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The nonlinear dynamics of elastic twinning in martensitic-ferroelastic materials is presented on the
basis of a two-dimensional lattice model. The model is suited to square-rectangle transformations
characterized by two strain components. The microscopic model involves nonlinear and competing in-

teractions emerging from interactions as a function of particle pairs and noncentral-type or bending
forces. These interactions are of the most importance for the existence of nonlinear coherent structures
made of elastic (martensitic) domains and twin boundaries. A special attention is devoted to the
quasicontinuum approximation of the two-dimensional discrete system with the view of including the
leading discreteness effects at the continuum description. This becomes particularly crucial for the sta-
bility of the lattice. Moreover, macrostresses and microstresses are placed in evidence where the contri-
butions of the discreteness effects and bending forces or noncentral interactions are both considered.
The emphasis is especially placed on the investigation of the complete two-dimensional system. Numeri-
cal simulations show that a moving martensitic band is unstable with respect to the transverse distur-
bances yielding thus localized structures consisting of disk-shaped domains. By means of a perturbative
method a criterion of stability is found which involves the total energy of the system and parameters of
the nonlinear structure. The conjecture of instability thus obtained is checked on the numerical simula-

tions. The long-time evolution of the localized patterns is governed by an asymptotic equation of the
Kadomtsev-Petviashvili type deduced from the quasicontinuum model. At length, an attempt at a corn-

parison of the most pertinent results deduced from the proposed model with available experiments is

made, which mainly con6rms the physical basis of the model.

I. INTRODUCTION

Research in recent years has exhibited an increasing in-
terest in complex spatial structures and nonlinear dynam-
ics occurring in various fields of physics (periodic and lo-
calized patterns, spiral structures, vortices, etc.). The in-
vestigation of nonlinear dynamics of spatiotemporal struc
tures has become a common necessity for numerous prob-
lems in physics such as focusing patterns in plasmas,
modulated instability in convective Quid, magnetic Qux in
Josephson-junction transmission lines, or domain twin-
ning in crystals. ' The systems dispaying such behaviors
are often met in hydrodynamics or reaction-diffusion
equations and great progress has been achieved in the un-
derstanding of pattern formation and stability in these
systems. However, spatiotemporal pattern formations
and their dynamics become useful in the description of
the euolution of defect distributions and propagation of or
dered structures in various problems of condensed-matter
physics such as phase transitions. ' Here, we are con-
cerned with the dynamics and stability of nonlinear struc-
tures in two-dimensional systems taking place in phase
transformations in alloys on the basis of lattice models
The main motivation of the present work is to under-
stand how spatial structure formation and related dynam-
ics arising at the microscale are able to organize the sys-
tern at the macroscale. In other words, the global
response of a material to stimuli at the specimen scale is
the cooperative behavior of a complex dynamics taking
place at a mesoscale halfway between the microscopic lev-
el and the experiment scale. For instance, structures

made of elastic domains (transformed regions) and
domain walls are usually observed experimentally by
means of high-resolution electron microscopy, ' and ex-
perimental works reveal a rich and complex crystalline
morphology. These studies, although considered funda-
mental researches, appear now to be of technological im-
portance for engineering physics.

We point out the interest of a lattice model because the
latter possesses the most underlying physical ingredients
that contribute to the formation of twinnings in alloys.
In the present work we address particular attention to the
nonlinear dynamics of elastic twin formation occurring in
the phase transformation of martensitic ferroelas-tie type in

crystals. ' The transformation is characterized by in-

volving a lattice distortion, usually shear displacements.
Moreover, the transformation is usually accompanied by
twin formation and nucleation of different martensitic
variants. ' ' The dynamics of twin interfaces and twin
bands, of which the stability seems to be very sensitive to
the discreteness sects of the crystal, play a key role in

the transformation. The nucleation process can be seen
as a pretransformation phenomenon where modulated
strain structures are developed within the high-
temperature or parent phase, however, the instability phe-
nomena can be considered as the growth of martensitic
phases, thus producing localized structures. These mi-

crostructures are we11 described at an intermediate scale
where the microscopic scale background provides com-
peting interactions and strongly nonlinear lattice poten-
tials. Static and dynamics studies of martensitic twinning
have received particular attention because twinning for-
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mation and interface migration play a major role in shape
memory ejpct. Different valuable and interesting models
based on a continuum approach were proposed" ' in
order to describe the structure of twin boundaries in fer-
roelastic and martensitic materials. Here, we also extend
a lattice model' to a two-dimensional system and we ex-
amine in more detail a model previously studied in Refs.
15 and 16. Nevertheless, though the one-dimensional
model has given pertinent results about the propagation
of localized structures, describing the shearing motion of
atomic planes, we can expect more striking results con-
cerning the elastic structures for the two-dimensional sys-
tem.

The first task of the work is the construction of the
model itself; this is proposed in Sec. II. By considering a
particular transformation involving only one displace-
ment, we obtain the equations of motion for the micro-
scopic system in Sec. III. Because this set of nonlinear
difFerence-differential equations is not tractable as a
discrete system, we derive, by using an interpolation
method, the quasicontinuum model which incorporates
the leading discreteness effects in Sec. IV. A short digres-
sion is made to the one-dimensional version in Sec. V,
where we recall the most significant results provided by
the model. ' In Sec. VI, the two-dimensional model is ex-
amined and numerical simulations are performed on the
microscopic model. Especially, localized and ordered
structures, which emerge from an instability mechanism
of an elastic solitary wave with respect to the transverse
disturbances, are studied by using a perturbative tech-
nique, thus leading to a criterion of stability. A subsec-
tion is devoted to the derivation of an asymptotic model
of the Kadomtsev-Petviashvili type. At length, some
concluding remarks and further problems are evoked in
Sec. VII.

II. LATTICE MODEL

A. The lattice deformations

Let us consider an atomic plane extracted from a cubic
lattice (for instance, the fcc symmetry of In-Tl or Fe-Pd
crystals undergoing a martensitic-ferroelastic transforma-
tion). The geometry of the lattice plane, in its under-
formed state, is made of squares parallel to the i and j
directions (see Fig. 1). A particle of the plane is located
by (i,j) After .deformation of the lattice, the particles
suffer displacements in the plane defined by u(i,j) and
U(i,j ), which are the displacements in the i and j direc-
tions, respectively. In previous works, ' ' a model has
been studied by using the system (I,J) deduced from the
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FIG. 1. Two-dimensional lattice model with the detail of in-

teratomic interactions between the erst and second neighbors in

the i and j directions.

system (i, j) by a rotation 45' clockwise. A further step
to the simplification consists in considering transforma-
tions of the lattice involving the displacement u(i,j)
Then, we define the following discrete deformations:

S(i,j ) =u (i,j ) u(i ——1,j),
G(i j ) =u (i,j)—u (i,j —1) .

(la)

(lb)

The first strain component (la) denotes the elongational
deformation and Eq. (lb) represents the pure shear.

B. Interatomic potentials

We assume that the particles interact via two types of
interatomic potential. A first interatomic interaction be-
tween first-nearest neighbors is defined as a function of
particle pairs in the i and j directions. The corresponding
potential must describe homogeneous deformations with
unstable, stable, or metastable regions according to the
strength of the lattice forces. Next, we consider a second
kind of interaction involving noncentral forces (or three-
body interactions), which are equivalent to bond bending
or torsional forces due to the long-range atomic interac-
tions. ' ' these interactions occur between erst- and
second-nearest neighbors and then allow us to introduce
some competing interactions. Moreover, this amounts to
describing, at the microscopic level, the resistance of the
crystalline cell to twisting and bending. Along with
somewhat general hypotheses about atomic interactions
and the invariances of the lattice energy under transla-
tions and rotations, the lattice energy must be a func-
tion of the relative particle displacements. Then, we can
propose the following functional of the discrete deforma-
tions:

V= g [4[S(ij)]+,'p[G(i j}]+——,'5 [EI+S(ij)] +[6TG(i j }]

+—,ri[[bl+[S(i + 1j )+2S(ij }+S(i—1,j)]] + [bT[6(ij +1)+2G(ij )+G(ij —1)]] ]], (2)

where we have set

4($)=—'aS ——'S +—'S
2 3 4 (3)

The lattice energy (2) has been written in nondimensional

t

units and the coefficients a, P, 5, and ri are the parame-
ters of the model. The first and second terms in Eq. (2)
are the nonlinear and linear interactions emerging from
the particle pair interactions. The lattice potential (3}
corresponds to the expansion up to the fourth order of
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the interactions by particle pairs in the i direction (the
elongation of the lattice). The linear part containing the
lattice coefficient force p is deduced from the interactions
by particle pairs in the I and J directions (the shearing of
the lattice). The third and fourth parts of the lattice po-
tential represent the noncentral interactions in the i and j
directions between first- and second-nearest-neighboring
particles, respectively. The operators AL+ and Az hold
for the forward first-order finite differences in the i and j
directions,

y (ij )=b, + [5S(i,j )

+g[S(i +2j }+4S(i+ l,j )+6S(ij )

+4S(i —1,j)+S(i —2,j)]],
yr(i, j)=Jr+ [5G(ij )

+&[G(i,j+2)+4G(i,j+1)+6G( ij)
+4G(i j —1)+G(ij —2)]] .

(6d)

51 f (i,j ) =f (i + l,j ) f (i,j—)

and

br f (i j )=f (i j +1) f (i—j) .

Remarks. (i) It should be noticed that there exist some
symmetries in the lattice model, indeed, if we swap u for—

U and we exchange the role played by i and j, we have
the same lattice description. This means that the trans-
formation characterized by the displacement u (i,j) can
be deduced from that described by u (i,j ) by a 90' rota-
tion of the whole lattice. (ii} On the other hand, if we set
u = —V/&2 and u = V/&2 where V is the lattice dis-
placement in the J direction (omitting the indexes i and
j), then we recover the particular transformation that we
have studied in Refs. 15 and 17. Furthermore, it can be
proved that the lattice energies associated with these
difFerent transformations take on the same form. (iii) A
one-dimensional version of the model can be obtained by
assuming transformation involving the displacement V
along the J direction which depends only on I. This re-
duced one-dimensional model has provided interesting re-
sults concerning the shearing motion of the atomic planes
along the stacking direction modeled by arrays of mar-
tensitic and austenitic solitary waves. ' ' A short review
of the main features of the one-dimensional version of the
model will be presented in Sec. V.

III. EQUATIONS OF MOTION
FOR THE DISCRETE SYSTEM

We add the kinetic energy

(4)

IV. QUASICONTINUUM MODEL

In order to describe, at the continuum scale, the lattice
dynamics, we consider an interpolation method that in-
corporates the leading discreteness sects due to the lat-
tice. The procedure is based on the Fourier image of the
discrete quantities restricted to the first Brillouin zone in
order to smooth out the Fourier components with in-
creasing oscillations. ' ' ' To this end, we materialize
the procedure by taking the Fourier image of Eq. (5),
which has been written for the deformation S. Then we
arrive at

co S(p, q, co) =4 sin (p/2) fL+4 sin (q/2)Rr, (7)

where we have set

RL =8+45 sin (p/2)S+64ri sin (p/2)cos (p/2)S,

(8a)

RL =PS+45 sin (q/2)S+64ri sin (q/2)cos (q/2)S,

(8b)

The operators hL and A~ represent the backward first-
order finite differences in the i and j directions. Equa-
tions (6a) and (6b) define the discrete macroscopic stresses
due to the deformations S ( i,j) and G (i,j ) as a function of
the discrete displacement u (i,j ) [see Eq. (1)]. The micro-
scopic stresses emerging from the noncentral forces are
given by Eqs. (6d) and (6e) and they are, in fact, functions
of the discrete variations of the deformations in the i
direction for S(ij) and in the j direction for G(i,j).
Note that the stress (6c) derives from the potential (3) and
it is a nonlinear relation of the strain S(i,j ) Th.e investi-
gation of the set of the coupled nonlinear ordinary
differential equations which governs the displacement
u (i,j ) is not manageable, therefore we must consider the
continuum approximation.

to the lattice energy where the mass of the particles has
been set to unity for ease of presentation. From the Ham-
iltonian (H =K + V) of the system we can write the equa-
tions of motion as

ii (i,j ) =EL XI (i,j )+b r Xr(i j ),
where we have defined

XL(i,g)=e(i,j ) bLyi (i,j ), —

Xr(ij )=PG(ij ) &r yr(i j ), —

o (ij }=aS(i,j)—S (i,j )+S (i,j ),

(6a)

(6c) where the new stresses are then given by

where S(p, q, co) is the Fourier image in space and time of
the deformation S(i,j) and o is that of the stress (6c}.
Equations (8a) and (8b) also define the Fourier images of
the stresses given by Eqs. (6a) and (6b) by accounting for
Eqs. (6d) and (6e). At this stage of the work, we assume
that the displacement and deformation are slowly varying
over the lattice spacing. Accordingly, we can consider
the long mauelength lim-it of Eqs. (7}and (8). Then, by ex-
panding Eq. (8) and Eqs. (8a) and (8b) with respect to p
and q up to the fourth order, we can rewrite Eq. (7) as

~ (1+p /12+q /12)S=p RL+q Rr, (9a)
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Rl =&+p 5S+ —,', aq S,
fr=PS+q 5S+ —,', Pp S .

(9b)

(9c)

Q~i =XLxx+Xzyy

with

(10a}

Q =S—bs/12,

XL =cr(s) —5S„„——,', ashy,

Xr =Ps —5S —
—,',PS„„.

(lob)

(10c)

(lod)

The stresses are then defined by Eqs. (10c) and (10d)
where the first parts are the macrostresses and the second
and third terms stand for the microscopic stresses due,
first, to the noncentral interactions (terms in 5) and,
second, to the discreteness effects (terms in a and P). On
the other hand, we notice the particular form of the iner-
tial term in Eq. (10b},which comes from the fine descrip-
tion of the lattice dynamics' (b, is the Laplacian opera-
tor in the lattice plane).

The equation of motion (10), when it is written with
respect to the displacement u, can be derived from the
following Hamiltonian

H= f (X+4)dx dy, (11)
2)

where we have defined the density of kinetic energy

We have set 5=5+16'. Some comments about Eqs. (9b)
and (9c) are in order. Since the expansion has been done
up to fourth order we must include, for consistency, the
fourth-order terms emerging from the linear parts of the
macroscopic stresses 0 and PS, that is, (a+P)p q S/12.
The latter is split into two parts appearing in Eqs. (9b)
and (9c). Now, by taking the inverse Fourier image of
Eqs. (9a)—(9c), we readily obtain the equation of motion
for the continuous deformation S(x,y, t), which is

V. REDUCTION TO THE ONE-DIMENSIONAL
MODEL

(a) Here we want to stress the most significant results
for the lattice model and its quasicontinuum counterpart
when the displacernent u depends only on the x coordi-
nate. We record below the main equations and solutions
of the one-dimensional model, but the reader can refer to
papers discussing the one-dimensional system. ' ' The
equations of motion for the deformation
S (i)=u (i)—u (i —1) take on the form

S(i ) =6 [o (i } 6+—y(i )], (15)

P„=X„, (16a)

where we have set

P =u —S„/12,
X =0 (S)—y„,
S=u, .

(16b)

(16c)

(16d)

The macrostress and microstress derive from the elastic
potential (13) for which G =0 and the deformation S is
now a function of x. Then, we can write

where 0 (i) is the discrete macrostress defined by Eq. (6c)
and y(i) is still provided by Eq. (6d), but the second index

j does not exist. The operator 4=4 5+ is the second-
order finite difference in the i direction. We recover the
different features of the original two-dimensional lattice
emerging from the bending forces or noncentral interac-
tions.

(b) Now, we can reach the quasicontinuum model by
reducing directly Eqs. (10a)—(10c) to the x direction. By
integrating with respect to x, we arrive at the equation
for the displacement u,

u'+ —'S'+ —'G'
2 t l2 t }P t (12)

and the potential 4 is given by

as2 —
—,'S3+—'S4+ —'PG +—'5[(S )2+(G )2]

(13)

In addition, the deformations are

S=u„, G=u (14)

We remark that the elastic potential (13) is similar to the
Ginzburg-Landau free energy for ferroelastic materials
involving two strain components. However, the defor-
rnation S can be considered, here, as the primary order
parameter associated with the first-order phase transition
and the elastic coefficient a depends on the temperature
according to the Curie-Weiss law. ' The behavior of
the material is therefore linear with respect to the second
strain component G. Other elastic potentials of the
Ginzburg-Landau type, including strain gradients, have
been considered depending on the crystal symmetry in or-
der to describe twinning in martensitic materials. "

(c) The one-dimensional version enables us to discuss a
wide range of solutions to Eqs. (16a)—(16d).' ' Then,
we have interesting situations; among them we can quote
the following: (i) Modulated (almost sinusoidal) strain
structures. (ii) Array of solitons describing a spatially ar-
ranged structures made of periodic martensitic plates.
Moreover, the periodic modulated strain structure can be
considered as an incommensurate phase embedded in the
parent phase. ' (iii) Array of kink-antikink pairs inter-
preted as periodic arrangement of large martensitic bands
endowed in the austenitic phase. (iv) An austenitic soli-
tary wave moving in a martensitic matrix which corre-
sponds to a martensitic phase partially transformed. (v)
A static domain wall between an austenitic and martensi-
tic domains. (vi) A strain solitary wave corresponding to
a small layer of martensite moving in the undeformed lat-
tice. The latter case is examined in more detail below.

We now focus on the particular case (vi) which will in-
terest us in the forthcoming sections. When looking for
traveling solutions we can obtain an exact solution to
Eqs. (16a)—(16b) and the associated strain reads as'
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S
S(g)=

1+P sinh (Qg)

where we set

(18a)
VI. TWQ-DIMENSIONAL ANALYSIS

A. Numerical simulations

(=X Xo Ci

c =a —S So/2,

S /So

Q =S So/8y,

y=5 —c /12 .

(18b)

(18c)

(18d)

(18e)

(18f)

We have introduced So =—', —S . We notice that the soli-

tary wave velocity is strongly dependent on the wave am-
plitude S . Furthermore, the characteristic width of the
excitation is mostly controlled by y, which contains itself
the velocity c [see Eq. (18f}]. However, the existence of
the solution (18) is guaranteed if constraints on the ampli-
tude S are met. The conditions of existence must
guarantee that the velocity is real and such that ~c ~

(&a
for a&0 and that P is positive as well as y. It is
worthwhile noting that these conditions are equivalent to
that of the upward convexity, at the long-wavelength re-
gion, of the dispersion branch for the linear mode derived
from the discrete system [see Eq. (11)].' This upward
convexity of the dispersion phonon branch has been
identified for the In-Tl material, and this turns out to be
crucial for the nonlinear analysis, though this condition
has been obtained from the linear problem. This condi-
tion is merely given by 5—a/12 )0. In addition, the am-
plitude S must be smaller than —', . The profile of the
solution {18a) computed from the macroscopic model is
sketched in Fig. 2 and it corresponds to a localized mar-
tenistic layer or strain solitary wave in an austenitic ma-
trix. This can be interpreted as the formation of small
platelike regions of the tetragonal phase in the austenitic
(cubic) phase. Such structures are commonly observed by
means of electron microscopy in various alloys such as
Ni-Ti, Fe-pd, In-T1, etc. '

Let us start first with the numerical investigations of
the two-dimensional problem. We are searching for the
instabilities caused by the dimensionality of the system,
that is, the instabilities lilith respect to the transUerse dis-
turbances which do not exist, of course, for the one-
dimensional version. On the other hand, a question can
arise, what are the new spatial structures emerging from
the instability process, and the problem is to know
whether or not they are coherent and stable. More prac-
tically, we consider a band-shaped elastic domain travel-

ing on the untransformed lattice as described by the solu-
tion to the one-dimensional problem [see Eq. (18)], and

homogeneous in the other direction. This solution is
used as the initial condition and it is nevertheless the
solution to the two-dimensional problem. The numerical
scheme is provided simply by the set of difference-
differential equations (5) and (6). In addition, we consider
pseudoperiodic boundary conditions on the left and right
sides of the lattice and periodic conditions on the lower
and upper boundaries. The numerical simulations are
performed by using some estimates computed from the
coefficients of the In-Tl alloy. The nonlinear part (3} of
the lattice potential (2) can be rewritten in physical units

by setting

y(e)= —,
' A, e + ,'Be + ,'Ce——

The dimensionless units are obtained with
p=(B /C)4, e =(~B~/C)S, and a= A, C/B . The
coefficients of the energy are such that they can be con-
nected with those of a Landau free-energy expansion for
crystals of m 3m cubic class. Then, we have

A, =(C„—C,2)/2,

B =(C„,—2C„2+2C,23)/8&3,

and

FIG. 2. One-dimensional lattice model: dynamics of a strain
(nartensitic) solitary wave moving on the undeformed phase.

C =(C„„—4C„,2+ 3C„2~)/23 .

Moreover, the coefficient p in (2) can be calculated from
the shear elastic modulus C44 and we have

p=C~{C/B ). For the In-21 at. % Tl alloy we obtain

A, =0.12X10" dyn/cm at T=315.1 K, that is, just
above the transition ( To =314 K}, B = —5. 12 X 10'

dyn/cm, C =1.94X10' dyn/cm, and C44=0. 75X10"
dyn/cm . ' ' ' These numerical coefficients allow us to
compute those of the dimensionless free energy and we

have a =0.02, and p=0. 18. In addition, the correspond-

ing spontaneous shear at the phase transition is

co=0.026. Insofar as the coefficient 5=5+16' of the

gradient terms is concerned, we take 5 such that the band

thickness is 5=11—12 lattice spacings, this leads to
5=0.25. Then, we choose 5=0.252 and g= —0.002. At
the microscopic scale we should consider the thermal
noise. But, here, the thermal fluctuations have not been

accounted for since the system is not supposed to be cou-

pled to a heat bath. In addition, the amplitude of the
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(a) co
ABOVE 0.»
0.10 TO 0.'11

0.09 To 0.10

f 0.08 TO 0.09
0.07 To 0.08
0.05 To 0.07~ o.os ro o.oe
0.05 To 0.05
0.04 TO O.OS

K3 0,03 ro 0.04
C3 0.02 TO 0.03
C3 0.01 ro 0.02
C3 0.01 4 BELow

X

I ~ ABOVE 0.12
I ~ o.» To 0.12
I~ o.io ro o.»
I 0.09 To 0.10
I 0.08 TO 0.09
I o.o7 ro o.o8

o.oe ro 0.07
0.05 To 0.05
0.04 To 0.05I oo3 ro o04
0.02 TO 0.03
0.00 To 0.02

CI 0.00 & BELOW

(b) co

I

34
X

67

ABOvE 0.24
I I 0.22 TO 0.24
I I 0.20 70 0.22

0.18 TO 0.20
0.15 ro o.18
O.i3 TO O.1S
0.11 TO 0.13

O.O9 TO O.»
O.O7 TO O.O9
0.04 To 0.07
0.02 TO 0.04
0.00 TO 0.02
0.00 4 BELOW

(c) co

g K

34
X

t ABOVE 0.25
023 TO 0.25
0.20 70 0.23

I I 0.18 To 0.20
I t o.ie To o.18
I I O.N TO 0.15

0.12 To D.N
0.09 To 0.12R O.O7 TO O.O9I 0.05 To 0.07

C3 o.o3 To o.os
C3 0.01 To o.o3
Cl 0.0'1 4 BELow

X

FICx. 3. Instability mechanism of a strain band structure
moving on a two-dimensional lattice and formation of a local-
ized coherent structure: (a) initial condition, strain band mov-
ing in the x direction and homogeneous in the y direction, (b)
transverse modulations are developing along the transverse
direction, (c) formation of a localized structure emerging from
the instability, and (d) evolution of the coherent localized struc-
ture a long time later.

strain band is S =0.12, which, in turn, yields the veloci-
ty c =0.327.

The results of the numerical investigations are collect-
ed together in Fig. 3. Figure 3(a) represents the grey-
shaded contour map for the deformation S (i,j ) at the ini-
tial time. This is a localized deformation in the x direc-
tion and homogeneous in the y direction. Some time
later, some perturbations occur along the transverse
direction while the deformation is moving in the x direc-
tion as depicted in Fig. 3(b). In fact, at the beginning of
the instability process, the amplitude of the strain is
modulated in time and space. The instabilities are grow-
ing and this means that the nonlinear elastic structure is

no longer stable with respect to the transverse distur-
bances. After a lapse of time, a localized elastic structure
is then produced. The resulting pattern is shown in Fig.
3(c) and we can see very clearly a disk sh-aped structure
The latter is very robust and stable for a long time. This
coherent structure moves in the x direction with almost
the same form and a constant velocity, as shown in Fig.
3(d). From the numerical investigation we can extract
some characteristic estimates for the localized structure
shown in Figs. 3(c) and 3(d). In particular, the velocity of
the moving structure is almost uniform ( V =0.3) and it is
a little bit less than the velocity of the initial deformation
(c =0.327). In addition, the characteristic extent of the
pattern is 6.5 and 15.7 lattice spacings in the x and y
directions, respectively. Similar results have been ob-
tained by considering a transformation characterized by
the displacement V along a diagonal direction. '

B. Stability of the nonlinear structure

The numerical simulations presented in the previous
section inform us about the possible instabilities and their
evolution as time increases. However, in order to under-
stand the instability mechanism, we must know the pa-
rameters that play an important role in the instability
process. The physical meaning of the instability is that
the strain solitary wave velocity decreases with increasing
amplitude according to Eq. (18c). Then, for a strain band
weakly modulated along the transverse direction, the
low-amplitude sections go faster than the high-amplitude
sections [see Fig. 3(b)], and this effect results in a sort of
self-focusing phenomenon. Accordingly, the evolution of
small amplitude perturbations is growing and the forma-
tion of steady localized structures emerges. Specifically, a
straightforward algebra based on multiple scale tech
nique, which consists of finding an equation for the defor-
mation amplitude perturbation, leads to an instability cri-
terion. A similar technique has been used for another
problem. ' Then the nonlinear solution (18) is, indeed,
unstable against the bending of the strain band whenever

aHZaS &0. (20)

From the physical point of view, the instability occurs
when the total energy of the system is increased as the
strain amplitude. The regions of stability are shown in
Fig. 4 (shaded areas) in the plane of the total energy
versus strain amplitude when the parameter a is varied.
Similar problems about instabilities and perturbation
techniques have been met in a wide range of physical
problems (plasma physics, crystal growth, gravitational
waves in fluids, dynamics of fronts, etc.). Such instability
effects and multiple scale methods have been considered
in the context of two-dimensional weakly nonlinear
waves modeled by the Kadomtsev-Petviashvili equation,
nonlinear acoustic wave equation, or Schrodinger equa-
tion, for instance. ' Returning to the numerical simu-

lations, the computed total energy associated with the
strain band is E„,=0.277 (this quantity is conserved dur-

ing the simulation). The corresponding energy density

per surface is then H =10 . Vfe can check easily that
the points S =0.12 and H = 10 do lie in the instability
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5.0

4.0

sponding to the Fourier variables 0, P, and Q, respective-
ly, we can go back to the real-space representation by
taking the inverse Fourier transform. The equation of
motion thus obtained can be readily written as

CO

O 3o0

C
LLI

Stability [4T+(4 4—)~+DC~~~]~=P+rr, (24)

cv 2.0
O

1.0

0.0
0.00

N
Stability

~NN!)jNN.
I

3Z5

10' S
5.50

FIG. 4. Regions of stability (or instability) of a strain solitary
wave with respect to the transverse direction in the two-
dimensional system. The instability criterion is given by Eq.
(20).

region of Fig. 4. Moreover, we have checked numerically
that, if we choose a point in the stable regions, the insta-
bility growth does not occur at all.

C. Asymptotic model

(cv —ap )S=Pq S+p a Nt +p (5—a/12)S

+q (5—P/12)S, (21)

where we have made use of Eqs. (8a) and (8b) for the
definitions of the stresses. Moreover, the Fourier image
of the macrostress 0' has been broken into the linear part
aS and nonlinear part &N„.The latter corresponds to the
Fourier image of o.NL= —S +S . Now, we suppose a
weak nonlinearities and s10w time variable and stretching
space variables by setting

~NL e~NL ~

E1/2p

q=eQ,
Ct7+ VP —E Q

(22a)

(22b)

(22c)

(22d)

where the velocity v =&a (a&0 is supposed to be true)
denotes the acoustic wave velocity in the x direction.
Here, E is a small parameter associated with the nonlinear
terms. At the lower order in the small parameter E,
namely, the second order, the Fourier image of the equa-
tion of motion (21) takes on the new form

—2 QPvS=Q pS+P RNt+P DS, (23)

where we have set D =5—a/12. By introducing new
real variables T=e t, (=e' (x —vt), and Y=ey corre-

In order to understand more precisely the evolution of
the localized structures over a large scale of time and for a
weakly nonlinear medium, we must consider here an
asymptotic equation derived from the quasicontinuum
model (10). Starting with the equation of motion (7) in
the Fourier space we expand it for long wavelength up to
fourth order. Then, we arrive at

where the change of variable T into —T/2v has been
considered in order that Eq. (24) casts into a standard
form. In addition, since the inverse Fourier image of
S(P, Q, Q) is 4(g, Y, T) that of RNL is then —4 +4.
The coefficient D of the dispersive term includes the
discreteness efFects of the lattice. Moreover, this
coefficient can be negative if a )512. Then, the long-time
evolution of the nonlinear structure is governed by Eq.
(24), which is of the Kadomtsev Petv-iashvili type (KP
equation). Nevertheless, the standard KP equation con-
tains only the first nonlinear term. In the frame-
work of plasma physics the classical KP equation su6'ers
transverse instabilities according to the sign of the disper-
sive terms and it possesses, moreover, soliton solutions.

Equation (24) has a Hamiltonian structure

a sa
ag sq '

with the Hamiltonian

H= J [ ,'D(%() —+,'P(y), )
——4+'P ]dgdY,

(25)

(26)

where y&= 4. Localized solutions to Eqs. (24) or (25) can
be searched for in the form %=%'(g ct, Y) whi—ch de-
creases in all directions, the solution moving with the ve-
locity c in the g coordinate. In addition, the quantity (the
momentum)

J= f+ dgdY (27)

VII. CONCLUSIONS

In the present study we have proposed a lattice model
and its quasicontinuum approximation with the view of
understanding and describing the formation of nonlinear
structures of elastic domain type involved in phase trans-
formation (i.e., martensitic/ferroelastic transformations).
The madel is restricted to a cubic-tetragonal transforma-
tion and can be applied to alloys such as In-T1, Fe-Pd,
Ni-A1, and other ones which usually exhibit a first-order

is canserved. It can be seen that a localized solution to
Eq. (24) is a stationary point of the Hamiltonian H for
fixed J. The stability problem of the localized solution
can be investigated by using Lyapunov theorem and, ac-
cordingly, the boundedness of the Hamiltonian from
below guarantees the stability in the same way as for the
classical KP equation. ' On the other hand, a qualita-
tive argument for stability can be found by introducing
the characteristic length L of the localized structure.
The characteristic length must be such that J remains, of
course, invariant. In such a case the dispersion prevails
on the nonlinearity and therefore singularities (diver-
gence of some integrals) are forbidden. This explains the
fact that the localized structure as shown in Figs. 3(c) and
3(d) is particularly stable and persists for a long time.
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phase transition characterized by a lattice deformation
(displacive transformations). Moreover, a particular em-
phasis is placed on the continuum approximation yielding
the quasicontinuum model. The latter includes the most
important discreteness effects and describes at best the
lattice dynamics at the continuum level. On the other
hand, the importance of the competing interactions (in-
teractions by pairs and noncentral forces) for the twin-
ning dynamics has been pointed out and particularly
favors interesting coherent localized solutions. The col-
lective contribution of both noncentral interactions and
discreteness effects is in fact twofold; it triggers first the
instability process of an elastic domain band with respect
to its bending and it favors the stability of the localized
structure thus produced.

The most relevant parts of the work lie in the elabora-
tion of a two-dimensional lattice model allowing a rather
fine description of nonlinear structures. The study pro-
vides some important results concerning the domain for-
mation, that is, a structure made of disk-shaped or oval
elastic domains of very rich morphology. The localized
structure is the result of an instability process of the one-
dimensional solution which describes a martensitic band.
Moreover, a simple criterion for instability is found and
can be obtained by means of the total energy of the sys-
tem. Numerical investigations are carried out with the
help of the equations of the microscopic model and allow
us to check the physical conjectures. Here, the structure
formation can be interpreted as the microtwinning of
martensitic domains in the austenitic phase or as a nu-
cleation mechanism of ferroelastic domains in alloys.
Localized elastic structures are commonly observed in
high-resolution electron micrographs for a large variety
of materials (e.g. , Fe-Pd, In-Tl, Fe-Ni-C, etc.). ' These
structures are quite similar to those of the formation of
bubblelike domains, lenticular or ellipse-shaped twins in
ferroelectric materials. An interesting point of the
model is that we have derived an asymptotic model for
the long-time evolution of the nonlinear structure. This
model is then governed by an equation of the
Kadomtsev-Petviashvili type and the problem of the sta-

bility of the localized solution is then solved.
It should be noticed that in contrast with models based

on interface dislocations discussed by metallurgists, a
number of valuable and interesting models using the soli-
ton concept have been proposed. " ' These models,
starting with the full nonlinear elasticity theory including
strain gradient, attempt to describe moving coherent twin
boundaries in martensitic materials. These works have
placed kink-type solitary twin boundary and solitary
domain wall in evidence for a continuum model. Al-
though our approach seems to be different, some results
dealing with domain structure are similar, in particular
for the reduced one-dimensional models. ' ' However,
in the present study, we have pointed out the effects of
the dimensionality of the problem and real two-
dimensional localized strain patterns are found.

Further extensions of the model are worthwhile exam-
ining. For instance, modulated structures or
quasisinusoidal strain waves made of periodic arrange-
ments of elastic domains are of great physical interest.
This problem can be related to commensurate-
incommensurate transitions. %e can introduce the dis-
placement along the j direction, in this case the transfor-
mation is then characterized by two displacement com-
ponents so that we can expect more complex patterns ex-
hibiting the nucleation and growth of the topological de-
fects. The very discrete nature of the microscopic model is
a particularly diScult task if the continuum approxima-
tion is not considered. Nevertheless, a complete study of
the microscopic feature of the model could be undertaken
by introducing appropriate modifications in the lattice
potential description, and this should confirm the rich-
ness of the lattice model. An extension of the model to a
full three-dimensional system can be envisaged as well.
Some of these problems will be presented in future work.
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