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A phenomenological theory of vortex motion, where the mixed state is regarded as a continuum, has
been proposed by two of the authors in a short previous letter. Its outlines are recalled in this paper
with further comments and arguments; in particular the basic equations and their implications are dis-

cussed at some length. This theory leads to a model of pinning, from which we argue that critical
currents I„in soft type-II samples of standard bulk homogeneity, should be governed essentially by sur-

face defects. I, is interpreted as a physically well-defined part of the total transport current I, which is
flowing over a small depth close to the surface. Thus, on the scale of an ordinary sample, this part of the
transport current is superficial, the remaining part I—I, being uniformly distributed over the cross sec-
tion. Coherently, an analysis of the dissipation in such samples predicts that the part VI, of the total
Joule effect VI must arise as surface heat sources, while the Joule effect V(I —I, ), usually associated
with the steady viscous flow of vortices, is uniformly distributed in the bulk. As a proof, we present a
method, using second-sound acoustics, to detect and separate surface and volume heat sources. Experi-
mental results give clear evidence of a surface Joule effect, and support the validity of our model of sur-
face pinning in soft materials.

I. INTRODUCTION

It is difficult to separate the effects in vortex pinning of
surface and volume defects, which are generally
presumed to coexist in any sample. However, a number
of experiments in the past clearly demonstrated the im-
portance, ' if not the exclusive role, of surface defects in
determining the relatively small critical currents of soft
type-II superconductors.

In soft samples, the notion of critical current density
J„when given crudely as the ratio I, /S of critical
current over cross-sectional area, clearly is inadequate. It
presupposes the macroscopic transport current density to
be uniform; at best J, gives a rough indication of critical
properties. In this respect the results obtained by Joiner
and Kuhl are quite instructive. The authors reported
that J, 's of a series of PbBi foils were linear in the
surface-to-volume ratio, or equivalently in the
perimeter —to —cross-section ratio, 2w/S. From this, they
were led to the conclusion that, in their words, the sur-
face was the major determinant in the flux pinning. By
expressing their data in terms of J„Joiner and Kuhl
somewhat obscured the striking and simple result, that
foils with various thicknesses, otherwise prepared in the
same way, had a constant critical current. Their con-
clusion was furthermore too weak. In view of their re-
sults, they could have claimed that the surface of the foils
was the sole source of pinning. According to a naive
critical-state model, an applied current from 0 to I„
should flow on the surface. If that is the case, the more
relevant parameter would be a superficial critical current
density, i, =I, /2w (in A/m), measuring the ability of the
surface to transport a supercurrent over a small depth
without dissipation.

In the concluding remarks of Sec. V, we shall argue

that such samples, in which surface defects practically
determine critical currents, and which we shall refer to as
"soft" in this paper, are not exceptional, nor do they cor-
respond to some limiting, and seldom attained, metallurg-
ical state. We think that, in fact, a wide class of materials
including most of those used in fundamental measure-
ments (transport properties, thermomagnetic effects,
flux-flow noise, etc.), which are soft in the common sense,
i.e., have low to moderate I„canalso be regarded as soft
in the above restricted sense.

Thus, in characterizing soft samples, the first thing is
to know where the applied current flows. Two methods
have been proposed to investigate the spatial current dis-
tribution on the scale of the sample. The first one, which
we have repeated as a preliminary test for our PbIn rods,
consists in measuring the small magnetic field due to the
transport current itself; miniature pickup coils placed on
the surface of a specimen of large cross section were used.
When I is increased from zero, it was observed that the
current distribution evolves from a zero-field London dis-
tribution (superficial) for low currents, to a volume nor-
mal distribution for large currents (I ))I,). The second
method used neutron diffraction from the flux-line lat-
tice. The neutron beam was directed along the external
field and the broadening of the rocking curves (angular
intensity distribution when rotating the sample) reflected
the bending of flux lines associated with the transport
current density J, according to Ampere's law curlB=poJ.
From the three NbTa slabs measured in Ref. 5, the one
denoted as sample 1 was distinctly soft, while the other
two were not. In some respects, both methods may have
appeared not to be entirely conclusive. Various current
distributions might have given the same signal in a pick-
up coil, or the same width of the rocking curve. The first
method, contrary to the second, is straightforward to in-
terpret, and unambiguous in the limits I~0 and I~ ao;
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however, in the flux-flow regime, one is unable to deter-
mine how much, if any, of the transport current still is
flowing on the surface.

In Sec. IV, we present a third method to demonstrate
that, in normally homogeneous samples, a constant part
I, =I, of the applied current, in the flux-flow regime, is
flowing on the surface, while the remaining part,
I2 —-I—I„is uniformly distributed in the bulk. In this
case, it is to be expected that the Joule power VI, where
V RfI2 is the flux-flow voltage, should have the same
spatial distribution that the transport current itself. The
second-sound experiment described in Sec. IV was
designed to measure and locate the Joule heat sources. A
sample of large cross section is immersed in a superfluid
helium bath, at 1.7 K, and an ac current is superimposed
to the main dc current. The low frequency used (from 0.5
to I kHz) ensures a quasistatic modulation of the VI-
characteristic, as also of the related heat sources. Thus,
second-sound waves are emitted from the sample through
He II, and can be accurately investigated after
amplification by a resonant cavity. In the working fre-
quency range, in contrast with electrical properties,
thermal inertial effects become important, the thermal
skin depth being relatively small on the scale of the sam-
ple. As a result, second-sound signals have different and
well-defined phases, depending on whether their sources
are uniformly distributed throughout the sample or
superficial, and thereby can be easily separated experi-
mentally. In spite of this roundabout way of measuring
heat sources, as it may appear to someone unfamiliar
with second-sound acoustics, experimental evidence of a
surface Joule effect can be regarded as the most direct
and unambiguous demonstration of the soft behauior such
as defined above.

Recently two of us (P.M. and Y.S.) have developed a
theory of vortex motion, where the mixed state is treated
as a continuum. When applied to soft samples, jointly
with a surface pinning model, the Mathieu-Simon (MS)
theory accounts for the order of magnitude of critical
currents, as well as for their field and temperature
dependence. As discussed in Sec. III, it also explains ex-
perimental results on the distribution of currents and
Joule dissipation, such as we have observed. Through the
example of soft samples, we also hope to bring out the
relevance of the MS phenomenological theory in tackling
pinning and transport problems in type-II superconduc-
tors.

Using a rigorous standard method, based upon conser-
vation laws, MS derived conditions of equilibrium and a
complete system of transport equations in the mixed
state. This approach is very similar to that used by
Bekarevitch and Khalatnikov (BK) to describe vortex
motion in He II. As far as we know, no real attempts in
this direction have been made before. In a paper con-
cerned with collective oscillations of vortices in supercon-
ductors, Abrikosov et al. did transcribe the BK equa-
tion of superfluid motion including the analog of the
mutual-friction force; but arguing from analogy they ob-
tained approximate and, moreover, restricted results. Su-
perconductors and superfluid helium have many features
in common, and it is clear that a parallel between the two

systems can be very instructive. Indeed, the MS model
also took ample advantage of such a comparison. We
emphasize, however, that the point here was more to ap-
ply to both cases, rotating He II and the mixed state, the
same general and rigorous procedure, best suited to both
systems, than merely relying on rather limited analogies,
especially when dealing with electromagnetic properties
of the mixed state.

Otherwise, several other continuum descriptions of
type-II superconductors have been worked out, either in
equilibrium or with dissipative processes taken into ac-
count. " In spite of formal similarities in writing equa-
tions of transport and dissipation, these exhibit funda-
mental differences with the MS theory, in particular, in
the physical interpretation of magnetization and the dis-
tinction between diamagnetic and transport currents.
These differences may have escaped the reader in a short
letter, and require further comments. Therefore, the
physical meaning of the MS equations will be discussed at
some length in Sec. II.

Moreover, the MS theory was presented in Ref. 6 in
the simplified frame of the so-called "London model, " as-
suming extreme type-II materials (a.)) I or 2, ))g) in the
intermediate range of fields (H„«Hp«H, z). This re-
striction, in fact, was unnecessary and, as shown in Sec.
II, this theory applies to more general situations.

II. PHENOMENOLOGICAL THEORY
OF THE MIXED STATE

A. The macroscopic London equation

Recall that one original aim of the BK theory was to
derive phenomenologically, according to an idea ad-
vanced by Landau, the elastic forces on vortices in He II.
These forces were introduced by Hall in analyzing trans-
verse wave motion of vortices in an oscillating disks ex-
periment. Also, in type-II superconductors, a continu-
um theory is most suitable to handle situations where the
vortex lattice is distorted, as it is necessarily the case in
the vicinity of defects, or even, as we shall see, in an ideal
sample near its surface.

In such circumstances, the first important thing to
realize is that, in general, vortex lines (VL), even at equi-
librium, do not necessarily coincide with flux lines. This
becomes evident in writing the macroscopic London
equation, such as derived below in Eq. (3).

When a type-II sample is immersed in an external mag-
netic field Hp ( =Bp/pp), generally intricate and intract-
able distributions of the order parameter /=pe', of mi-
croscopic supercurrents js and electromagnetic fields e, b,
arise throughout the body. Microscopic or macroscopic
here meaning on a small or large scale compared with the
vortex spacing a. In describing the local state of the vor-
tex lattice, regarded as a continuum, by a reduced num-
ber of macroscopic variables, one avoids dealing with de-
tails of the microscopic vortex structure. Cross-grained
mean values of jz, e, and b, will be denoted as capital
letters Js =(js ), E=(e), and 8= (b). It will be also
convenient to introduce the superfluid velocity v& defined

by



CONTINUUM THEORY OF THE MIXED-STATE AND SURFACE. . . 1063

mvs =CAVO q

m vs AVO 0'o
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where a is the vector potential, m the electron mass, and

yo the flux quantum. Taking the curl of Eq. (1), one ob-
tains

m
b ——curlv =0s (2)

everywhere, except at the vortex cores. Equation (2),
which we may refer to as the first London equation,
states that the momentum field of the supercurrent,
pz =CAVO, is irrotational. Like its superfluid analog,
curlv&=0, it appears as a constitutive relation charac-
teristic of the superconducting state, whether at equilibri-
um or not. We stress that Eq. (2) is valid in the whole
range of fields, wherever f%0 and do not imply the ap-
proximations of the London model (f=1, outside the
cores; extreme type-II materials).

Consider a vortex continuum and let n be the local vor-
tex density (defined as the VL length by volume unit), and
v the unit vector along the VL. The macroscopic average
of Eq. (2), taking account of singularities, reads

mB——curlV& =cu=nyov .
e

(3)

Similarly, in rotating He II, curlV+ =co, on substitut-
ing the quantum of circulation h /m to yo in co. To show
that Eq. (3) does indeed represent the correct average of
the microscopic London equation, consider a familiar
magnetostatic analog: an array of infinitesimal filaments
(density n, direction v), each of them carrying a current
i o =yz, so that the resulting macroscopic current density
is J' =ni 0 v=m. Here the microscopic field b*/po is the
analog of pz/q; its circulation around a filament is
io =go, whereas curlb'/po=0 outside. Now, one usually
takes for granted that the macroscopic field B* obeys
macroscopic Amperes's law, curlB*/po= J*,which is the
counterpart of Eq. (3).

B. The thermodynamic identity and the vortex potential c

According to MS, the macroscopic density of free en-
ergy, in the mixed state, F, can be expressed as function
of a few macroscopic parameters, such as those defined
above, E, B, Vs (or Js), ro, and the temperature T and
the total electronic density N, =n, ( n, e is the micro-—
scopic space charge):

F=F(T,N„E,B,Vs, r0) . (4)

s nsqvs=nsoqf vs2

as well as its local spatial average, Vs=(vs). Here

q = —2e is the effective charge, n&=p is the superfluid
density, nso the zero-field equilibrium value of ns, and f
is the reduced order parameter.

The current equation of the Ginzburg-Landau (GL)
theory relates j~, or vz, to the phase of the order parame-
ter:

In comparison with He II, the task is partly simplified,
since, due to the lattice, a single flow, the supercurrent Jz
(or Vs), will appear in the set of independent thermo-
dynamic variables, instead of two, Uz and U„,in helium.
In irreversible processes, a normal current J„=J—J& can
possibly occur, but J„willbe regarded as a flux. On the
other hand, complications arise because of the elec-
tromagnetic terms.

Expression (4) needs some comment. Equation (3) and
Maxwell-Ampere s law are primary constraints, limiting
the possible spatial variations of currents and fields
throughout a vortex lattice, whether at equilibrium or
not. Nevertheless, B, Js (or Vs), and r0, must be con-
sidered, locally, as independent variables: for fixed values
of r0 and Vs at some point M, B(M) still may be varied
by any change in the distribution of currents elsewhere.
It might turn out that equilibrium conditions for the
body as a whole require that ro=B [and/or curlVs =0, in
accordance with Eq. (13)]. But, to decide this, we first
have to minimize (with constraints) the relevant thermo-
dynamic potential by precisely using some general ex-
pression of F in the form (4).

In Eq. (4), intended to describe equilibrium states as
well as flux flow, the order parameter has been removed
from the set of independent macroscopic variables. This
implies that f(r, t) rigidly satisfies its equilibrium condi-
tions, as if it relaxed instantaneously. Strictly f obeys
some time-dependent GL equation, for instance, of the
simple type considered by Schmid:"

df L
at 27 f f (fiV8—qa—) +g hf—

where I. is the left-hand side of the first GL equation, act-
ing as a generalized force in the sense of irreversible ther-
modynamics, and ~ is the relaxation time of the
superfluid density n& =p . At temperatures not too close
to T„v.does not exceed 10 ' sec." In practical condi-
tions, L -rf -r(vL /a)f, where vL =E/B is the VL ve-
locity, so that L/f-rvt /a-10 —10 is negligible
(L «f ). Or equivalently stated, L =0, within an accu-
racy 10 —10; in this sense, f hardly departs from
equilibrium. In contrast, but consistently, the contribu-
tion of time-relaxation effects to dissipation" remains
significant (poH, L /r in W/cm ).

By using only the parameter co to describe the vortex
lattice, just as BK do in He II, we ignore small differences
in energy between, for example, triangular and square lat-
tices. This approximation relies on the smallness of the
calculated elastic constant C66,

' associated to shear in a
plane perpendicular to VL. %'e emphasize, however, that
other elastic effects, due to compression and torsion of
the vortex lattice, are involved in Eq. (4).

A local value of the macroscopic free-energy density
F(M ), or of its differential dF, can be obtained by averag-
ing the GL expression for the microscopic free-energy
density F (or dF) over an element of volume r around the
point I, which is small on the macroscopic scale, but en-
closing many vortices:
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1 Pl+ b db ——j dvs
Po e

(7)

where p is the chemical potential of the electrons, and o.
the entropy density. Note that, because of the expected
smallness of the electrostatic or space-charge effects, the
second and third terms in the integrand of (7) are usually
omitted in writing the GL free energy. Yet, we have pre-
ferred to restore them here for a general and clear deriva-
tion of equilibrium conditions.

Excluding microscopic temperature gradients, further
manipulation of (7), and use of Maxwell equations leads

12

dF = o'dT+pdN +e'oE'dE+ B'dB J Vs
1 m

Po

This is the differential of F at constant co. It may be not-
ed that the macroscopic electromagnetic energy separates
and Js appears as the conjugate variable of Vs. In any
process involving vortex motion and change in VL densi-
ty, we shall write

dF= —odT+pdN, +eoE dE+ B dB1

Po

dF= —f dFot
1

7 7

If there is no ambiguity, the differential symbol d r under
the integral sign will be omitted.

Consider an infinitesimal process leaving the VL array
unaltered in the neighborhood of M; even assuming that
the lines f=0 remain fixed, the microscopic fields

f,b, vs, . . . still may undergo infinitesimal changes, re-
sulting in infinitesimal changes in all macroscopic vari-
ables B,Vs, . . ., except co which is constant. To calculate
dF in such a process we may take ~ as a bundle of vortex
cells of unit length, and use periodic boundary condi-
tions. Thus, allowing for Eq. (1) and the first GL equa-
tion, L =0, integral (6) reduces to

1dF= — —0. dT+pdn, +roe de
7

Bc/BVS=0 accordingly, for any value of Vs. In an iso-
tropic material, c, =a(ro, T ) necessarily has the same
direction as co, and then the last term in Eq. (8) can be
rewritten as

0'o aE= ln
4irppA,

(10)

where a -imp/co and g" ~g is an effective core radius.
For Abrikosov's triangular lattice, near H, 2,

H, 2 co/p p—
l. 16(2m~ —1)+1

where ~z is the second generalized GL parameter.
In rationalized units, co and B are both expressed in T,

so that a is expressed in A/m, just as a field H or a mag-
netic density M. Some authors (while taking ro=B) in-
troduced a thermodynamic H field at any point as V&F.
The related idea here would be to define a magnetization
M as V+, i.e., M= —s. As a matter of fact, the curve s
vs co/)Ltp for a regular lattice, such as shown in Fig. 1, is

E, (A/m)

c.dc' =Ev.de = c.dao =cyodn

to be compared with the term A,de in the BK thermo-
dynamic identity of rotating He II.

In a uniform lattice, the classical relation co =B
(B=neap) holds, in agreement with Eq. (3), since Vs ——0.
Expression of its free-energy density, F(B ), expressed (at
a given T ) as function of the single parameter ro =B,
have been calculated in some limiting cases. ' The corre-
sponding VL potential s(cp) follows immediately on iden-
tifying B/pp+a with t)F/t)B. The formation free energy
per unit length of an isolated VL is ppH„;hence, the lim-
iting value E~H„asB~0 (Fig. 1). In the intermediate
range of fields (H„«Hp«H, 2), according to the Lon-
don model

m——J .dV +a.de,S S (8) H c-)

where a=r)F/r)r0 will be referred to in this paper as the
VL potential. It is clear that any description of the vor-
tex state, where co and B are not differentiated, would
lead one to adopt another definition of the VL chemical
potential. '

Similarly dU= TdcY+ . , where U is the en-
ergy density.

Assuming N, =0, g, in general, will be a function of T,
co, and Vs. In many practical situations, however, the
Vs dependence of z may be ignored or neglected as a first
estimate, so that the VL potential of a perfect uniform
lattice, for which Vz ——0 (Jz —0), provides a good ap-
proximation for c,. Such is the case, as we shall see, in the
bulk of the sample, and, in general wherever low current
densities and small deforrnations of the VL lattice are in-
volved. ' On the other hand, if the London model ap-
plies, (g«a «A, ), Jz=ngpqV~ is ro independent, and

C2

FIG. 1. The local vortex potential c vs m jap for a uniform
vortex lattice (co=n, yp=B) such as defined by Eqs. (8) and (9);
c(B,T) is the fundamental equation of state that involves the
magnetic properties of a type-II sample. The curve c, vs co/pp
coincides with the magnetization curve —M vs Hp of a slab per-
pendicular to the external field Ho (B=Bo=poHp). As for the
classical reversible magnetization curve (dashed line), it con-
cerns the equilibrium of a perfect cylinder parallel to Hp. 80th
curves are deduced from each other by a simple construction as
shown, according to the implicit equation —M=c(Hp+M).
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simply related to the usual reversible magnetization curve
[note that E(co/pn) = —M(Ho ) is positive]. Nevertheless,
we shall take care not to confuse the concept of vortex
potential, which has a precise and unambiguous thermo-
dynamic definition, with some macroscopic magnetiza-
tion M, which actually has no local sense in a supercon-
ductor. The relationship a=E(co, T) should be regarded
as the fundamental equation of state, whereas the equali-
ty M(Ho) = —e(culpo) represents a condition of thermo-
dynamic equilibrium for a simple shaped sample taken as
a whole. In our opinion, the introduction of M and H as
local quantities in the mixed state not only is unnecessary
but also contains a number of pitfalls; we shall return to
this point below.

C. Equilibrium of a perfect sample

(13)

E'=E+ =0,V
e

(14)

As pointed out in Ref. 1, there has been some con-
fusion in the literature concerning the choice of the reli-
able thermodynamics potential used to determine the
equilibrium of a type-II sample. So the question is worth
being restated here, even briefiy.

Consider (at constant T) an insulated body, immersed
in an external field Ho. Suppose that Ho is produced by
currents Jo in a zero-resistance coil, which is driven by an
ideal generator; i.e., a source of emf, adjustable at will,
and acting as a reversible work source (no entropy). Dur-
ing any process affecting the body, the work done by the
generator to overcome the induced electric field is

5W= f —E Jo5t= f Ho 5B . (12)
coil all space

The second equation in (12) is a straightforward conse-
quence of Maxwell equations. When Ho is kept constant,
Ho 5B=5(Ho.B), and —Ho B, integrated over all space,
can be taken as measuring the energy level of the genera-
tor. Let V be the total free energy of the body and space,
obtained by integrating some free-energy density F over
the body and B /2po outside. At constant Ho, the mag-
netic free enthalpy defined as

9=9'—f Ho B
all space

represents nothing but the free energy of the total system
consisting of the body and space plus the electrical gen-
erator (excepting the heat reservoir), which must be
minimum at equilibrium. We stress that this equilibrium
criterion holds for any sample, taken as a whole, whatev-
er its shape or kind may be. Now for a (para, ferro} mag-
netic material, where a magnetization M is clearly
defined, it is useful to introduce a local H field,
H=B/po —M. Then, as easily shown, H may be substi-
tuted for Ho in Eqs. (12}and (13};this alternative expres-
sion for 9 is generally preferred in such materials because
of a local relationship between M (or H) and B, which is
unfounded in a superconductor.

Minimizing 0 against small variations of N„E,B, Jz,
and ro, subject to proper constraints (charge conservation,
London and Maxwell equations}, the following equilibri-
um conditions are derived:

KXN=O,

C=J&+curlK=O .

(15)

(16)

Equation (14) states, as usual, that E', the gradient of
the electrochemical potential, is zero. Equations (15) and
(16) express, in macroscopic form, the equilibrium of VL.
In the boundary condition (15), N is the normal unit vec-
tor. To interpret them more easily, let us assume that the
London model applies (a=Ev), so that Eqs. (15) and (16)
become

vXN=O,

Jz+curlKv=0 .

(17)

(18)

I

I I
I

h
I I ~

I ' \I I

FICs. 2. Schematic of the equilibrium vortex distribution in a
perfect sample. Vortex lines curve in over a small depth near
the surface to end normal to the boundary [see Eq. (17)];corre-
latively spontaneous diagmagnetic currents Jz ensure vortex
equilibrium as required by Eq. (18). In this perturbed layer the
lines of force of the magnetic 6eld (dashed lines) strongly devi-
ate from vortex lines, in agreement with the macroscopic Lon-
don equation (3).

Plaqais and two of us' derived two similar equations in
rotating He II that involve the same physical interpreta-
tion [see Eqs. (11) and (12) in Ref. 14]. The boundary
condition (17) states that vortices terminate perpendicu-
lar to the sample surface as shown in Fig. 2 (or to cavity
walls in He II). This holds on a microscope scale and can
be understood by considering the interaction between a
VL and its image. In Eq. (18), the quantity C may be re-
garded as a macroscopic expression for the local super-
current jzo "applied" at the core of a VL, including that
induced by the vortex itself if it is curved. It is well
known from microscopic theory of Aux fiow, ' that a VL
indeed moves as soon as jzo%0. For instance, in the lim-
iting case of low fields and quasi-isolated VL (e~H„),a
homogeneous bending of the VL lattice would induce at
the vortex cores a current jvo=H„vXu/R (where u is
the principal normal and R the radius of curvature); this
expression taken from Ref. 15 can be rewritten as
j&o

=H, &curlv =curlcv.
Figure 2 sketches the one equilibrium structure of the

VL lattice such as expected from the above set of equa-
tions. In a simple shaped sample (sphere, cylinder, ...),
VL in the bulk will be uniformly distributed with con-
stant values v=v&, K=K1, giving J& —=0 and co, =B,. But,
in order to satisfy the boundary condition (17), VL bend
to end normal to the surface. The deformation of the VL
lattice takes place over a small depth d from the surface.
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At= —,
' f rX J&d r = —f sd r+ fr X(sXN)d r,

then taking account of the boundary condition (15):

At= —f sd'r .

(19)

(20)

This relation clearly is a consequence of equilibrium
equations (15) and (16), and —e, no more than —,'rX Js,
has the primary physical meaning of a magnetic moment
density. It remains that a mean magnetization may be
defined as M=A(/V, where V is the sample volume. In
cylinders, spheres, or slabs, M= —z„the constant bulk

value of e; on the sample scale, diamagnetic currents are
superficial, and give rise to the same field distribution as a
uniform bulk magnetization, resulting in the same rela-

tionship between applied and bulk magnetic field:

B,—80=@0(1—D)M, where D is the demagnetizing fac-
tor.

Equations (14) and (16), together with VT=O, also
characterize the absence of bulk dissipation, and should
govern nondissipative transport currents through the
vortex lattice. Consider a cylindrical sample, along the y
direction, immersed in a transverse field H0(O, O, HD) as

shown in Fig. 2(b). In the absence of fiux fiow, the total
current through the cross section, expressed as a contour
integral

I, =f J& dx dy = —Pe.dl, (21)

is necessarily zero, by virtue of the surface condition
c, XN=O. We indeed find that a perfect sample has zero
critical current, as it should be. A well-known exception
to this rule arises, however, when HD is directed parallel
to planar faces of a prismatic sample. Vortex-free layers
exist, at equilibrium, along a surface aligned with the
field, the thickness of which also turns out to be of the or-
der of d such as given above. This situation again is very
similar to that observed in He II, ' when cavity walls are

In the London model, from Eqs. (3), (10), (17), and (18),
with Jz=n~oqVz, d is found to be of the order of
A(cpa/co)'~ -a( 1na/g*)'~ . In accordance with Eq.
(18), Meissner-like (diamagnetic) currents Js fiow near
the surface. It is to be emphasized that, inside the per-
turbed layer d, where co&B, VL are not flux lines; both
fields lines and VL incurve, but in opposite directions
(Fig. 2).

Superfluid vortices in rotating He II behave similarly.
The bending of vortices near the plane walls of a cavity,
inclined to the axis of rotation, results in a spectacular
decrease of the vortex density along the walls (see Fig. 1

of Ref. 14). This expectation was confirmed by accurate
second-sound measurements. ' Also in He II, the charac-
teristic depth d is not much larger than the vortex spac-
ing a. Therefore, one might question the relevance of a
continuum theory to describe such effects. However, the
observed quantitative agreement between second-sound
data and predictions of the continuum model in He II
(Ref. 14) has given us some confidence in extending the
present macroscopic approach to superconductors.

The magnetic moment of the sample, associated with
equilibrium currents Jz = —curls, is

aligned with the angular velocity. These vortex-free lay-
ers carry large supercurrents, which are responsible for
the diamagnetism of the sample. But, as surface free-
energy barriers are opposed to incoming or outgoing vor-
tices, their thickness may be subject to significant devia-
tions from equihbrium values; whereas symmetrical
changes give rise to hysteresis, unsymmetrical changes
can result in a net large transport current. Yet the oc-
currence of such supercooling or superheating effects in
superconductors require a very good surface finish, in
contrast with He II, where perfect plane walls on the
scale of the vortex spacing (a-0, 1 mm) are easily ob-
tained. On aligning the field H0 with carefully polished
and annealed samples, a sharp maximum of I, can be ob-
served. ' But this is not the case with samples of stan-
dard quality such as those used in the present work: poly-
crystalline square rods, spark machined, then chemically
polished. Their critical currents were not very sensitive
to field orientation (in the xz plane); a smooth inaximum
of I, was observed with a relative variation EI, /I, not
exceeding 20%%uo. In all orientations critical currents usual-

ly are found to increase as the surface is roughened. '

We presume, however, that the ability of the surface to
carry transport supercurrents, when aligned with the
field, should be first reduced, even though critical
currents then increase by further roughening. Anyhow,
the existence of any more or less rough faces, parallel to
the field, will by no means alter the main conclusions, we
wish to test by experiment, that in a soft material, on the
scale of the sample, I I, is superficial, and, in flux flow,

VI, is a surface Joule effect. Thus, while keeping in mind
the peculiarity of a parallel surface, we shall simplify the
discussion by assuming that the VL intersect the surface
everywhere, as implied in expression (21) for the total
nondissipative current I, .

The continuum theory applies, and then the above re-
sults hold (in particular I, =I, =0) provided that the
sample has no defects on the scale of the vortex spacing
a. All thermodynamic local parameters, such as

H„~,c, . . . , if not uniform, must be slowly varying func-
tions of position. If, moreover, the surface is smooth on
the scale of a, the sample may be regarded as perfect, and

I, =I, =O. Conversely, any departure from these ideal
conditions is expected to be a source of pinning, in the
sense that I,WO.

D. Surface critical currents

Hard samples such as sintered powders, industrial
wires, . . . contain strong volume inhomogeneities like
cavities, precipitates, . . . . In contrast, the samples used

by experimentalists to test fundamental models, whether
single crystals or rolled foils, generally are rather homo-
geneous, and indeed are designed for having well-defined
characteristics (v, H„e, ). However, bulk homo-

geneities does not prevent surface defects, and in most
cases the roughness of the surface on a scale comparable
to or smaller than a is unavoidable. PbBi or PbIn foils
with a mirrorlike finish are obtained by compressing be-
tween glass plates; nevertheless, images provided by scan-
ning tunneling microscopy reveal a very rugged surface
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(~a/sXN~ or) ~vXN~ & sin8, , (22}

~here 8, is a local critical angle increasing with the sur-
face roughness (somewhat like a limiting friction angle in
mechanics). When aXNPO in Eqs. (19) and (21), it is
clear that the magnetic moment can differ from its ideal
value (20) (hysteresis), and nondis sip ative transport
currents can flow.

Consider the classical geometry of slabs or foils (t « w;
Fig. 3), so as to work at low current densities, and a =sv.
Idealized faces are planes perpendicular to the applied
Geld. In bending the VL near the surface in the direction
indicated in the figure, as far as allowed by (22), a current
density Jz= —curlcv will be systematically transported

b

Ox i

Qx i

on the scale of a, bearing out the naive picture of Fig. 3.
As stated above, condition (17) holds on a microscopic

scale (London model). Now, in the presence of surface ir-
regularities on the scale of a, there should be many ways
for the VL to end normal to the actual surface (Fig. 3), al-

lowing for a large number of metastable or nondissipative
solutions. This happens frequently in disordered systems,
or in systems subject to irregular boundary conditions.
Let us mention, for instance, the effect of surface rough-
ness or heterogeneity on the wetability; surface hetero-
geneity permits the existence of many metastable
configurations, and results in contact angle hysteresis. '

To take this feature into account, MS suggested that
the continuum description can be maintained, provided
that the boundary condition be amended as follows:
while still assuming idealized smoothed surfaces on the
scale of a, condition (15) or (17) is released and replaced
by an inequality in the form

in the y direction, in accordance with Eq. (18). The same
set of bulk equations entails again that the distortion of
the vortex lattice and related equilibrium currents remain
localized within a small depth d from the surface. Thus,
integrating Jz over the depth d, we find the surface
current density i = —c, , the surface component of c.
Therefore, the local critical current density (A/m) is
i, =csin8, . Here c. strictly stands for its surface value,
but if 8, is not too large, c. is not very different from its
bulk value s&(B„T),where B, =Bc. Hence, the critical
current of a foil is predicted to be

I, =2wsi( sin8, ), (23)

where sin8, has been averaged over the sample surface,
and c.

&
is given as a function of Ho and T by the funda-

mental equation of state (solid bne in Fig. 1). Equation
(23) involves two important results. First, it is seen that,
with plausible values of sin8, -0.1, surface defects alone
can account for the critical currents observed in soft sam-
ples. On the other hand, Eq. (23}asserts that the temper-
ature and Geld dependence of I, follows that of the vortex
potential c., a fact which is easily tested by experiment.
There is an obvious connection between critical currents
and hysteresis, i.e., deviations from an ideal magnetiza-
tion curve. However, this more indirect relationship be-
tween I, and reversible magnetization itself (through s),
though sometimes noticed in the past, ' is not often stat-
ed.

We wish to make a point in connection with Fig. 3. It
should be noted that, because of the small field b due to
the transport current 2i, the flux lines are also slightly in-
clined to the normal, but in the opposite direction, with
an angle of b/Bo=i/Ho-s8/Ho «8. There is no in-
consistency, having realized that toAB in regions where
curlJs%0. In terms of forces, Eq. (16) ineans that the re-
storing force of bent vortices just offsets the mean
Lorentz driving force. One cannot imagine such an equi-
librium, as long as VL are believed to run along flux lines,
since in this case both forces would act in the same direc-
tion.

One more point should be emphasized. No distinction
has been made between diamagnetic currents and subcrit-
ical transport currents; both are nondissipative
Jz = —curls associated with the adequate distortion of
the VL lattice, so that C=O in Eq. (16). In spite of their
formal analogy, Eq. (16) and the familiar equation of
magnetostatics, JM =curlM, have quite different physical
meanings. The former expresses an equilibrium, not the
latter; JM and curlM in a magnetic material are insepar-
able. Moreover, whereas J&= —curls may contribute to
the transport currents, JM never does.

FIG. 3. Transport supercurrent in a foil normal to the mag-
netic field. Owing to surface irregularities on the scale of the
vortex spacing, many metastable or nondissipative
configurations of the vortex array should exist. Bending of vor-
tices in the direction indicated in the figure makes the associat-
ed equilibrium currents Jz flow systematically in the y direction.
As in Fig. 2, vortex lines in this perturbed layer are not flux
lines, again in agreement with Eq. (3).

E.Steady Aux Sow in a soft sample

For the sake of the discussion we shall consider a sim-
ple standard situation, in which the rod-shaped sample of
Fig. 2 or 3 is assumed to have uniform surface conditions
along its length, so that any segment hy of the rod has
the same critical current [I,(y ) =const]. We also assume
bulk homogeneity. On the other hand, immersion of the
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sample in superfluid He II ensures a quasi-isothermal pro-
cess. Indeed small VT's arising from heat transfer cannot
be ignored. Under these conditions, the V-I curve should
display the standard broken shape: V=O for I &I„and
V=R&(I I,—) for I)I, . In practice, no sample is per-
fectly uniform. Each segment having a different critical
current in a finite range, from I,' to I,", the sum of indivi-
dual linear characteristics result in a curved region of the
overall V-I curve between I,' and I,". The critical current
usually obtained by extrapolating the linear part of the
V Icur-ve is then interpreted as the mean value of I, (y )

between the voltage probes. '

According to experiment, macroscopic space charges,
Bernoulli and Hall effects are negligibly small, so that
p=const in the homogeneous rod, and E'=E(O, E,O) is
longitudinal. Moreover, stationary conditions require E
to be uniform everywhere inside the sample. Recall that
no induced voltage can exist in steady flux flow, as far as
macroscope fields are concerned. ' We believe that this
uniform electric field is due to minute electrostatic
charges distributed, thanks to the generator, on the sam-
ple surface, just as it is in any conducting wire, or in the
normal state, without discontinuity across H, z. Note
that the classical relationship between the macroscopic
electric field and the VL velocity vL (Ref. 19) is recovered
in the MS theory as a consequence of conservation laws;
from its generalized form, E'= —vL Xco [see Eq. (39)
below], where E'AE and coAB, it is clear that it does not
express the law of induction.

A picture of the dc flux flow in a soft sample follows at
once from the above interpretation of surface pinning.
The observed shape of the V-I curve suggests that the
surface retains its ability to carry a constant nondissipa-
tive current, I, =I, (i.e., its maximum value as much as
allowed by surface defects), while the voltage V across the
sample should be proportional to the dissipative excess
current, I~ =I I, = V /R& —Accordin. gly, it is con-
venient to separate the local current density J into two
parts:

J=J]+Jp
———curly+ Jp . (24)

J&= —curls, is defined, at any point and time, as the su-

percurrent (including diamagnetic currents) that would
come into equilibrium with the vortex array in its instan-
taneous configuration; it should represent the nondissipa-
tive part of the supercurrent. The "core" current
C=Js —

J& is its dissipative part. Thus, we can dePne the
critical current, in the flux-flow regime, as the integral
sum of J, over the cross section such as given by Eq. (21).
As I2 CC V and E=const we expect that Jz=o&E (o'& is
the flux-flow conductivity) and is uniformly distributed in
the bulk, whereas currents J& remain localized near the
sample surface. Therefore, the experimental shape of the
V-I curve is well explained, if the vortex array is assumed
to move uniformly while maintaining its critical state
configuration, as sketched in Fig. 4. We are fully aware
that the rigid and uniform motion of VL, especially near
the surface, is unrealistic. But we regard it as a time-
average picture of the vortex flow, which will be useful
for dealing with dc transport properties. Actually, the

N

B

J $fb&h

o J,
v,

(b)

FIG. 4. A time-average picture of the vortex flow: (a) near a
face normal to the field, for both directions of the dc current; (b)
near a face inclined to the field. The transport theory brings out
the existence of an important convective term in the energy flux,
denoted as a X y= sEX v in the text [see Eq. (35)j; in any case
its surface component is pointing outwards and contributes to
the heat ejected to the surrounding bath. Thus, it accounts for a
large part of the Joule effect, as explained in Sec. III. In perfect
samples, vortices would end normal to the boundary (v=N),
and this surface Joule effect would vanish.

motion of VL slipping through the surface defects must
be irregular, giving rise to large local fluctuations of the
VL bending and associated J, 's (flux-flow noise). Never-
theless, the relative fluctuations 5I, of the critical current
I, (the sum of statistically independent 5J, 's) are consid-
erably reduced by a well-known statistical effect, to typi-
cally 10 —10 . At constant I, correlative fluctuations
5I2= —6I, entail a small voltage noise. Pursuing this
idea, a consistent theory of flux-flow noise, supported by
experiments, has been proposed recently, ' and is planned
to be published elsewhere. Though detectable, the re-
sulting fluctuations of the Joule effect are negligibly
small. In many respects, therefore, the effects of flux-flow
noise may be ignored. Thus, we shall adopt the point of
view that all quantities of interest in a dc problem can be
calculated with a good approximation by using the time
averages of the fields, which amounts to handling the
time-average vortex flow, as if it were strictly steady.
This is a familiar procedure in the hydrodynamics of tur-
bulence; in many practical situations, only the mean flow
development is of rea1 interest. The structure of the "tur-
bulence" of the vortex flow should be relevant only in so
far as it determines voltage noise.

It must be admitted that such an assumption is by no
means obvious; concerning dissipative quadratic terms
(e.g. , ~ vL ), it implies that the statistical dispersion of the
fields (e.g., the time average of 5UL ) is not significant. In
contrast, the current theories of pinning introduce elastic
instabilities at the pinning sites involving a large disper-
sion of UL, with the main purpose of accounting for the
part VI, of the Joule effect.

In this connection, one objection could have been
raised to our interpretation from the beginning. In
steady conditions, the work supplied by the generator,
VI = VI, + VI2, is completely transformed into heat
delivered into heat reservoir. From this, one generally
infers that I, should also contribute to dissipation, at
variance with the stated property of the currents J&. As
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discussed in Sec. III, there is no inconsistency, however,
and a careful analysis of the Joule effect in the mixed
state corroborates the foregoing considerations.

III. THE JOULE EFFECT IN THE MIXED STATE

A. General transport equations

der . Q R+dlv
at T T' (26)

in which JU, Q, and Q/T are current densities of energy,
heat, and entropy, respectively. Taking the left-hand
sides of the equilibrium conditions, namely, V T, E, and
C, as affinities, we expect the dissipative function R to be
expressed as the sum of products of each affinity with an
associated flux to be determined. Expressing r}U/dt from
Eq. (8), and substituting the time derivatives from Eqs.
(3), (26), and Maxwell equations, then comparing with
Eq. (26), we obtain

R = ——7'T+J E' —y C,T n (27)

J =Q — J+S+aXy .U (28)

Here J is the total current density (the charge flux). J„
stands for J—J& and may be referred to as the normal
current. S=EXB/po is the Poynting vector, and tp is
defined by

m vs =E'+y .
e Bt

(29)

Equation (29) reads as the macroscopic equation of
motion of the supercurrent, in a form generalizing the
second London equation. The "force" field y is the
analogue of the mutual friction force in He II.

The heat balance equation can be rewritten in the
simplified form

80T +divQ=g=J„.E' —y C,at
(30)

where g (W/m ) is the local heat source due to dissipa-
tion (bulk Joule efFect).

Let us for a moment assume that each Aux, as generally
observed, depends only on its own associated affinity.
Just as in He II, the linear law —y ~ C can be written as—y; =coP;k Ck by introducing the friction tensor P,.k. By
symmetry arguments this tensor has only three indepen-
dent components; in vectorial form

y=PcoC1 +P'co—( v X C ) +P"cgC

Once one accepts the thermodynamic identity (8) and
the bulk equilibrium equations, V T=O, E'=0, and C=O,
a consistent set of transport equations is easily derived
repeating a rigorous standard method. Let us write the
laws of energy conservation and entropy growth in their
general form

U
+divJU =0, Q= —VT —"VT~~

J„=Ej+"E~~,

Ip — PcoCy —vL X co,

vL = —PvXC .

(31}

(32)

(33)

(34)

Having defined vr as a vector normal to VL (and assum-
ing a=sv) the last term in JU can be looked on as a
transfer of energy by convection:

K Xp —Ev X $7 = E.(co)covL (3&)

B. Thermomagnetic efFects

In writing the foregoing dynamical equations, we have
deliberately left out cross terms. However, we cannot ig-
nore the considerable heat current qL associated with
vortex motion, ' which gives rise to an abnormally
large Ettingshausen effect in a type-II superconductor as
compared with a normal metal. To take this into ac-
count, a second term qI ~ C should be added in Eq. (31),
for instance, in the form —AT(ruXC), as well as the
term A (co X V T } in Eq. (33), in accordance with Onsager
reciprocity:

Q=q+qL =q —AT(roXC),

p= —PcoCi+ A (m X V T ) .

(36)

(37)

Here q stands for the heat current due to thermal con-
duction [the right-hand side of Eq. (31)].

In experiments we shall ascertain that VT's resulting
from both Joule and Ettingshausen effects remain small
enough, so that no related effect, except for q itself, is
significant; the temperature dependence of kinetic
coefficients, as also the "thermal force" in Eq. (37) (or
any term ~ A V T) are negligible secondary effects. That
is just what we mean above by quasi-isothermal process.
Under these conditions, ql can be rewritten as a convec-
tive flux. Equations (33) and (34) yield

AT
~vL, n TSevL, (38)

where Sd = Ago/p is commonly known as the transport
entropy per vortex. '

where Cj=(vXC)Xv and C~~=(v.C)v. Since R )0, P
and P" are positive coefficients. The law of thermal con-
ductivity, Q; =~;kVk T, and the law of electrical conduc-
tivity of the "normal Quid, "J„,=y;kEk, can be written in
the same form. In the absence of significant Hall effects
(electrical or thermal), the associated descriptive
coefficients, P', ~', and y' may be neglected. Further-
more, as already pointed out for He II, the conservation
of VL should imply that P"=0. Indeed, if P"=0, p takes
the form vI X co. Taking the curl of Eq. (29), we obtain

Bcc) =curly=curlvL Xco,
Bt

which reads as a transport equation for vortices, with the
line velocity vL . The simplified linear laws are
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C. Steady Aux Bow

Under stationary conditions, Eq. (29) reads

E — p= vL X ct) (39)

g=E'.(J„+C)=E'Jz, (40)

This becomes the well-known relationship between E',
vL, and 8, ' where supercurrents are evenly distributed,
so that (m/e)curlVs «B and to=B, i.e., in general, in
the bulk of the sample. Equation (39) holds under quasi
stationary conditions as far as one can neglect the inertial
term in Eq. (29) compared to E. It is a very good approx-
imation for ac currents in the acoustic range of frequen-
cies, and over the whole spectrum of flux-flow noise (0—1

kHZ).
The heat source g then becomes

Eq. (11).
We now turn our attention to the heat transfer from

the sample to the heat reservoir at To. The sample is im-
mersed in an electrically insulating bath, which, in gen-
eral, obeys a simpler set of transport equations. In an or-
dinary electrical insulator, heat and energy fluxes can be
identified, except for the Poynting vector, JU=q'+S'
(primed quantities will relate to the surrounding medi-
um). This holds in superfluid helium, where q'= Too'v'„
(v'„ is the normal fiuid velocity), and, of course, in vacu-
um with q'=0. In any case one must be careful in writ-
ing the boundary condition for heat flow at the interface;
it is obtained by equating the normal components of ener-

gy f1uxes, JU N= JU N. Since J N=O, and S N=S' N,
because of the continuity of the fields (the normal com-
ponent of the electrical field excepted), we find

where J2 has been defined in Sec. II as the dissipative part
of the current; from Eq. (24),

q~=Q~+(aXy) N=Qz+h,
where

(43)

Jp =J J& =J+curls =J„+Jz +curls =J„+C (41) h =(aXN) y= srE . — (44)

To some extent, no distinction being made between cu and
B, nor between E' and —y, the formalism worked out in
the foregoing transport equations was available before, in
previous analyses of dissipation. " Hu's expression for
Jz and R (Ref. 10) can be identified with ours in the sta-
tionary case, provided that —c and J2 should be substi-
tuted to M and J, . The term c Xy has been introduced in
the form MXE' as a correcting term in JU. ' ' As dis-
cussed in Sec. II with regard to magnetization, all the
difference lies in the interpretation of the quantities in-
volved. In Refs. 1 and 10 the current J, entering into the
dissipative function, as E J„is always termed the trans-

port current density. This leads the authors to the con-
ceptual division of J into a transport current and a mag-
netization current, J=J, +J . Our point of view is quite
different, since the dissipative current J2 in Eq. (40) is
only a part of the transport current (except for perfect
samples). We have seen how, in the presence of defects,
J& may contribute largely to the total transport current,
while being locally indistinguishable from diamagnetic
currents.

Let us return to the standard stationary situation such
as described above and illustrated in Fig. 4. As stated at
the end of Sec. II, we restrict ourselves to investigating
the time-average vortex flow, which is steady and two-
dimensional in the mean, the VL lying in x-z planes and
all currents being along y, as shown in Fig. 4. Thus,
E =E=/3toC=const, J„=yE=const. In the bulk, more-
over, beyond the perturbed depth d, co =B, J

&

——0,
Jz-—const, and the heat sources g are uniformly distribut-
ed. From Eqs. (32) and (33), it follows that

(42)

For instance, the flux-flow conductivity o.f derived by
Schmid, " close to H, 2, may be written in the form (42),
by taking co=B, y=o.„,the normal conductivity, and
P=g /2rs, where r is defined by Eq. (5) and c. is given by

Here, subscripts X and T denote outward normal and
clockwise tangential components, respectively. The net
outward flux of heat, per unit length along y, is the sur-
face integral of q&. It appears as the sum of two terms.
According to Eq. (30), the surface integral of Q~ is just
the volume integral of g, i.e., EI2. Then, using Eq. (21),
the second term can be rewritten as

Ph dl= Ega dl=—EI, , (45)

which is the expected remaining part of the total Joule
effect EI. In solving the whole set of heat equations, it
will be convenient to regard heat as being conserved, pro-
vided that the term h (W/m ) is taken into account as a
surface heat source.

Figure 4(a) represents the mean vortex flow near a face
normal to the field, for both directions of the applied
current. Because of the steady bending of VL, the energy
flux c, Xy has a component normal to the boundary,
which is responsible for the surface Joule effect. Despite
the fact that c Xy =EX c can be identified in the bulk as
an odd effect, changing sign with I (or 8), the energy
current at the interface is always seen to be outward
(h) 0), as expected for an even Joule effect. Moreover,
the surface Joule effect is the only way of revealing the
energy flux aXqr: consider the case shown in Fig. 4(b),
where, inversely, the curvature of VL prevents the bulk
energy flux EXc.&=@,co,vL from reaching the surface. As
a matter of fact, such a large odd effect is not observed,
but this is not explained by the authors except for stat-
ing the wrong boundary condition QN =0 at the sample-
vacuum interface, instead of the right one JU& —S&=0.
As easily seen, the conservation of the energy flux
through the curved vortex array is ensured by a correla-
tive abrupt change in the Poynting flux: consider a thin
flat box enclosing the perturbed layer, of area dl X1 and
thickness d, as indicated in Fig. 4(b). Let q„S&,. . . be
the fluxes at the inner face of the box; except for q, (r),
these are the quasiuniform bulk values of qL, S, c. Xy.
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q~=Q, ~+Ei2+E(i, —e, r}=Q,N+h . (46}

As Q~=Q, &+Ei2 =Q» (by Eq. (30)], we return to Eqs.
(43) and (44), as it should. This alternative derivation of
the boundary conditions for the heat Bow can be readily
extended to cases where H0 is aligned with a face of the
sample. In any case, i, =i, —

c&z- may be defined as the
local contribution to the critical current.

Assuming dc or very low-frequency currents, and
quasi-isothermal conditions, the term divqL in Eq. (30)
vanishes in the bulk. Allowing for possible thermal iner-
tial effects, and setting Tdcr =cdT, where c is the specific
heat (in J/m K), the bulk heat equation finally reduces to

T +divq=g =const, (47)

where q is subject by Eq. (46) to the boundary conditions

q»+hl, +h (hL, =ql, f (48)

Equivalently stated, the Ettingshausen effect may be
treated, on the scale of the sample, as anoher surface heat
source hL (actually distributed over a small depth of the
order of d ). Given the sources g, h, and hL, the problem
of heat transfer will be entirely specified by an additional
condition on qz, depending on the embedding medium.
In He II, qz can be expressed in terms of the temperature
T and T' at the interface as

I T T
q~ = (T'= To),

R~
(49)

Again, the energy conservation requires that

Siv+q~=S&~+Q» —EEir .

According to Poynting equation, S»—SN=Ei, where
i =i, +i2=i, =e,r —Er (J,= —curls); whence

to a vector H: here, curlH= J—J,=J2 is not the trans-
port current, and the parallel component of H at the in-
terface is no longer continuous, nor is S&.

IV. SECOND-SOUND EXPERIMENT

The samples used were square rods of cross section
4X4 mm, spark cut from PbIn 17.5 at % polycrystalline
ingots. Critical currents, typically I, —10 A at
H0=0. 5H, 2, may seem to be low to one accustomed to
expressing them in terms of critical current density J, .
However, foils rolled from the same ingots had similar
critical currents. Various sample treatments —annealing,
chemical polishing, plating —could affect I„butdid not
alter the qualitative results such as described in this sec-
tion.

Complete immersion in super Quid helium, at
T0=1.66 K, allowed us to use high currents, while still

satisfying quasi-isothermal conditions, in the sense given
in Sec. III. Consider, for example, the working condi-
tions reported in Figs. 6—8: at Bo =3000 G (B p=4770
G), up to I=20 A, b, T's arising throughout the sample
because of the g sources do not exceed 0.1 K; with

Pco-pf —10 0 m (Fig. 6) and Sd —10 ' —10
J/m K, the thermal forces in Eq. (37) stay small as com-
pared with E. The temperature jump T—T', at the inter-
face, is of the order of a few mK.

The sample is driven by a modulated current,
I+I*eJ ', where I*~ 0.5 A. At I*=const, the operat-
ing point (I, V) is moved along the linear part of the VI-
curve. The frequency co is low enough to ensure a quasi-
static modulation of the dc characteristic, as carefully
checked experimentally. The g and h sources are modu-
lated accordingly, all being in phase with the applied
current. Below, an asterisk will designate the co com-
ponents of fields, sources, and fIuxes. The resulting heat

where As ( —1 K cm /W) is the Kapitza resistance. This
is illustrated in Fig. 5 by the one-dimensional electric
analogue of a sample He II interface.

A last observation should be made concerning the for-
malism. If one desired to introduce a local H geld, a pos-
sible definition would be H =B/go+ a, which is closest to
previous definitions. ' So the cruxes S and EXc could be
cast in one new vector S' = EX H. However, one should
renounce properties customarily attached in magnetism
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FIG. 5. The one-dimensional electrical analogue of a unit
area of sample He II interface. Current and voltage along the
r-c line are the analogues of q = —aV T and T. Here r =~ ', c is
the specific heat, Rz is the Kapitza resistance, and z„((R~the
bulk He II impedance. The problem of heat transfer becomes
one dimensional when the thermal skin depth 6=(rcco/2) ' is
small compared to the sample size.

FIG. 6. A schematic of the fitting of a PbIn square rod on a
rectangular second-sound resonator. Also shown is the mea-
sured dc voltage-current characteristic at 1.66 K, Bo~~ =3000 G
(I, =6.2 A); the solid dot indicates the operating point for data
reported in Fig. 7. A small superimposed ac current
(I*=0.7 A) modulates Joule and thermomagnetic heat sources.
The sample acts as a second-sound transmitter and drives the
cavity on its x fundamental mode, coo/2m. =640 Hz, at 1.66 K
(quality factor 1650). A carbon bolometer (not shown) measures
both amplitude and phase of the temperature oscillations. Its
response (typically —10 pV) is amplified and directly plotted on
the Argand plane, as shown in Fig. 7.
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FIG. 7. Typical X-Y recording of the complex amplitude s of
the second-sound signal. Solid points are experimental points
for a set of discrete values of co close to the fundamental reso-
nant frequency (coo/2m. =640 Hz, at 1.66 K). The response
curve s(co) is a circle from which the theoretical resonant signal
s(coo) is deduced accurately. This graphical construction allows
one to get rid of resonance shifts due to possible temperature
drift during the experiment. s(coo) =OM refers to the working
conditions shown in Fig. 6 (I= 14 A). OM is obtained on rev-
ersing the direction of the magnetic field. The even part of s is
the Joule signal OJ. As explained in the text, the signal in the
normal state, ON (I 5 A, I*-0.5 A), and the odd thermomag-
netic signal JM yield phase references for volume and surface
heat sources, respectively. Thus, OJ is resolved into corn-
ponents, as OA + AJ=s&+s2 ascribed to volume and surface
Joule effects, respectively.

flow at the interface qze J ' generates second-sound waves
around the sample, which therefore acts as a second-
sound transmitter. The working frequency co matches the
fundamental mode cop of a rectangular resonator, a wall
of which is closed by one face of the sample as shown in
Fig. 6. Thus, the cavity selectively amplifies second
sound issuing from this face. At 1.66 K, coo/2m=640 H.z.
The magnetic field can be rotated to be either aligned
with (Fig. 6) or perpendicular to the transmitting face (in
short notation Hol or Ho~ ).

The cavity is machined from epoxy resin rods and
carefully bonded with an epoxy adhesive. A slit at the
midheight of the cavity allows helium to flow inside and
the dc heat to escape. Since Rz is large as compared
with the characteristic impedance of bulk He II
(z„—10 K cm /W), the sample behaves as a quasiper-
fect second-sound reflector, like other walls. A carbon
bolometer painted on the opposite wall measures the tem-
perature amplitude and phase of the second-sound stand-
ing wave. The bolometer signal s is fed into a two-phase

30 i

lockin amplifier, whose outputs drive an XY recorder.
Thus, the second-sound signal is directly plotted as a vec-
tor s in the Argand plane (Fig. 7). s is proportional to the
co component of the heat input qz, averaged over the
transmitting face: s=A(co)(qz*), where A(co) is the
overall transfer function of the cavity-bolometer system.
In the plot of Fig. 7, A(coo) at the resonance may be re-
garded as an arbitrary complex factor. Nevertheless,
some cavities have been calibrated by using a thin
chromium film as an auxiliary transmitter; when driven
at —,'co, such a film delivered a known heat current (at co)

into the cavity.
This second-sound technique has long been proposed

by one of us and developed by Vidal ' as an alternative
way of measuring thermomagnetic effects. In these
pioneering experiments, the whole current I was modu-
lated, eliminating the co component of Joule sources. But
the nonlinear response of the sample, and spurious cou-
plings between the cavity and the external bath, made the
analysis of the results delicate. Since then, we have made
considerable progress in second-sound acoustics' '

which might renew the metrological interest of this
method. But we are not concerned here in measuring Sd,
and the reported experiment has been designed merely to
be demonstrative. Note, however, the great convenience
of the Ettingshausen effect, inasmuch as it behaves as sur-
face heat sources and provides us a useful reference sig-
nal. The co component of the Ettingshausen equivalent
sources are hl'=+E*TSd/yp on faces aligned with Hp
and zero elsewhere.

The cu component of the total Joule effect, irrespective
of any model, reads

VI*+V*I= V*I,+2V"(I I, ), —

where V*=RfI*. Now, in ideally soft samples (no
volume pinning), we expect V'I, to be distributed as sur-
face sources h *=E*i„while2V'(I I, ) should b—e uni-

formly distributed in the bulk as g
* sources; g

*=2E *J2.
As has been remarked above, no electrical skin effect

can be detected in the working frequency range. In con-
trast, thermal inertial sects are important. Referring,
for instance, to the normal state at 1.66 K (K„=0.49
W/m K, c„=8.25X10 J/m K), the thermal skin depth
at 640 Hz is 5„=(2K„/c„co)'=0.54 mm. Therefore,
the cavity only captures the heat sources in the immedi-
ate vicinity of the transmitting face. As a first and fairly
good approximation, a one-dimensional calculation (see
Fig. 5) yields

S2
q~ =a . +h +hL1+j (50)

Is

Sl

10
I (A)

20

FIG. 8. The magnitude of the Joule components of the
second-sound signal, s, and s2 as function of the dc applied
current. Data are taken along the V-I curve of Fig. 6.

Here 5=(2K/ceo)'~ —5„is the thermal skin depth (as-
suming for simplicity K —K ), and a=[1+(I+j)gj
where ri =KRYO /5-0. l. Equation (50) accounts for the
main features of experimental results.

Let s1, s2, and s3 be the signals due, respectively, to
sources g*, h*, and hL* taken separately. The resulting
signal s=s, +s2+s3 at co Np is recorded in the complex
plane as a function of I and Bo (Fig. 7), while maintaining
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a constant modulation E' (or V* or I ). On reversing
the magnetic field (or I}, only s3 change sign. From
s(HO) =OM and s( —Hs) =OM', we get M'M=2si, and
the Joule signal even in Bo, OJ= —,'(0M+0M'). For Hsi,
0M=0M', within the precision of the recorder pen
(s3=0). In Fig. 7, the signal s(H&)=OM has been ob-
tained in H~~~ for directions of H~ and I such as hL &0 on
the transmitting face. So the direction of the axis M'M
gives the phase of the signal s2 that would result from the
modulation of h sourcesPowing inwards (h &0); upon in-
creasing Bo from 2000 to 4500 G, we observed no
significant change ( -2'}of this phase. This is consistent
with the fact that, according to Eq. (50), the phase of s3
follows that of the factor a, which at any rate is close to
unity. Possible variations of involved parameters Rg, K,

and c, only affect the small term g-0. 1. If a =const, the
phase of a signal s&, due to uniform volume sources, is
given by the Joule signal in the normal state, s„=OM„.
We verify that s„lags s3 in phase by an angle near n. /4,
such as predicted by the one-dimensional (1D) formula
(50).

The drawing of Fig. 7 is repeated for various values of
I along the linear part of the V-I curve. It is noticed at
once that the Joule point J moves parallel to the axis
OM„. Therefore, the simplest way of describing the I
dependence of the Joule signal is to resolve OJ into two
components, s& and sz, along the axes OM„and M'M.
Then the magnitude of s& and s2 is plotted as function of I
(Fig. 8). It is found that si increases linearly as I I„—
with I, =I„while s2 is nearly constant; that is, the ex-

pected behavior of the sources g*=2E'J2 and h *=E'i,
(at E'=const). The simplicity of this result justifies as-
cribing the signal s2 so defined to the surface Joule effect.

To confirm the connection between the s2 component
and the critical current, we have measured s2 and I, as
function of 8&, from 2000 to 4500 G. While I, is reduced
by a factor 5, the ratio sz/I, is found remarkably con-
stant (to better than 2%). On the other hand, absolute
measurements of (h'), averaged over the transmitting
face, could be obtained from si in calibrated cavities (see
above). By (h') =E'(i, ), the contribution to I, of this
face was calculated, for both orientations of the field Ho~~

and Ho~. Adding these two partial critical currents, then
multiplying by 2, we obtained an estimate ofI„in so far
as the other three faces behave similarly. In practice, the
symmetry of the faces is as difficult to achieve as the lon-
gitudinal homogeneity of the surface conditions. Despite
this there was a fair agreement, within 10—20%, between
the surface critical current so estimated and I, taken
from the V-I curve. This given further evidence of the
Joule heat VI, arising essentially at the surface.

Let us return to Figs. 6 and 8. For clarity, the inter-
cepts of the lines s, vs I and V vs I, at s& =0 and V=O,
have been denoted as I, and I„respectively. As ex-
plained in Sec. II, I, represents the longitudinal average
of I,(y }; in Fig. 6, 5~I,(y) SS A. The small observed
difference between I, and I, is worth considering, even
though it might be reasonably attributed to experimental
errors. In particular, the separation of voltage probes

(=10 mm) can hardly be determined to better than
1 mm, so that the cavity and the voltmeter may not ex-
plore exactly the same portion of the rod. Also, small
differences in the phase of signals s2 and s3 may arise
from corner effects (only available from a numerical 2D
calculation), if the surface distributions of h and hL
sources do not coincide. As easily seen, this would entail
a shift of I,. Nevertheless, since I, was systematically
found to be smaller than I„wecannot rule out the possi-
bility of a small bulk contribution to I, . This occurrence
should not weaken the bearings of our argument. Indeed,
in increasing the cross section of the sample for experi-
mental convenience, we risked enhancing bulk pinning,
however weak it may be. Conversely, if 10—20% of I, is
due to volume defects in rods having such a large cross
section (16 mm ), the bulk contribution to I, in soft foils
(0.1 mm thick) may be reduced to less than 1%.

V. CONCLUSION

As has long been recognized, in the analog situation of
rotation He II the obvious interest of continuum descrip-
tions of the mixed state is to make the treatment of equi-
librium and transport problems easier, whenever intricate
deformations of the vortex array are involved, especially
in the presence of defects. The originality of the MS
theory, developed in this paper, essentially lies in stating
and relying on the two fundamental equations (3) and
(16), namely, the macroscopic London equation and the
macroscopic equation for vortex equilibrium. Many ear-
lier theories, in particular, the well-known elastic contin-
uum theory, ' restricted their attention to the sufficiently
slow spatial variation that co and 8 were not discriminat-
ed, and the detailed distribution of currents, in connec-
tion with the local equilibrium of the VL, was ignored.
On close examination it is seen that only a very restricted
class of elastic deformations has been considered, i.e.,
those subject to the constraint Jz ——0, ~:—B. This consid-
erably limits the field of possible solutions. In view of the
extensive development of the elastic continuum theory in
the literature, this criticism will be argued elsewhere.

As a simple application of the MS model, the magneti-
zation of a perfect sainple has been interpreted (Sec. II).
Then the subcritical (Sec. II) and flux-flow properties
(Sec. III) of soft samples have been investigated in detail.
A surface pinning model (Sec. II) accounts for the magni-
tude of critical currents, and their field and temperature
dependence. The surface mechanism responsible for the
part VI, of the Joule effect is elucidated, without having
recourse to elastic instabilities. The existence of a surface
Joule effect is demonstrated by the experiment of Sec. IV.
As a consistent theory of flux-flow noise has long been
challenging, it should also be emphasized that a suc-
cessful noise theory, supported by experiments, '

proceeds from the MS model, as just mentioned in Sec.
III. Subsequent papers are planned to be devoted to it.

Our grounds to pay particular attention to soft samples
are explained in Sec. I. The theory of soft samples ap-
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pears as an important step in understanding critical
currents and dissipation, so far as it concerns a wide class
of standard samples, as shown by experiment, and not
fictitious samples completely free from volume imperfec-
tions.

One may wonder, however, at the frequent occurrence
of the soft behavior, such as defined and described above.
We can understand that volume defects are ineffective by
a simple argument proceeding from Eq. (16). It will be
noted that this argument has no connection with the no-
tion of pinning threshold introduced in the elastic contin-
uum theory, ' which characterizes the strength of one pin-
ning center. Suppose we are dealing with dilute point de-
fects, in an otherwise perfect sample, including the sur-

face. If the pinning sites are widely spaced on the scale of
a, the continuum model still applies and Eq. (16) holds at
equilibrium, in a simply connected domain excluding the
pinning centers. Let 4 be a surface crossing the sample
and lying entirely in this domain; the flux of J& = —curlE
through 1, expressed as a contour integral (21) is zero.
This means that such a sample cannot carry a super-
current without dissipation, and I, =0. Now, by increas-
ing the number of defects, the mean site spacing becomes
comparable with a, so that the above argument fails, and
then a net supercurrent can flow by some kind of percola-
tion effect. Again we may speak of pinning threshold,
but the latter is related to the defect concentration, ir-
respective of their strength.

'A. M. Campbell and J. E. Evetts, Adv. Phys. 21, 199 (1972).
2W. C. H. Joiner and G. E. Kuhl, Phys. Rev. 163, 362 (1967).
B. Plaqais, P. Mathieu, and Y. Simon, Solid State Commun. 71,

177 (1989).
4P. Thorel, Y. Simon, and A. Guetta, J. Low Temp. Phys. 11

333 (1973)~

5D. M. Kroeger and J. Shelten, J. Low Temp. Phys. 25, 369
(1976).

P. Mathieu and Y. Simon, Europhys. Lett. 5, 67 (1988).
7I. L. Bekarevitch and I. M. Khalatnikov, Zh. Eksp. Teor. Fiz.

40, 920 (1961) [Sov. Phys. JETP 13, 643 (1961)];I. M. Khalat-
nikov, Introduction to the Theory of Superfluidity (Benjamin,
New York, 1965), Chap. 16.

8A. A. Abrikosov, M. P. Kemoklidze, and I. M. Khalatnikov,
Zh. Eksp. Teor. Fiz. 48, 765 (1965) [Sov. Phys. JETP 21, 506
(1965)].

B.D. Josephson, Phys. Rev. 152, A211 (1966).
' C. R. Hu, Phys. Rev. B 13, 4780 (1976).

A. Schmid, Phys. Kondens. Mater. 5, 302 (1966).
' B.Plaqais, Ph.D. thesis, Universite Paris VI, 1990, p. 231.

D. Saint-James, G. Sarma, and E. J. Thomas, Type-II Super-
conductivity (Pergamon, New York, 1969), Chap. 3, pp.
41-75.
P. Mathieu, B. Plaqais, and Y. Simon, Phys. Rev. B 29, 2489
(1984).
P. Nozieres and W. F. Vinen, Philos. Mag. 14, 667 (1966).

' P. S. Swartz and H. R. Hart, Phys. Rev. 156, 403 (1966); 156,
412 (1966).
R. E. Johnson and R. H. Dettre, J. Phys. Chem. 68, 1744
(1964).
R. G. Jones, E. H. Rhoderick, and A. C. Rose-Innes, Phys.
Lett. 24, 318 (1967).
B.D. Josephson, Phys. Lett. 16, 242 (1965).
B.Plaqais and Y. Simon, Phys. Rev. B 39, 2151 (1989).
P. R. Solomon and F. A. Otter, Jr., Phys. Rev. 164, 608 (1969).
P. G. P. Weijenbergh and M. Van Beelen, Physica B 94, 287
(1978);and references therein.
Y. Simon and F. Vidal, Phys. Lett. 30A, 109 (1969).

24F. Vidal, Phys. Rev. B 8, 1982 (1973).
J. R. Clem. Phys. Rep. 75, 1 (1981).




