline approximants
[A =Al(Zn), B =Mg]. Full lines: ideal configurations; dashed
lines: relaxed configurations.
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agreement with the observed scattering intensities. For
the higher-order approximants the effect of annealing on
the diffraction pattern is not so evident. Of course, a
really critical test of the structural model could be based
only on a powder difFraction pattern with much better
resolution.

It is also intersting to study the evolution of the single-
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FIG. 14. Same as Fig. 13, but for the 5/3 approximant.
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BB —BB bonds [A =Al(Zn), B =Mg], calculated for
3/2 and 5/3 approximants of Al(Zn)-Mg quasicrystals.
The G4(R) correlation functions reflecting a cubic sym-
metry in the bond-angle correlations decay very rapidly
to zero. On the other hand, Gs(R) remains nonzero even
for the largest distances that can be realized within a
given model. This demonstrates the existence of long-
range icosahedral bond-orientational order.
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D. DifFraction intensities

For a crystalline approximant, the diffraction inten-
sities may be calculated directly from the known co-
ordinates and oeeupation probabilities of atomic sites.
The distribution of Al and Zn atoms in Al(Zn) sites was
supposed to be uniformly random. With increasing or-
der of the crystalline approximant, the Bragg reflections
are more densely spaced, but the intensity is concen-
trated in a few dominant difFraction spots approaching
the most important icosahedral reflections. The relax-
ation of the idealized structure leaves the positions of
the Bragg reQections unchanged, but modulates their in-
tensities. In Fig. 15 we compare the powder diffraction
patterns of the ideal and relaxed approximants arith those
measured measured for the Frank-Kasper and the icosa-
hedral phases. "s We fin that the position of the most
intense Bragg peaks of the crystalline approximants con-
verge very nicely towards the (100000), (110000), and
(111101)diffraction peaks of the icosahedral phase. For
the Frank-Kasper phase, the relaxation of the idealized
structure turns out to be essential for achieving a good
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FIG. 15. X-ray powder diffraction patterns for the ideal
(a) and relaxed (b) rational approximant of (AI,Zn)Mg, com-
pared with observed scattering intensities of the Frank-Kasper
aud the icosahedral phases (after Ref. 75).
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a = a„ is the period of cubic symmetry, see Tables I and II,
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crystal diffraction patterns in the series of the approxi-
mants. Figure 16 shows the diffraction patterns in the
[100]plane, i.e., in a plane perpendicular to a twofold axis
of the quasicrystalline approximants and of the limiting
quasicrystal. We find that as the period of the lattice is
increased, the Bragg reflections are more densely spaced
(they are dense everywhere in the quasiperiodic limit),
but the scattering intensity is increasingly concentrated
in the few characteristic Bragg spots corresponding to
the main low-index Bragg reflections in the icosahedral
phase. Note that the 1/0, 2/1, and 3/2 approximants
with t = t, have space group symmetry Pa3, so that in
the (100) plane only reflections (Okl) with k = 2n (even)
are allowed.

Unfortunately no single-crystal diffraction data are
available for icosahedral Al-Zn-Mg. Also, the redistribu-
tion of the intensity in many closely spaced low-intensity
peaks will hardly be observable experimentally. The
modifications observed for the main diffraction peaks
however are fully confirmed by the powder data.

VII. CONCLUSIONS

We have presented an investigation of the structure
and stability of quasicrystalline alloys under realistic in-
teratomic forces. The example chosen for our study is
the icosahedral Al-Zn-Mg quasicrystal. We show that
the quasicrystalline structure proposed for this system is
stable only at the composition leading to an electron-per-
atom ratio close to e/A 2.1 —2.2, a value which has
been found to be characteristic for many quasicrystalline
simple-metal alloys. The stability of the quasicrystalline
phase is shown to depend on a constructive interference
between the oscillations in the pair potentials and the in-
teratomic distances. This requires that the Friedel wave-
length of the potential A~ corresponds to the interatomic
distances d, i.e. , As - d. This condition is just the real-
space formulation of a Hume-Rothery criterion for the
electronic stabilization of a phase, 2k~ ~Q~, where
Q is the wave vector of a Bragg reflection. Thus our
study extends and confirms recent arguments in favor of
an electronically driven stability of quasicrystals formu
lated in terms of pseudogaps in the electronic density
of states induced by the "quasi-Brillouin-zone" —Fermi-

surface interactions. ~s

Any purely geometric description of a quasicrystal in
terms of decorated Penrose tilings, as an icosahedral
glass, or a random assembly of icosahedral clustersrs is
necessarily only a first approximation. In a quasicrys-
tal, any atom is found in an infinite number of different
environments (at least if the range of interaction is ex-
tended far enough). Hence the interatomic forces will
lead to a displacive modulation of the idealized models.
In our paper we present a detailed investigation of modu-
lated tiling models. A modulated tiling is a quasiperiodic
structure in which the atoms can be described as posi-
tions in a tiling and displacements such that the displace-
ment field has the same symmetry as the tiling itself (or,
more precisely, the displacement field has Fourier com-
ponents belonging to the Fourier module of the tiling77).
Our results show that for a series of higher-order crys-
talline approximants the displacements induced by re-
alistic interatomic forces conserve the symmetry of the
model and improve the agreement with the observed pair
correlation functions and diffraction patterns compared
to earlier modeling studies based on idealized tiling mod-
els.

The results presented here refer to a metastable Al-Zn-

Mg quasicrystal. Preliminary resultss4 show that equally
good fits can be achieved for the stable quasicrystals of
the Al-Cu-Li class. Here again the displacive modulation
is found to play a decisive role. Using interatomic forces
based on tight-binding bond theory, rs 7s it will be pos-
sible to extend these studies to quasicrystals of the Al
transition-metal class.

Note added in proof. Recent resultssos~ have shown
that the modulated tiling models and the interatomic
forces discussed in this paper provide an excellent basis
for investigating the properties of vibrational excitations
in quasicrystals of the Al-Zn-Mg and Al-Cu-Li classes.
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