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Absence of weak antilocalization for spin-1 particle waves
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Localization in disordered two-dimensional systems in the presence of spin-orbit scattering (SOS)
still presents a challenging problem. In perturbation one obtains for spin- 2 particle waves an increase
of the conductance due to a quantum interference effect, the so-called weak antilocalization. We
extend the perturbation calculation to arbitrary quantum spins. For integer-spin-s particle waves

we find no weak antilocalization but the SOS reduces the quantum correction by the factor 1/(2s+1).
For odd multiples of spin 2 the SOS reverses the sign of the quantum correction to the conductance
and reduces it by 1/(2s+ 1). In the limit of infinite spin SOS destroys weak antilocalization, similar
to magnetic impurities in the unitary limit.

The problem of localization in two dimensions has been
intensively studied since the late 1970s.~ s It is now gen-
erally believed that spin-zero particles (or waves) are lo-
calized in a disordered two-dimensional system. The sit-
uation is much less understood for spin-z particles in the
presence of spin-orbit scattering (SOS).s ~~ In perturba-
tion theory spin-z particles experience even a reduction
of their resistance below the classical resistance in the
presence of SOS (Ref. 12) (see, for example, the review
articles in Refs. 13—16). In the presence of large SOS lo-
calization is suppressed (except at the band edges where
it could even be enhanced~0). If the SOS is finite but
less than the normal elastic scattering the question of
localization is still under investigation.

In this connection we raised the question of what the
localization behavior of particles with a higher spin might
be. Before one starts an extensive numerical calcula-
tion it is worthwhile to study this question by pertur-
bation. In perturbation one calculates the Langer-Neal
diagram~r for particles with spin s in the presence of
SOS. This diagram is sketched in Fig. 1. The indices n,
P, p, and b are spin indices. In this particle-particle dia-
gram one particle is scattered from the state n ~ P and
the other from p ~ b. Since the Langer-Neal diagram is
originally a particle-hole fan diagram one has the condi-
tions that n = b and P = p. If we denote the diagrams
with I'al ~s then only the diagrams I'al l contribute to
the conductance correction and one has

where s is the spin of the particles. For spin-1 particles,
tz and P can take the values +1,0, —1, which we denote
as +, 0, —. Therefore, we have nine I' terms with the
superscripts (++, ++), (+0, 0+), (+—,—+), etc.

In real space, I' l P corresponds to a product of two
amplitudes of an electron with spin n which moves from
the position 0 on a closed loop C back to the position
O. One amplitude results from the propagation along
the loop C and the other is the conjugate complex of the
amplitude resulting from the propagation along C', i.e.,
along the curve C in the opposite direction. If A' t' is
the P (spin) component of the amplitude along C and
A" t' the amplitude along the the path C' then I' P &

is the product of the first amplitude times the conjugated
complex of the second, i.e., I' t P = A' &A" &'. Since
C' is the time-reversed path for the orbital motion of
the electron, I' P P can also be interpreted as the pair
amplitude of an electron pair (o;P) to be scattered along
the path C into the state (Pcs).

For spin
&

one often uses the trick to replace the sum
of the pair propagators I' t '~ by the pair propagators
with constant total spin 8 and total M, i.e., by I'Ms. We
use the same approach for spin 1 and find
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FIG. 1. The spin-dependent pair propagator I' ~'~ .
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Therefore we obtain
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The sum of the (spin-dependent) pair amplitudes can be
expressed as sums and differences of the total spin pair
amplitudes.

The SOS affects the individual electron amplitudes by
the scattering Hamiltonian

where
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Hi xAVk i (k x k')si = iKsi,
(4)

H(S) = H;(T) + H...S(S+1)

= s(K') [&(si+»)' —&si —2s']

Each individual electron amplitude is damped accord-
ing to the SOS Hamiltonian H' [Eq. (4)] and decays (be-
sides the elastic decay which is not relevant for the decay
of electron pairs) with the rate z,",where

+SO

= —- (K )Ncs(s + 1)
1

2' 3

and No is the density of states. Therefore, the pair am-
plitude is reduced with the rate 1/v„because of the de-
cay of the individual electron amplitudes. However, the
negative terms in H", i.e., (si + sz)/2 compensate this
damping. As a consequence the total decay of the pair
amplitude is given by the Hamiltonian (Kz)Sz/6 where
S = si + sz is the total spin. The resulting decay rate of
the pairs with total spin S is

SS+1 1

~„(S) 27' 3
(K )Ns—S(S— 1) =

2s(s+1) r8~

The orbital, i.e. , spin-independent part of the Langer-
Neal diagram decays in time as t +z exp[—t/w, ], where d
is the dimension of the system. The SOS in the case of a
finite spin s yields an additional factor for the decay as a
function of time which we denote as I'sos(t). We obtain
for spin s = 1 the folio@ring result:

I'sos(t) = s (5exp[—t/~, (2)] —3exp[—t/~, (1)]

+1exp[ —t/~„(0)]).

This yields the factor 1 for zero SOS and the factor
for very large SOS. In contrast to the case of spin

2 one does not find a reversal of the sign for infinite
SOS but only a reduction by a factor of 3 = 2s + l. If
the spin-1 particles have the charge e then one finds for
conductance correction as a function of temperature and
magnetic Field

Hz = (iAVi, ,i,l[(—k') x (—k)]sz)' = iK'sz.

The product is H" = —(Ksi)(K'sz).
When the SOS is (on the average) isotropic, i.e. ,

(iK, I2) = (iK„]2) = (IK, [2) and when the three com-
ponents are uncorrelated, one obtains on the average for
the product

H" = si(Kz)sisz

H„7„=hepNO/4, (»)
where the rates 1/v„have been replaced by the corre-
sponding magnetic fields, p is the resistivity of the two-
dimensional system, and Nc is the density of states.

In two dimensions f(H/H(S)) has the usual form (Ref.
12)

+ I-~I
I (»)H(S) J I2+ H

Ho = hepNp/4', (14)
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FIG. 2. The magnetoresistance for different spins s. The
spin-orbit scattering strength is represented by 0, = 1.

and 4(z) is the digamma function. 's
The main result is that the magnetoresistance is neg-

ative for zero SOS as well as for the strong SOS limit.
There is no reversal of sign as in the spin-2 case, only a
reduction of the magnetoresistance amplitude by a factor
of 3. In other words, we do not observe weak antilocal-
ization.

This result for the quantum correction to the conduc-
tance can be easily generalized for arbitrary spin

b,G(H, T) '. z, sS(S+1) ( H
Gpo 2s+1 (H(S)) '

where H(S) is defined as in Eq. (11).
One easily realizes that the correction to the conduc-

tance in the case of strong SOS is reduced by the factor
1/(2s+ 1) with respect to the case of zero SOS. In addi-
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tion one finds that only for s equal to an odd multiple of
z will the strong SOS yield weak antilocalization. (The
experimental finding, that electrons with small SOS weak
localization changes into weak antilocalization with half
the amplitude if one introduces strong SOS, is a direct
experimental proof that electrons in a metal have spin
~1 )

In Fig. 2 we have plotted the resistance, i.e., the neg-
ative conductance in units of GM as a function of the
magnetic field for difFerent spin values. The curves dif-
fer only in their low-field behavior. Particle waves with
integer spin show always a negative magnetoresistance,
while those with an odd multiple of spin zi show a pos-
itive magnetoresistance at small fields. The larger the
spin the smaller the field range of positive magnetoresis-
tance. The field range, in which the finite spin deviates
from the limiting case of infinite spin shrinks with in-
creasing spin.

In the limit of infinite spin s one can replace the sums
by an integration (after combining each pair of terms
with opposite sign). This yields for the time-dependent
echo a decay with the rate exp[—2t/r„]. As a result one

finds for infinite spin that the conductance correction due
to weak localization contains only one term:

a&here

H, = H;(T) +2H„. (17)
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For infinite spin s the SOS has a similar effect as mag-
netic scattering, which is known as the unitary limit. In
the p function, as applied by Ref. 3 the linear term in

I/g vanishes for infinite spin and large SOS. If the spin s
is finite but large and an odd multiple of

&
then a small

residual of weak antilocalization survives. It is an inter-
esting question whether this residual antilocalization is
strong enough to suppress localization in a large sample.
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