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Diffusion constant in a random system near resonance
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We propose a modification of the traditional Boltzmann equation when scatterers are near resonance

conditions. On the basis of this modified equation we find that the diffusion constant is largely renormal-

ized. Our calculated results agree with the recent experimental results of van Albada et al. [Phys. Rev.
Lett. 66, 3132 (1991))for the diffusion of optical waves.

I. INTRODUCTIGN

Recently, experiments were reported in which the
diffusion constant and transport mean-free path for light
propagating in a disordered medium were measured in-
dependently on the same sample. ' The medium consisted
of dielectric balls situated in air. The unexpected result
was that while using the traditional equation D =Ul/3
which connects the diffusion constant D and mean-free
path I, they obtained a value for the velocity U by an or-
der of magnitude smaller than the velocity of light in vac-
uum. In explaining their results, the authors stressed the
role of strong resonance scattering, which is realized in
their experiment. Additional insight into the physics of
the phenomenon was given in Ref. 2. There it was
stressed that a traditional kinetic approach does not take
into account the finite duration of the scattering process,
the latter being especially large near a resonance. Con-
sidering theoretically the inhuence of this effect on the
propagation of electrons in disordered media the authors
of Ref. 2 obtained a diffusion -constant similar to the ex-
perimental results of Ref. 1.

In this paper we propose a simple and physically mean-
ingful modification of the traditional Boltzmann equation
to take into account the resonance character of the
scattering. We calculate the diffusion constant on the
basis of this modified equation. Our results for the case
of electrons coincide with the results, postulated in Ref. 2
on the basis of qualitative arguments. Our calculated
diffusion constant for the propagation of light is close to
the experimental results of Ref. 1.

II. MODIFICATION OF THE BOLTZMANN EQUATION

In any textbook on kinetic theory it is stated that the
Boltzmann equation is valid when the time of free Aight
of the particle between successive acts of scattering is
much larger than the duration of the scattering event.
The experiments of van Albada et aI. ' brought into focus
the problem which can be formulated in the following
way: how to describe the kinetics of particles when the
condition mentioned above does not hold and in addition
the scattering by a single scatterer is near resonance. The
resonance, as was shown by Wigner, leads not only to
large scattering amplitude but also to large scattering de-

lay time. We claim, in line with ideas of Refs. 1 and 2,

that we can obtain the physically meaningful approxima-
tion for the case of resonance scattering by modifying the
traditional kinetic approach, to expand its range of appli-
cability. We take into account only one effect —the
aforementioned scattering delay time. That is, we ex-
press the kinetic equation for the distribution function
fk(r, t) in the following modified way:

afk(t)lat+vkvft, (t)+gpkk [ft, (t)
k'

—fk (t —rtk, )]=0,
where V is the gradient operator, U is the velocity, and
the transition probability Pkk. is taken from quantum
mechanics. We have made a single modification—
introduced in the time argument of the input term the
delay time rkk for the scattering channel k~k', similar
to the delay time first introduced by Wigner. Our ap-
proach though formally different from the approaches of
Refs. 1 and 2 gives the results which are very close to
those previously obtained and helps to clarify the physics
involved.

This modification of the Boltzmann equation refiects
also the fact, that in the experimental situation involved
(and in many other experimental situations), we measure
the intensity of the field (in a direct or indirect way) in

vacuum only, i.e., outside scatterers (in recent experi-
ment, ' outside the dielectric balls). In these cases the
equations should be formulated for the free space only,
and the region of the scattering potential should be treat-
ed as external. According to Eq. (1), in the process of
scattering, the particle disappears during the time Ht,.

from the scene because it is inside the scattering potential
region (inside the dielectric ball) and that is outside of our
physical space.

Let us analyze the changes caused due to the
modification proposed. Consider the case when r« is.
less than the characteristic scale of the time dependence
of the distribution function. In this case Eq. (1) can be
rewritten in the form

k'

+Qp„„,+„,af„,(t)Iat =0 .
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D =Do/(1+Xn ), (4)

D0 3
v ~ is the traditiona1 diffusion constant with the

transport relaxation time ~ given by the equation

and

1——QPkk [1 cos(8kk }]
Jc'

(5)

The transition from this modi6ed equation to the
diffusion equation is absolutely similar to the case of the
traditional Boltzmann equation. We sum Eq. (2) with

respect to k and then multiply by v& and again sum with
respect to k. As a result we obtain the diffusion equation

BI/Bt —DhI =0,
where

When we are interested in a delay time, instead of s single
incident plane wave we must consider a wave packet

O';„=f dE 4(E E—o) exp{iz&2E i—Et] . (10)

The position of the classical particle can be identified
with the position of the maximum of the envelope of the
wave packet which can be found from the equation

For simplicity we consider the wave packet which con-
sists of the plane waves with the same direction of the
wave vector. 4(E) is an arbitrary narrow peaked (near
zero) function, which we shall consider to be real. We
also use the units in which the electron mass is equal to
one. The scattered wave function in this case takes the
form

%~=fdE4(E Eo)——f(8) exp{ir&2E iEt—] .
1

XD QPkk'+kk' '
k'

(6) B(q;q, )IBt =0. (12)

P(8)=n„v
~ f(8)~ (7)

where n„ is the scatterers concentration and f(8) is the
scattering amplitude (we suppose scattering potential to
be isotropic). And instead of Eq. (6) we obtain

XD=2mn„v f ~f(8)~ r (8)sin(8)d8. (8)

It is worth noting that we have made a small correc-
tion in the scattering term of the Boltzmann equation of
the order of cor, where to is the characteristic frequency
of distribution function time dependence, but this leads
to a much larger correction in the difFusion equation
which is of the order of r Ir due to exact cancellation of
the zero order contribution from the scattering term in
the continuity equation.

It would be convenient to rewrite Eq. (6} in a more ex-
plicit way. If we take into account only elastic scattering,
the Boltzmann equation can be considered on the isoener-
getic shell (i.e., for Ek =Ek.). Then the scattering proba-
bility takes the form

Here we must admit that there are alternative ways of ob-
taining correspondence between the classical particle and
wave packet (see all the discussion concerning the prob-
lem of tunneling time }but we use the most accepted one.
Equation (12) can be rewritten in the form

Im f dE EF(E)4(E Eo)—

x fdE F'(E)4 (E —E, ) =0, (13)

where we have introduced the notation

F(E)=f(8}exp{irV2E iEt] . — (14)

Expanding F(E) near Eo we obtain instead of (13) a sim-
ple equation (prime means the derivative with respect to
E):

Im[F'(Eo )F'(Eo ) ]=0 . (15)

It would be also convenient to introduce the notation

Thus starting from a modi5ed kinetic equation we obtain
the renormalization of the diffusion constant. We now
apply this approach to the propagation of electrons and
light waves.

f =
~ f~ exp{i/] .

Then Eq. (15) yields

t BRIBE =r I&2—E

(16)

(17)
III. DIFFUSION CONSTANT

RENORMALIZATION FOR ELECTRONS

1 f(8}exp{ikr iEt]—. — (9)

Experiments have not yet been performed for the
diffusion of electrons in a random material with high con-
centration of scatterers near resonance. Nevertheless the
predictions for the difFusion constant renormalization for
electrons and optical waves are qualitatively and quanti-
tatively different. We hope that future experiments will
show these differences. We now discuss the renormaliza-
tion of the diffusion constant for electrons.

Let us consider a traditional elastic scattering problem
for electrons. If the incident wave function is
4;„=exp {ikz iEt ] the scattered wa—ve function is

BPIdE =Im[f 'BfIBE]I)fI',
we obtain from Eq. (8)

XD =2nn„v f Im[f '(8)/BE]sin(8)d8,
0

which by using Eq. (18) becomes

(19)

(20)

We immediately see that r =BPIBE. Hence the delay
time can be expressed through the spherical waves phase
shifts that are used traditionally in the scattering theory.
Using for scattering amplitude the equation

oof(8)=, g (2n+1)(exp{2i5„]—1)P„(cos8)2i(2E)'"„,
(18)

and the obvious identity
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27TG sc U a6„
XD =

2 g g (2n +1)(2n'+1) sin5„sin(26„—5„.) I P„(cos6)P„,(cosg)sin8dO .
k g —0tl —0

Performing the integration we obtain finally

4~n„u 86„
XD= g (2n+1) sin 6„. (22)

dius d be described by the equation

E =a expI i—kz+icut }, (24)

From Eq. (22) it is evident that the diffusion constant
renormalization becomes important in the vicinity of res-
onance due to large values in this field of the multiplier
85/BE. It is this multiplier which singles out the correc-
tion of the kinetic equation we took into account from all
other corrections of the order of n„. Hence to observe
the phenomenon the most favorable is the case when the
scattering potential has quasidiscrete levels near the Fer-
mi energy. The application of Eq. (22) to this case will be
worked out elsewhere. We should mention that the re-
normalization of the diffusion constant for electrons coin-
cides with the result obtained in Ref. 2 on the basis of
qualitative considerations.

IV. DIFFUSION CONSTANT
RENORMALIZATION FOR OPTICAL WAVES

We now show that the renormalization of the diffusion
constant for optical waves though formally similar is in
fact different from that for electrons.

We start first from the Helmholtz equation:

CO
V' P+ m (r)/=0, (23)

where m (r) is the coordinate-dependent refraction index.
When we consider scattering of light from a dielectric
ball, we have m (r) =m inside the ball and m (r) =1 out-
side. We immediately see that Eq. (23) is equivalent to
the Schrodinger equation describing the scattering of the
electron on a rectangular potential well (spherically
symmetrical). The energy of the electron E=co 2/2c, 2

and the potential inside the well V= E(m —1).—This
energy dependence of the potential leads to an interesting
result. For proper quantum mechanical problems (with
energy-independent potential) the derivatives of phase
shifts which enter into Eq. (22) can be either positive or
negative, yielding a delay time or an advance time. For
Eq. (23} all the phase shifts are increasing functions of en-

ergy. Therefore the delay time, though first introduced
for electron scattering, is more meaningful for the
scattering of electromagnetic waves. The energy depen-
dence of the effective scattering potential in the latter
case also leads to a more resonant character of the
scattering and hence to larger diffusion constant renor-
malization.

In a more systematic approach we must start not from
Helmholtz equations but from Maxwell equations. In
this framework the scattering of electromagnetic radia-
tion from a dielectric sphere is described by Mie theory.
Let the plane-wave incident on a dielectric sphere of ra-

where E is the electric field (it is enough for us to keep
track only of the electric field) and a„ is the unit vector
along x axis. Then the scattered field at large distances
from the sphere can be written in the form

E„=O,

E& = — exp I
—ikr +icot } cosyS2(8),l

kr
(25)

l
E~ = exp I

—ikr +i an't } sinipSi (8),

where S, and Sz are the so called amplitude functions
(see Appendix).

We are interested in scattering of the unpolarized light.
It means that we have to consider the incident plane
wave as an equipartition sum of plane waves with all pos-
sible directions of polarization, the latter being non-
coherent. This can be taken into consideration simply by
averaging all the equations with respect to y. As a result
we again obtain the traditional Boltzmann equation with
the probability of scattering:

P(8)= —,'cn„[~S,(8)~ + ~S (8} ] . (26)

D/Do
Diffusion renormalization

0. 8.

0 6-

0. 0-

0. 5 1. 5

FIG. 1. Diffusion coefficient renormalization for 36 vol%
dielectric spheres (m =2.73}as a function of size parameter kd.

The delay-time calculations in this situation is more com-
plicated. Due to different energy dependences of S,(8)
and Sz(8) the state (noncoherent) which is scattered by
an angle 8 is split into two parts; one which was scattered
with the probability cn„~S,(8)~ /2 with the delay time
t}P,/t}co and another, scattered with the probability
cn„~S2(8) ~

/2 with the delay time ~3$z/t}co, where Pi and

Pz are, respectively, the phases of S, and S2. So for
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diffusion coeScient renormalization we have

BS;(8)
XD=mn„c f g Im S;*(8) ' sin(8}d8.

Bco
(27}

277n s~c CXn

g (2n + 1) sin a„k Bco

Substituting into this equation the results for S;, which
are calculated in the Appendix, and integrating over 8 we
obtain the analog of Eq. (22}

~ n+ sin p„
C)CO

(28)

Finally for diffusion coefficient renormalization we ob-
tain

D 3 Ba„Bp„1+ g (2n + 1) sin a„+ sin p„
Dp 2x Bx

(29)

where j" is the volume fraction of the Mie spheres, and x =kd =cod/ cis the size parameter. In Fig. 1 we plot this re-
normalization coefficient as a function of the size parameter for the external parameters corresponding to the experi-
ment of Ref. 1 (f =().36 and m =2.73). ~hen we compare our graph with the corresponding graph of Ref. 1 (Fig. 4 of
Ref. 1), we see that for our curve the resonance effects are much more explicit. This fact can be seen immediately when
comparing our equation (29) and Eq. (12) of Ref. 1. Dividing the expression in large parentheses in (29} in two parts

Ba„ Ba„ 1 Ba„ Ba„ 1 Ba„ ap„
sin a„+ sin P„=— + —— cos2a„+ cos2P„

ax " ax " 2 ax ax 2 ax Bx
(30)

one can easily see that XD=XD+Xg, where XD coin-
cides with the result of Ref. 1 and Xg is the strongly fluc-
tuating correction to this result.

The exact comparison of our result with the experi-
mentally measured value of the diffusion constant' is
difficult because of the polydispersive character of the
scatterers (in experiment the size parameters of the
spheres lie within x =0.8 and x =2.5 and the size pa-
rameter distribution function is unknown). But the quali-
tative conclusion is clear —resonance scattering drasti-
cally decreases diffusion constant. One statement con-
cerning the interpretation of the result obtained [Eq. (29)j
should be added. Our approach gives the renormaliza-
tion of the diffusion constant —the quantity which is
measured in the experiment. In the case of resonance
scattering the simple connection between the velocity and
the diffusion constant no longer holds.

APPENDIX

S,(0)= g j a„n.„(cos8)+b„r„(cos8)j,
, n n+1

S2(8)= g I b„n„(cosd).2n +1
, n n+1

+a„r„(cos8)),
where

n.„(cos8)= . P„'(cost),1

sin8

r„(cos8)= P„'(cos8)1

(A 1)

(A2)

Here we give the main results of the Mie theory. The
amplitude functions are given by the equations

V. SUMMARY

We proposed a simple and physically meaningful
modification of the traditional kinetic equation for the
resonance scattering. This modification is based on the
fact that resonance scattering is characterized not only by
large scattering amplitude but also by a large delay time.
This fact gives us the opportunity to single out the most
important corrections to the diffusion constant which is
linear with respect to scatterers concentration. We ob-
tained the renormalization of the diffusion constant both
for electrons and for light propagation. The results for
the light agree with the recent experiments.

(P„' is the associated Legendre polynomial) and

a„=-,'( 1 —exp I 2i a„'I)—,
b„=—,

'
( 1 —exp I

—2iP„) ), (A3)

where a„and P„are the so-called phase angles, given by
the equations

g„'(mkd}f„(kd) —

mrna„(mkd)g'„(kd)

tan+„=
1('„(mkd )X„(kd ) —m g„(mkd )X'„(kd )

(A4)
m g'„(mkd)P„(kd) —g„(mkd)g'„(kd)

tanp„=
m g'„(mkd)X„(kd) —g„(mkd)X'„(kd)
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where

g„(z)=zj„(z), X„(z)=zn„(z),
and j„and n„are the spherical Bessel functions.

(A5)
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