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Photonic band gaps in periodic dielectric structures: The scalar-wave approximation
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Using a plane-wave expansion method we have computed the band structure for a scalar wave propa-
gating in periodic lattices of dielectric spheres (dielectric constant e, ) in a uniform dielectric background
(e&). All of the lattices studied (simple cubic, bcc, fcc, and diamond) do possess a full band gap. The op-
timal values of the filling ratio f of spheres and of the relative dielectric contrast for the existence of a

gap are obtained. The minimum value of the relative dielectric contrast for creating a gap is also ob-
tained. These results are applicable to the problem of classical-wave propagation in composite media
and relevant to the problem of classical-wave localization.

I. INTRODUCTION

Recently, there has been growing interest' in the
studies of the propagation of electromagnetic (EM) waves
in three-dimensional (3D) periodic andlor disordered
dielectric structures (photonic band structures). The
reasons for this interest are both fundamental and practi-
cal. The possibility of the observation of Anderson local-
ization of EM waves in disordered dielectric structures,
where the strong el-el interaction effects entering the
electron-localization problem are absent, is of fundamen-
tal interest. ' Also in analogy to the case of electron
waves propagating in a crystal, classical EM waves trav-
eling in periodic dielectric structures will be described in
terms of photonic bands with the possibility of the ex-
istence of frequency gaps where the propagation of EM
waves is forbidden. The potential applications of such
photonic band gaps are very interesting. It has been sug-
gested that the inhibition of spontaneous emission in
such gaps can be utilized to substantially enhance the
performance of semiconductor lasers and other quantum
electronic devices. Photonic band-gap materials can also
find applications in frequency-selective mirrors, band-
pass filters and resonators. Moreover, electromagnetic
interaction governs many properties of atoms, molecules
and solids. The absence of EM modes inside the photon-
ic gap can lead to unusual physical phenomena. For
example, atoms or molecules embedded in such a materi-
al can be locked in excited states if the photons to be
emitted to release the excess energy have frequency
within the forbidden gap. In addition, John has pro-
posed that Anderson localization of light near a photonic
band gap might be achieved by weak disordering of a
periodic arrangement of spheres.

It is therefore, very important to obtain structures with
a frequency gap where the propagation of EM waves
is forbidden for all wave vectors. Yablonovitch and
Gmitter have demonstrated the soundness of the basic
idea of photonic bands in 3D periodic structures in an ex-
periment using microwave frequencies, where the period-
ic structures can be fabricated by conventional machine
tools. In addition, a photonic gap in a face-centered-
cubic (fcc) dielectric structure was reported. During the

same period, theoretical studies of the propagation of EM
waves in 3D periodic structures began. ' At first, the
photonic band structures have been examined theoretical-
ly in the scalar-wave approximation ' in which the vec-
tor nature of the EM field is ignored. It soon became ap-
parent' " that not so many aspects of the experimental
photon bands in periodic dielectric structures can be un-
derstood in terms of scattering of scalar waves. However,
the scalar-wave approach is directly applicable to the
scattering of acoustic waves, an area of equally active in-
terest and to the localization of acoustic waves. ' ' Re-
cently, by expanding the EM fields with a plane-wave
basis set, Maxwell's equations were solved exactly, '

taking the vector nature of the EM field fully into ac-
count. Comparison of the calculated' ' results of the
fcc structure with experiment indicated that, while the
experimental data and theory agree very well over most
of the Brillouin zone, there are two symmetry points (8'
and U) where the experiment indicates a gap, while calcu-
lations show that propagating modes exist. It is now be-
lieved that the fcc structure does not possess a full pho-
tonic band gap in the lowest bands, instead there is a re-
gion of low density of states rather than a forbidden fre-
quency gap.

We discovered a group of periodic dielectric struc-
tures' that possessed full photonic band gaps. This pro-
posed structure is an arrangement of dielectric spheres in
a diamond lattice structure. A systematic examination'
of the photonic band structures for dielectric spheres and
air spheres on a diamond lattice as a function of refrac-
tive index contrasts and filling ratios was made. It was
found that photonic band gaps exist over a wide region of
filling ratios for both dielectric and air spheres for
refractive-index contrasts as low as 2. However, this dia-
mond dielectric structure is not too easy to fabricate,
especially in the micron or subrnicron length scales
relevant for infrared and optical devices. We have also
determined' new periodic dielectric structures, which
can be regarded as a practical implementation of the dia-
mond structure, that possess full photonic gaps, but at
the same time are easier to fabricate. One of these struc-
tures, the "3-cylinder structure, " which consists of three
sets of cylinders drilled into a dielectric material at 35.26
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degrees off normal, has been fabricated' in the millime-
ter length scale and shown to possess full photonic gaps
in the microwave region, in agreement with the predic-
tions' of our theoretical calculations.

In spite of the extensive attention that the question of
classical-wave localization had received recently, there is
no conclusive evidence yet that classical-wave localiza-
tion is indeed possible in disordered systems character-
ized by a positive definite random dielectric function. In
a recent paper, Soukoulis et al. ' demonstrated numeri-
cally that classical-wave localization does take place in a
lattice model. This numerical work, together with ap-
proximate calculations based on the coherent-potential
approximation' (CPA) and the potential-well analogy
(PWA), provided for the first time strong evidence that
classical-wave localization is possible in a composite sys-
tem consisting of spheres of radius r, and of dielectric
constant e, embedded randomly into a medium of dielec-
tric constant eb (e, ) e& ). Drake and Genack ' reported
measurements of the optical diffusion coefficient in a sys-
tem of close-packed titania spheres strongly suggesting
that the critical regime very close to localization has been
reached for the first time. However, Albada et al. have
recently argued that the reported ' exceptionally small
diffusion constants can be attributed to small transport
velocities rather than to small mean free paths.

Thus, the outstanding problem in classical-wave locali-
zation is to 6nd the optimal conditions for its realization.
The relevant parameters are the filling fraction f, the ra-
tio of the two dielectric constant e, /eb and the frequency
co (in units 2nc/a+eb) The num. erical results and the
CPA-PWA treatment' show that the single sphere Mie
resonances persist in strongly influencing the transport
properties even for rather high values of f, which for the
CPA-PWA approximate results can reach up to the
close-packed limit. However, for the high-f regime,
there is no way of systematically estimating the accuracy
of the CPA-PWA results, since this high-f regime cannot
be easily studied by the numerical technique of Ref. 17 or
by any other numerical method. Therefore, there is a
great need for an independent reliable way to check exist-
ing results' and also different theoretical methods, ' in
the area of classical-wave localization, within the scalar-
wave approximation. We can very reliably calculate the
bands and gaps if the dielectric spheres form a periodic
lattice. It is very plausible that a connection between the
gaps in a periodic system and the ranges of localized
states in a random system exist. At least for weak disor-
der, and/or for high-f (approaching the close-packed
limit), the regions of localized states practically coincide
with the positions of the gaps. This is exactly the reason
that John has proposed that classical-wave localization
might be achieved near a gap by weak disordering of a
periodic arrangement of spheres. Finally, the photonic
band structure within the scalar-wave approximation of
periodic lattices of dielectric spheres in a uniform dielec-
tric background is also directly applicable to the scatter-
ing of acoustic waves, an area of equal importance.

The purpose of this paper is to make a systematic
study of the band structure for a scalar wave propagating
in periodic lattices, such as the simple cubic, bcc, fcc, and

II. PHOTONIC BAND STRUCTURE
IN THE SCALAR-WAVE APPROXIMATION

We consider the scattering of a scalar classical wave

propagating in periodic lattices of dielectric spheres with
dielectric constant e, and radius r, in a uniform dielectric
background of eb. The wave equation for a classical sca-
lar wave of amplitude E(r) and frequency co propagating
in such a dielectric medium can be described by the fol-
lowing equation,

NV' E(r)+ e(r)E(r)=0 (la)
C2

or

CO NVE(r)+ z
e—

b V(r)E(r)= ebE(r),
C C

where the "effective potential" V(r) in Eq. (lb) given

V(r)= 1—e(r)
E'b

(lb)

(2)

with e(r)=e, inside the spheres and e(r)=eb inside the
host and c is the vacuum speed of light. Although the
equation is of scalar form, and therefore neglects the vec-
tor nature of the photon, it retains an important charac-
teristic, which is that the effective potential is proportion-
al to co and thus vanishes in the long-wavelength limit.
This has soigne important physical consequences in the
present problem as well as in the photon localization
problem. In addition, this scalar-wave approximation is
usually applicable to the scattering of acoustic waves and
also forms the basis of the diffraction theory of Kirchoff
in optics.

The scalar-wave equation [Eq. (1)] was studied in con-
nection with the photonic band-gap problem and the

diamond of dielectric spheres in uniform dielectric back-
ground. Both the cases of dielectric spheres and air
spheres are examined. In all the cases we examined, the
lattice constant a was kept constant and the radius r, of
the spheres was varied to change the filling fraction f.
All of the lattices studied do possess photonic band gaps
for both dielectric spheres and air spheres for reasonable
values of the relative dielectric contrast. The optimal
values of the filling ratio f and of the dielectric contrast
for the creation of a gap are obtained. We find that when
we fixed the dielectric contrast at 15, photonic band gaps
exist over a wide range of filling ratios for both dielectric
spheres and air spheres. For dielectric spheres for the
lattices studied the largest gap occurs at f=0.08, while
for the case of air spheres the largest gap occurs at

f=0.95. The minimum value of the relative dielectric
contrast for creating a gap is also obtained for all the lat-
tices studied for both dielectric and air spheres. We find

that photonic band gaps exist when the dielectric con-
trast exceeds four. The fcc lattice gives a gap when
dielectric ratio exceeds three, for f=0.08.

In Sec. II, we describe the scalar-wave approximation
and the plane-wave method. In Sec. III, we present and
discuss the results and in Sec. IV, we summarize the con-
clusions of this work.
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classical-wave localization problem by a number of au-
thors using a variety of band-structure methods such as
the Korringa-Kohn-Rostoker method, the augmented-8

9 10—12plane-wave method, and the plane-wave method. It
is by now well understood' ' that the scalar-wave equa-
tions, which neglect the coupling between the two polar-
ization modes of the EM field, do not describe key
features such as the existence of band gaps in the propa-
gaation of EM waves in periodic dielectric structures. For
example, in the fcc structure the scalar-wave approxima-
tion predicts the existence of a photonic gap where no

ap exists in the full vector wave equation. For the dia-
mond lattice, where the full vector wave equation gives
a gap, the double degeneracy of the states along the 8'
and X prohibits the opening of a gap in the scalar approx-
imation. Thus, important symmetry information is lost
when the vector nature of the EM field is neglected.

For a periodic arrangement of the spheres V(r), and
therefore, e(r) can be expanded in terms of its Fourier
coeScients e&, where G is the reciprocal-lattice vector.

e(r) =g roe'
6

The wave function E(r) follows the standard Bloch
theorem and can be also expanded in terms of the plane
waves

ei(t+G) r1

&n

0.6—

0.5—

0,4—

(D

0.3—
Q)

0.2—

0.1—

0.0

o.e ——

O
C
0)

0,4—

0.2—

0.0

1.0

wave vector

I N

wave vector

(b)

where k is a wave vector in the Brillouin zone of the lat-
tice. 0 denotes the normalization volume. The wave
equation [Eq. (la)] can be expressed as a matrix equation

[—T+(co lc )E]/=0,
~here

0.8 "

O 0.6—
C
(D

U

0.4—

TGG, = ~k+G~ 5GG, , eGG, =—f e ' "e(r)d r .

Now for nonzero k, T is positive definite and we can
rewrite the Eq. (5) as

C2
( T—1/2&T —1/2)q~—

Q)

0.2—

0.0
X U

1.2

1.0—

wave vector

(c)

The problem then is transformed to an
eigenvalue problem. The k =0 case can be easily treated
b a simple subspace projection. Hence, the eigenvalues
of the matrix T ' eT ' will give the allowed photon
modes at the wave vector. We note that in our method
the structure of the dielectric crystal enters the calcula-
tion only through the position-dependent dielectric func-
tion e(r), which is evaluated on a fine grid in the real-

space unit cell and Fourier transformed into reciprocal
space. Thus, our method is able to treat any periodic ar-
rangements of objects with arbitrary shapes and filling ra-
tios. We find that the results for the lowest ten bands
converge fairly rapidly. This is unlike conventional elec-
tronic band calculations where a convergence problem
arises for the plane-wave method because wave functions
are rapidly oscillating near the attractive atomic core po-
tentials and are plane-wave-like outside the atomic re-
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FIG. 1. Calculated photonic band structure along important
bsymmetry lines in the Brillouin zone for (a) simple cubic,

bcc, (c) fcc, and (d) diamond dielectric structure composed of
dielectric spheres of dielectric constant 15 in air background.
The filling ratio of the dielectric material is 10%. The frequen-

cy co is given in units of 2mc/a, where a is the cubic lattice con-
stant.
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c 1 Ie(G) I (7a)

and

co k
c

k'
I e(G) I'

2e,„G G
(7b)

where e,„ is the average value of the dielectric constant,
i.e., e,„=fe, + (1 f)eb. O—ur numerical results, dis-
cussed below, have veri6ed Eq. (7b).

IH. NUMERICAL RESULTS

We have made a systematic examination of the photon-
ic band structures for dielectric spheres and air spheres
on the simple cubic (sc), bcc, fcc, and diamond lattices as
a function of the dielectric constant ratios and filling ra-

gions. Results reported in this paper were obtained with
matrix sizes of the order of 750. Frequencies are con-
verged to better than l%%uo.

Finally, we want to mention that the form of Eq. (6) is
very useful in deriving analytically the dispersion relation
ro vs k in the long-wavelength limit k ~0. Using Eq. (6)
within the second-order perturbation theory we obtain
that

tios. In all the cases we examined, the lattice constant a
was kept constant and the radius r, of the spheres was
varied to change the filling fraction f. f is equal to
4rrr, /30„n, where Q„s is the unit-cell volume of the lat-
tice under examination.

In Fig. 1, we show typical photon bands for the simple
cubic, bcc, fcc, and diamond structure. The bands are
shown along important symmetry lines in the Brillouin
zone for the case of dielectric spheres with dielectric con-
stant e, =15 in air background and sphere filling ratio

f=0.10. The frequency r0 is given in units of
2nc+es/a, where a is the cubic lattice constant for all

the structures. Notice that within the scalar-wave ap-
proximation all these structures give a full band gap in
which scalar waves are forbidden to propagate in any
direction. For the diamond lattice there is a degeneracy
at X and 8'and one has to open a gap to higher frequen-
cies. Of course, in the long-wavelength limit k~O, we
see the linear dispersion relation, ro=ck/Qe, „,with the
average dielectric constant given by e,„=fr, +(1 f)eb-
This linear dispersion relation follows from Eq. (6)
within the perturbation theory in the k~0 limit, as was
shown briefly in Eq. (7).

We have made a systematic effort to obtain the optimal

0.4

0.4

fcc
bcc
diamond
sc

0.3-

3
0.2-3

fcc
bcc
diamond
Sc

0.1-
0.1-

0.0
0.0 0.2 0.4

L
0.6

I

0.8

(a)

1.0

0.0
0.0

I

2.0
I

4.0
I

6.0 8.0 10.0 12.0 14.0

0.4

0.3-

3 0.2-

fcc
bcc
diamond
SC

0.4

0.3-

O.2-
3

fcc
bcc
diamond
SC

0.1-

0.0
0.0

(b)

I

0.2
I

0.4
I I I I

0.6 o.e 1.0

0.0
0.0

I

2.0
I

4.0
I

6.0
I I I I

8.0 10.0 12.0 14.0

FIG. 2. Gap to midgap frequency ratio (hco/cog) as a func-
tion of the filling ratio for the case of (a) dielectric spheres in air
and (1) air spheres in dielectric. The dielectric constant of the
material is chosen to be 12.

FIG. 3. Gap to midgap frequency ratio (hm/cog) as a func-
tion of the dielectric constant ratio for the case of (a) dielectric
spheres in air and (b) air spheres in dielectric. The filling ratio f
is 10'Fo for the case of the dielectric spheres and 95% for the
case of air spheres.
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values of f and @=e,Ieb for the creation of a gap for all
the four lattices. There is a wide range of filling ratios f
and dielectric constant ratios that give a full band gap.
For example, ere Gnd that when we fix the dielectric con-
stant ratio at 12, band gaps exist over a wide region of
filling ratios f for both dielectric spheres and air spheres.
In Fig. 2, the calculated size of the forbidden gap normal-

ized to the midgap frequency for both cases is given. For
dielectric spheres [Fig. 2(a)] a maximum gap to midgap
ratio (ha~/cos) of 35% for the fcc and bcc lattice and of
25/o for the simple cubic and diamond is found. In all
the four lattices the optimum volume-filling fraction f is

at around 0.08. At the optimum f of 0.08, the nearest-
neighbor distance of the dielectric spheres with radius r,.
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FIG. 4. The threshold value of the dielectric constant ratio p=e, /eb. A band gap just opened up is plotted as a function of the

filling ratio f, for the (a) sc, (b) bcc, and (c) fcc, and (d) diamond lattice composed of dielectric spheres in air background.
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is roughly four times the radius of the sphere. The wave-
length A, corresponding to the midgap frequency co at
the optimum f is roughly equal to 12r, . Clearly at a fixed
value of p =@,/eb, a gap does not exist if either f is too
small or too large, because in either limit, the wave sim-

ply sees a uniform dielectric medium. For the case of air
spheres [Fig. 2(b)], b, ro/cog can reach 18%, 1%, 29%, and
10% for the simple cubic, bcc, fcc, and diamond lattice,
respectively. The optimum filling ratio f for all the four
lattices of air spheres is rough equal to 95%. We do not
understand the low value of hco/cog for the bcc lattice.

Another interesting information that our detailed nu-
merical results give is how easily a band gap can be
formed. In particular, for a fixed value of f, what is the
lowest dielectric constant that forms a gap? We plot in
Fig. 3, b,ro/cus as a function of the dielectric constant ra-
tio p for the sc, bcc, fcc, and diamond lattices. We keep
f =10% for the case of dielectric spheres [Fig. 3(a)] and

f =95% for air spheres in a dielectric background [Fig.
3(b)]. For the dielectric spheres, we find that the band
gap persists down to a ratio e, /e& of 5, 4, 3, and 5 for the
sc, bcc, fcc, and diamond lattice, respectively. For the
case of air spheres in a uniform dielectric background the
band gap persists down to a dielectric constant ratio of 7,
12, 5, and 8 for the sc, bcc, fcc, and diamond lattice, re-
spectively. Such contrasts are easily accessible for acous-
tic waves with existing dielectric materials.

We observe [Fig. 3(a)] for the case of solid spheres, that
for increasing contrasts 4co/cog saturates to different
values of 25% or higher depending on the lattice under
examination. For the fcc lattice the saturation value is
close to 36%. For the case of air spheres, b, ru/co satu-
rates to lower values than the solid spheres, but also the
air spheres in a fcc arrangement give the highest satura-
tion value of roughly 30%.

In a number of previous investigations, ' ' it was sug-
gested that the photon band gap obtained for the periodic
structure is in fact the remnant of a Mie resonance ob-
tained for a single sphere. In addition, there is an inter-
connection of the gaps in periodic systems and the range
of localized states in random systems. At least for weak
disorder, and/or for high f the region of localized states
practically coincide with the position of the gaps. This is
the reason of the proposal' that classical-wave localiza-
tion near a gap can be achieved by weak disordering of a
periodic' arrangement of spheres.

We have calculated the dependence of the first two
band gaps on F., /eb and f, for all the four lattices under
examination. Comparing our present band-structure re-
sults for the band gaps with our previous CPA-PWA re-
sults for localized states, we find that indeed there is a
connection between them. The CPA-PWA values of the
optimum f are f, , =0.20, 0.30, and 0.35 with corre-
sponding minimum values of p=6. 7, 6.2, and 9 for the
first three resonances. The band structure results (see
Fig. 4) give f, , =0.15 and 0.30 with corresponding
minimum values of @=3 and 4 for the first two gaps.
Can the behavior of the band gaps be interpreted by the
Mie resonant scattering from a single sphere? For a sin-
gle sphere of dielectric constant e, in a dielectric back-
ground eb there are an infinite number of resonance fre-

quencies co, which are given as solutions of the equation

Jl, —Qe, r, =0 (1~ 1)
C

where r, is the radius of the sphere. Thus for each value
of I, there are infinitely many values of Mie resonance fre-
quencies. The explicit values of ro (in units of c/r, +e, )

are the following: for s waves (I =0},co= 1.57, 4.71, 7.85
for the first three resonances; for p waves ( I = 1 },
re=3. 14, 6.28, 9.42; for d waves (1=2), co=4.49, 7.72,
10.90; and for f waves (l =3), co=5.76, 9.09, 12.32.
These ~ values are in close correspondence with the
values of the frequencies that gaps appear in the periodic
arrangement of dielectric spheres. This is clearly seen in
Fig. 5 where we plot the midgap frequency for the first
two gaps versus f, for all the lattices we have examined.
As can be clearly seen from Fig. 4, there are no true gaps
for very small and high values of f, for all the lattices
studied, for JM=13. Therefore, the values of midgap fre-
quencies given in Fig. 5 for these f 's, represent "pseudo-
gaps", i.e., there is a drop in the density of states at this
f. We have presented the midgap frequency as d/A, „
where d =2r, is the diameter of the sphere and

A,, =2rrc/cu+e, is the wavelength inside the sphere.
Notice that the resonances appear when the diameter of
the spheres is about equal to half an integer the wave-
length for the sphere material. Of course, this correspon-
dence is exactly when f~0 and e, /es —+ae. As f in-
creases, the values of the resonances not only shift, but
they become broader and may even mix together. How-
ever, one can associate the band gaps in the periodic
dielectric structures with the Mie resonance frequencies.
Economou and Zdetsis have checked this by omitting
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FIG. 5. The midgap frequency of the first two gaps vs f for
the sc, bcc, fcc and diamond lattices composed of dielectric
spheres of e, =13 in air background. d is the diameter of the
sphere and 3,, is the wavelength of the wave inside the sphere.

where JI is spherical Bessel function corresponding to an-
gular momentum l. For l=0, the Mie resonance fre-
quencies are given by

roQe, r, /c=(2n +1)n/2,
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the corresponding partial wave in their augmented-
plane-wave calculation. Indeed the corresponding gap
disappears, providing enough support that the appear-
ance of gaps is due to strong resonant scattering by each
sphere. It must be also pointed out that numerical and
the CPA-PWA treatment show' that the single-sphere
Mie resonances persist even for rather high values of f,
which for the CPA-PWA results' can reach up to the
close-packed limit. It is rather surprising that the single-
sphere scattering is the dominant factor in determining
the band gaps and the range of localized states even for
high values of f Ap. ossible explanation ' for this dom-
inant role of the single-sphere scattering may be associat-
ed with its spherical symmetry. It is true, that the spheri-
cal scatterers, as opposed, e.g., to the cubic scatterers,
cannot form new well connected shapes by clustering to-
gether. Thus, new cluster resonances cannot appear easi-
ly. It must be pointed out that it is the persistence of the
dominant role of the single scatterer even for very high f
that makes the CPA approach more reliable.

IV. CONCLUSIONS

In conclusion, we made a systematic study of the band
structure for a classical wave propagating in a periodic

arrangement of spheres of radius r, and dielectric con-
stant e, in a uniform dielectric background eb. All of the
lattices studied (sc, bcc, fcc, and diamondl do possess a
full band gap for an appreciable range of f and e, /e„
values. The minimum value of the relative dielectric con-
trast for creating a gap is obtained and can be as low as 3.
We have also argued that the positions of the band gaps
in the periodic dielectric structures are closely related
with the range of localized states in a random dielectric
system, obtained by a weak disordering of a periodic ar-
rangement of spheres, and are reminiscent of the Mie res-
onance of a single dielectric sphere.

ACKNOWLEDGMENTS

We would like to thank E. N. Economou for useful dis-
cussions. Ames Laboratory is operated by the U.S.
Department of Energy by Iowa State University under
Contract No. W-7405-Eng-82. This work was supported
by the Director for Energy Research, Office of Basic En-
ergy Sciences, including a grant of computer time on the
Cray Computer at the Lawrence Livermore Laboratory
and by NATO Grant No. RG769/87.

'For a recent review of the field, see Scattering and Localization
of Classical Waves in Random Media, edited by P. Sheng
(World Scientific, Singapore, 1990).

~S. John, Comments Condens. Matter Phys. 14, 193 (1988);
Phys. Today 44, 32 (1991).

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987); E. Yablono-
vitch, T. J. Gmitter, and R. Blat, ibid. 61, 2546 (1988).

4G. Kuriski and A. Z. Genack, Phys. Rev. Lett. 61, 2269 (1988);
N. Garcia and A. Z. Genack, ibid. 66, 1850 (1991).

5S. John and J. Wang, Phys. Rev. Lett. 64, 2418 (1990).
6J. Martorell and N. M. Lawandy, Phys. Rev. Lett. 65, 1877

(1990);66, 887 (1991).
7E. Yablonovitch and T. J. Gmitter, Phys. Rev. Lett. 63, 1950

(1989).
S. John and R. Rangarajan, Phys. Rev. B 38, 10101 (1988).
E. N. Economou and A. Zdetsis, Phys. Rev. B 40, 1334 (1989).

' S. Satpathy, Z. Zhang, and M. R. Salehpour, Phys. Rev. Lett.
64, 1239 (1990);65, 2478(E) (1990).

"K.M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett.
66, 393 (1991).

' K. M. Leung and Y. F. Liu, Phys. Rev. B 41, 10 188 (1990).
K. M. Leung and Y. F. Liu, Phys. Rev. Lett. 65, 2646 (1990).

' Z. Zhang and S. Satpathy, Phys. Rev. Lett. 65, 2650 (1990).
'5K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett.

65, 3152 (1990).
' The plane-wave method has also been applied to calculate

two-dimensional photonic band structures by M. Plihal, A.
Shambrook, A. A. Maradubin, and P. Sheng, Opt. Commun.
80, 199 (1991).

' C. M. Soukoulis, E. N. Economou, G. S. Grest, and M. H.
Cohen, Phys. Rev. Lett. 62, 575 (1989);E. N. Economou and
C. M. Soukoulis, Phys. Rev. B 40, 7977 (1989).

' C. T. Chan, K. M. Ho, and C. M. Soukoulis, Europhys. Lett.
16, 563 (1991).

' E. Yablonovitch and K. M. Leung, Nature 351, 278 (1991).
E. N. Economou, C. M. Soukoulis, and A. D. Zdetsis, Phys.
Rev. B 30, 1686 (1984); 31, 6483 (1985); E. N. Economou
et al. , ibid. 31, 6172 (1985).

2 J. Drake and A. Genack, Phys. Rev. Lett. 63, 259 (1989).
M. P. van Albada, B. A. van Tiggelen, A. Lagendijk, and A.
Tip, Phys. Rev. Lett. 66, 3132 (1991).
T. R. Kirkpatrick, Phys. Rev. 8 31, 5746 (1985); C. A. Condat
and T. R. Kirkpatrick, Phys. Rev. Lett. 58, 226 (1987).

24For the vector case, in the k~0 limit one still obtains that co

is linear with k, but the constant of proportionality is
di8'erent than the average dielectric constant obtained in the
scalar case.


