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Phonon modes and melting properties of two-dimensional Penrose lattices
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We study the phonon modes and melting properties of two-dimensional Penrose lattices with fivefold

rotational symmetry. %'e use a similarity transformation to reduce the numerical calculations, which
also helps us determine analytically the degeneracies of the phonon modes. It is found that two-thirds of
the modes are doubly degenerate and the remaining one-third nondegenerate. Using the mean-square
atomic-displacement criterion of Lindemann, we have studied the melting properties of two-dimensional
Penrose lattices and found that the boundary atoms always have a lower melting temperature than those
in the bulk.

I. INTRODUCTION

The discovery of a quasicrystalline phase in Al-Mn al-

loys by Schechtman et al. ' in 1984, which give a
diffraction pattern with peaks showing icosahedral sym-

metry, has led to widespread interest in quasicrystalline
systems. ' Many results on the electronic and phonon
properties of two-dimensional quasicrystalline systems
have been reported in recent years:" ' The lattice vi-

brational properties of two-dimensional quasicrystalline
systems have been numerically studied by various au-

thors. Odagaki and Nguyen' have studied the lattice vi-

brations of Penrose lattices constructed with kites and
darts perpendicular to the lattice plane and found energy

gaps in the spectrum due to the aperiodic structure.
Kohmoto and Sutherland' have investigated the ex-

istence of localized modes in a system similar to that of
Odagaki et al. Nishiguchi and Sakuma' studied the vi-

brational spectra and energy distribution of Penrose lat-
tices with fivefold rotational symmetry constructed with
fat and thin rhombi, but they have not investigated the
degeneracy of the phonon spectrum resulting from the
fivefold rotational symmetry of these systems. On the
other hand, no theoretical study has been reported on the
melting properties of the quasicrystalline systems, espe-
cially from the view point of lattice dynamics. It is well
known that for a two-dimensional inftnite periodic sys-
tem, the mean-square atomic displacement (MSD)
diverges logarithmically as the number of atoms in-

creases. Because the structural stability of a Penrose
quasiperiodic system is lower than that of a regular sys-

tem, a higher degree of divergence is expected. Therefore

a three-dimensional model should be far more reliable to
use in dealing with melting problems. However, because
of the complicated geometric structure of quasiperiodic
lattices, one cannot in general obtain analytic solutions
for the problems under study even for their one-
dimensional counterparts. On the other hand, the capa-
city of present-day computers (even supercomputers) can-
not handle a three-dimensional quasiperiodic system of a
reasonable size; therefore as a first step in the theoretical
study of these systems, we consider the melting proper-
ties of a two-dimensional Penrose system of finite size, by
using the Lindemann criterion. Penrose quasilattices
with fivefold rotational symmetry can be obtained by the
generalized dual method (GDM) from a periodic pen-
tagrid' (see Fig. 1). For the study of phonon modes of
Penrose lattices, there are primarily two kinds of model:
the center model and the vertex model. "' In the
present paper, we concentrate on the vertex model,
whose atoms are located at vertices of the rhombi. In
Sec. II we first present the dynamical matrices of these

systems, then introduce a similarity transformation to
put the dynamical matrices in block-diagonal form,
which helps us draw some conclusions analytically on the
degeneracy of the phonon spectrum and which leads to
remarkable savings in computing time and a reduction in

the computer memory required. In Sec. III we use the
block-diagonal method to calculate the density of states
of these two-dimensional Penrose lattices. In Sec. IV we

use the mean-square atomic displacement (MSD) cri-
terion of Lindemann to study the melting properties of
the two-dimensional Penrose lattices that have been ex-

tensively used to model the melting transition of surfaces
and the bulk. '
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Y cent sublattices. We label the atoms of the five identical
wedge sublattices in the same way; then the dynamical
matrix D can be written as follows in Eq. (2.1). Here

T

a 0
0 aC =

FIG. 1. The Penrose lattice with fivefold rotational symmetry
studied. The number of vertices (atoms) is N=471.

is a 2X2 matrix corresponding to the central atom.
t1, t2, . . . ,~t, which are the interaction matrices be-

1

tween the central atom and atoms of the first wedge sub-
lattices, are also 2X2 matrices. Ao is a 2N, X2N,
dynamical matrix for the first wedge sublattices. H is the
interaction matrix between the first and second wedge
sublattices, which is also a 2N, X2N1 matrix. H is the
transpose of matrix H. In formula (2.1), the 2X2 ma-
trices uk and 2N, X2N, block-diagonal matrices Vk are,
respectively,

II. REDUCTION OF DYNAMICAL MATRIX
AND DEGENERACIES OF SPECTRUM cos(2k' /5 ) sin(2k n. /5 )

sin(2k n /5 ) cos(2k m/5 )
(2.2a)

For two-dimensional Penrose lattices with fivefold ro-
tational symmetry, we can divide the lattice into five
identical wedge sublattices, all of which share the central
atom (Fig. 1)." Assume that in every sublattice there are
N1 atoms, and an interaction exists only between adja-

Vk 1NI xN ~k, with k = 1,2, 3, and 4, (2.2b)

where 1N xN is the N1 XN1 unit matrix. Now we intro-
1 1

duce a transformation matrix P as the following:

i —1+5 2X2NI 2X2N] 2X2N& 2X2NI 2X2N&0 0 0 0 0

1

vS
P=

—2N) X20

—2NI X20

—2N) X20

2N, x20

0—2NI X2

2NI X2N&1 —1V

2N, x2N,1 C1V1
2

2N) X2NI 1 11 c V

2NI X2N]1 C1V1

—2N) X2N1 1—11 c V

—2V

C2V2

C2 V2
2

C2 V2
3

4

~3V

C3 V3

C3 V3
2

C, 3 V3
3

C, 3 V3

c,4V4
2

4V4
3

c4V4
4

(2.3)

where 1» x» is the 2N, X 2N, unit matrix, V„, with k=1,2,3, and 4, are 2N, X2Ni matrices, and sk =exp(i2mk/5),
with k = 1,2,3, and 4, are the fifth roots of unity.

Then matrix P D P ' is given as

0 -1X2N)0 -1X2N)0 —1X2Ni -1XZNi0 0
~io

2

0 —1 X2NI0
&io

1 X2N& 1 X2N]T 0 0 —1X2NI0

PDP-'=
—2NI X10

2N, x10

0—2Ni X1

—2NI X10

—2Ni X10

2N1 X10

—2Ni X10

—1
A'

0

0

0

0

A2

0

0

0

A3

0

0

0

—4
A'

0

0

0

(2.4)

x10 0 0 0 0 —5
A'
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Ai=AO+ViH +H Vi

Ao+c.4V, H +&~H

(2.5a}

(2.5b)

where T=(t, ~t ), which is the interaction matrix

between the central atom and atoms of the first wedge
sublattices, is a 2XN& matrix. The 2N, X2N, subma-

trices A, with i =1,2,3,4, and 5, are, respectively,

4

X(j)=1m(Q—,
' 8 VkekX2),
k=0

i i x(1)
X(j)=Re ~ 1 1 (2)

4

v —, Vk E/ x2k=0

(2.8b)

(2.9a)

A3=AP+c2V)H +c2H V)

A4= Ao+c3ViH +c3H Vi

A5=AO+c4V)H +e4H) V

(2.5c)

(2.5d)

(2.5e)

A)=A ) .
'I 7

(2.6a)

and we obtain the submatrices A;, with i =1,2,3,4, and 5,
as follows:

i i x(1)
X(j) Im

4
Sim Q—', 8 V„ekx2k=0

L

(2.9b)

III. DENSITY OF STATES

where the e means direct sum, x(1) and x(2) are the am-
plitudes of the central atom, and V„are as defined by for-
mula (2.2.b).

A3=A3,

A4=A4,

—2
A'

7

&iO
—1

T

(2.6b)

(2.6c)

{2.6d}

In this section, we apply the block-diagonal method
presented in Sec. II to the study of the density of states
for a Penrose lattice shown in Fig. 1. We consider atomic
vibrations in the plane parallel to the Penrose lattice and
deal with vibrations in the harmonic approximation. The
equation of motion is written in terms of the dynamical
matrix ID &(I,l') j as follows:

rn&co U (1)=—gD &(l, l')U~(1'), (3.1)
I',P

A5=

—5
A'

(2.6e}

Evidently, the eigenvalues of the dynamical matrix D
are the sum of those of A&, A2, A3, A4, and A, . Be-
cause

E'2 65 and E'3 64

we have

A2= A5 and A3= A4 .

On the other hand, A s are Hermitian; consequently, A 2

and A5, and A3 and A4, have identical eigenvalue spec-
trum, but A

&
has an independent spectrum. We can con-

clude that for two-dimensional Penrose lattices with five-
fold rotational symmetry, two-thirds of the states of the
phonon spectra are doubly degenerate and one-third of
the modes are nondegenerate. This result is in agreement
with that of the numerical simulation.

If X] X2 and X3 are used to denote, respectively, the
eigenvectors of the first, second, and third submatrix,
then the corresponding eigenvectors X(j) for the whole
system can be constructed by the sub-eigenvector X,
For different X;, the X(j) has a different expression
shown as follows:

V, =—,
' g' k;, [(u, —u;).a;, ]', (3.2a)

V, =
—,
' g's, "k( a,"Xu —e,"Xu;—e,k Xuk+e;k Xu;},

E,J, k

(3.2b)

where mI is the mass of the 1th site in the ath atom,
U (1) is the displacement of the atom at the 1th site in the
ath direction, and m is the frequency of vibration.

In this paper, we investigate only the atomic vibrations
in the plane parallel to the Penrose lattice and apply the
Born model with central and angular forces con-
sidered. ' ' First, we study the deformation of rhombi
of the Penrose lattice, which is shown in Fig. 2. The po-
tential energy due to the deformation can be resolved into
two parts: V, corresponds to the bond stretching and V,
due to the bond bending of rhombi; they are written, re-
spectively, as follows

X(j)=(1/&5) e V„X, ,k=0
4

X(j)=Re(Q—', e VkckX3),k=0

(2.7)

{2.8a}

FIG. 2. Relative position vectors between lattice sites R,J.,
displacement vectors of atoms u;, and the relative position vec-
tors between atoms R;, , in a rhombus (Ref. 16).
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where c,;J =R;~/~R;, ~, and k;~ and E;.k are the force con-
stants of the central and the angular forces, respectively.
The summation in Eq. (3.2a) is performed over all of the
connected pairs; Eq. (3.2b) is carried out over all angles of
the rhombi in the lattice.

The dynamical matrix elements DI„~ can be expressed
as

C;„Ii=S,„k y s s' —«s'i(1 —
&i »

i (&t)

(3.4)

Here we assumed that k; =k and c;k=a., then the
dynamical matrix elements C&„p due to the bond stretch-
ing can be obtained as

a'v, a'v.
D,„f'= ' + ' =C,„~+A,„~ .

au, oui' au, aug
(3.3)

where the superscripts a and P denote the Cartesian
coordinates. The dynamical matrix elements AI„~ due to
the bond bending can be written as

AP„= 2s g—[(sik —s,, )(si„—sij ) 5—' (sfk s]J
—)(Efi,

—
s]k )]—s g s,is, i

—5 g eris~i, n =I;
j,k k, i r

A;„~= s g s„,(s~„—s~ )
—5'~g sf (s]'„s]'—) —s g s~, (s„„—e„,) —5 ~g s~, (s~„—Er, ), n =1+1;

k k

Ai„~=s y Et'„a~i '51'y—s)'„Er„', =I+2 .

(3.5a)

(3.5b)

(3.5c)

Equation (3.5b) is for the case that the 1th and nth sites
are nearest neighbors. Equation (3.5a) expresses the con-
tribution of angular force to the diagonal elements, in
which the summation over j and k are performed for the
nearest neighbors of the 1th site, and the sum over i for
the second-nearest neighbors through the atom at the kth
site. The sum is for the nearest neighbors of atoms at Ith
or nth site. Equation (3.5c) is for the second-nearest
neighbors, in which the summation is performed over the
nearest neighbors of both atoms at the lth and nth sites.

We have used the block-diagonal method presented in
Sec. II and the equation of motion (3.1) to calculate nu-

merically the eigenfrequencies and density of states,
D (co~), for the Penrose lattice shown in Fig. 1 under the
free boundary condition. The force constants k and c are
taken to be unity, respectively, and the masses of atoms
are all the same and equal unity. The numerical results
are shown in Fig. 3, in which it can be clearly seen that
the spectral peaks appear at co =2.5, 9.3, 13.0, 17.1, 21.0,
and 24.0, and a large gap appears near m =24.0. These
results are in good agreement with those of Nishiguchi
et al. , who have numerically studied the same system but
did not use the block-diagonal method. '

I. Ii(I, I') =m, co 5 P„+D P(I, I') . (4.1)

Let U=[U (I)] denote the displacement vector; the
equation of motion can be rewritten as

different criteria for the melting temperature. In this pa-
per, we will use the mean-square-displacement (MSD) cri-
terion of Lindemann to investigate the melting properties
of two-dimensional Penrose lattices. MSD can be experi-
mentally measured by using low-energy electron
diffraction (LEED) or the Mossbauer effect, while it is
also easier to tackle in a theoretical study. For crystals,
when the amplitude of MSD reaches a critical fraction
(10%) of the lattice constant, it is considered to start
melting. By use of the Green's function, we can obtain
an equation which relates the MSD, eigenvectors, and ei-

genvalues. Applying this equation to the two-
dimensional Penrose system shown in Fig. 1, we first cal-
culate the MSD for different kinds of atom, that is, we

study the effects of coordination-number differences on
the melting temperature.

According to the equation of motion (3.1), we intro-
duce a matrix

LU=O . (4.2)

IV. MEAN-SQUARE DISPLACEMENT AND MELTING

The study of melting of surfaces and interfaces is an ac-
tive field of solid-state physics. ' There exist several

LG =I, (4.3)

The phonon Green's function 6 satisfies the following
equation:

where I is the unit tensor.
The relation between the atomic MSD and the phonon

Green's function 6 ii(1, 1', —0„)simply is

([U (I)]')= —(1/P) y 6..(l, l, —&„'), (4.4)

&0 15 20 25 ~'

FICx. 3. Density of states of the lattice vibrations of the Pen-
rose lattice studied (shown in Fig. 1). The force constants k and
E are taken to be unity. So are the atomic masses M; (I)= 1.

where 0„=2mnks T and P= 1 lks T, kii is Boltzmann's

constant, T is the temperature. 20

In the high-temperature limit T» TD, where TD is an
2

eff'ective Debye temperature for nWO, 6 (l, l, —0„)
=0„,so that the term with n=0 will make the main
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FIG. 4. Mean-square displacement (MSD) vs position param-

eter R for the Penrose lattice studied (shown in Fig. 1). The
force constants k and s are taken to be unity. So are the atomic
masses M;(I)=1.

([U (1)] ) = —kaTG, (1,1,0), (4.5)

If we have obtained the normalized eigen vectors
[e„(1)] and eigenfrequencies [io„} from Eq. (3.1), then
the phonon Green's function can be expressed as

u„"(1)uf(l')
G p(l, l', a)i)= g

n

where u„(1)=e„(l)//m&. Then

G (1,1',0)= —g [u„'(1)u„(1')]/co„.

(4.6)

(4.7)

From formulas (4.7) and (4.4), finally we have

( [ U (1)] ) =ka T g [u „'(1)u„(l ) ]Ice„. (4.8)

contribution to the sum in Eq. (4.4), and the other terms
can be neglected. Consequently, we have

FIG. 5. Mean-square displacement of atoms located at the
vertices of the Penrose lattice studied with atom number
N=471. k =c= 1 and M; (I)= 1, as for Fig. 3.

We have also investigated the MSD difference among
atoms with different coordination numbers but the same
position parameter R. Table I shows that the atom with
larger coordination number has smaller MSD. This re-
sult agrees with physical intuition: An atom with larger
coordination number is more tightly bound by neighbor-
ing atoms. It also means that the crystals would have a
higher melting temperature with stronger interactions
among atoms.

Our conclusion that melting starts at the surface is
based on the Lindemann criterion, and is therefore not
final. A more comprehensive and definitive conclusion
needs a more detailed and sophisticated theory, which is
not at present available.

In what follows we apply the formula (4.8) to calculate
the MSD of the Penrose lattice shown in Fig. 1.

We assume all atoms to have unit mass,

M;(I) = I, (4.9)

where I is the coordination number of the ith atom. It
means that for the eight kinds of vertex of these Penrose
lattices, the located atoms have the same mass. Because
the Penrose lattices being studied are circlelike and have
rotational symmetry, in this case, it is natural to choose
R, the distance from the ith vertex atom to the central
atom, as its position parameter. The numerical results,
which show the relationship between the MSD and the
position parameter R, are plotted in Figs. 4 and 5. We
can clearly see that the fluctuation of MSD is smaller in
the bulk, but larger at the boundary. On the other hand,
the MSD of boundary atoms are about three times as
large as that of bulk atoms. It means that the boundary
area will start melting before the bulk. This result is
reasonable, and is the same as that of crystal systems.

V. SUMMARY AND DISCUSSION

Based on the fivefold rotational symmetry of the two-
dimensional Penrose lattices studied, a similarity trans-
formation is introduced to make the dynamic matrix
block-diagonal. This approach serves to reduce the com-
puting time and computer memory required, and also al-
lows us to determine analytically the degeneracy of the
phonon modes. We have extended this approach to the
general case of two-dimensional quasilattices with arbi-
trary N-fold rotational symmetry, and conclude that
when N is even, N —2 out of the N+ 2 phonon modes are
doubly degenerate and the remaining four phonon modes
are nondegenerate. When N is odd, N —1 out of the
N+1 phonon modes are doubly degenerate and the
remaining two phonon modes are nondegenerate. In this
way, we can easily use the block-diagonal approach
presented in this paper to deal with the recently
discovered two-dimensional quasicrystalline systems with
eightfold, tenfold, and 12-fold' rotational symmetries.

We have obtained the relation among mean-square

TABLE I. Mean-square displacement (MSD) for different kinds of atom.

Coordination
Number
MSD (units of k& T)

4
0.772

2.618

6
0.675

3
0.860

5.626

5
0.781

3
1.135

8.472

7
1.032

5

1.340

9.427

6
1.267

4
1.527

9.827

5

1.325
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atomic displacement (MSD), eigenvectors, and eigenval-
ues of dynamical matrix. By using the MSD criterion of
Lindemann, we have studied one case, in which the nu-
merical results show that the boundary region does al-

ways start melting before the bulk and that atoms with
larger coordination number will have smaller MSD,
which means that they are more dif6cult to melt. These
results are reasonable as the boundary atoms are less con-
stricted than the bulk atoms. The melting properties of
the quasicrystals are influenced by many other factors,
such as the number of atomic species, atomic spacings,

variable force constants, and alloy constituents. A more

detailed study of the melting properties of quasicrystals,

in both the experimental and theoretical aspects, is still

necessary.
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