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Competition between surface roughening and reconstruction in (110)facets of fcc crystals
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Surface roughening induces a simultaneous deconstruction transition in missing-row-reconstructed
(110) facets of fcc crystals. This transition can be described by the four-state chiral clock-step model.
Numerical finite-size-scaling results indicate that at zero chirality this transition has the character of a
superimposed Kosterlitz-Thouless-type roughening and an Ising-type deconstruction transition. A sym-

metry property of the model, called S-T invariance, and related to supersymmetry, elucidates this as-

pect. In the strong chirality limit a fermion analysis applies. The full phase diagram can be constructed

by combining these numerical and analytical results. Pt(110) and Au(110) follow specific paths through
it. The only path consistent with the current experimental evidence for Pt(110) is a roughening-induced
simultaneous deconstruction transition, which has the character of an incommensurate melting transi-

tion with respect to the reconstruction degrees of freedom. This implies that the difference in energy be-

tween clockwise and anticlockwise steps is small in Pt(110).

I. INTRODUCTION

The missing-row (MR) -reconstructed (110) facets of
face-centered-cubic (fcc) crystals, such as Pt and Au, are
among the most extensively studied reconstructed surface
structures. Recent progress in experimental techniques
and surface preparation make it possible to study the
competition between surface roughening and surface
reconstruction. This interplay leads to intriguing new

types of critical phenomena. For unreconstructed sur-
faces it gives rise to preroughening (PR) transitions'
and for reconstructed surfaces to the roughening-induced
simultaneous deconstruction transition discussed in this
paper. '

The MR nature of the reconstruction in Au(110) was
established in the early 1980s, using techniques such as
scanning tunneling microscopy. The deconstruction
transition was believed to be in the Ising universality
class because the MR structure is twofold degenerate.
This was confirmed by experimental studies. Campuzano
et al. found in a low-energy-electron-diffraction (LEED)
study of the scaling behavior of the MR diffraction peak
that the MR row order parameter vanishes with
p=0. 13+0.02 (p= —,'), the correlation length diverges

with v= 1.02+0.02 (v= 1), and the susceptibility diverges
with y=1.75+0.03 (y= —,'). The deconstruction transi-

tion in Au(110) was believed to be a prototype experimen-
tal realization of an Ising-type phase transition, and at-
tempts were made to test recent theoretical results from
conformal field theory. However, at about the same time
Villain and Vilfan pointed out that the observed decon-
struction temperature T=0.55T (T =1336 K is the
melting temperature of Au) is close to the temperature
Ttt where the (110) facet should roughen. They estimat-
ed Tz from approximations of the energy of steps and
kinks in those steps. This suggests a competition between
surface roughening and surface deconstruction, but they
did not address what types of new phase transitions
might result because of this. This is the topic of this pa-
per.

The most recent experimental studies still confirm that
Au(110) undergoes an Ising-type deconstruction transi-
tion, and suggest that the roughening transition is indeed
very close; at Tz ——0.59T . ' '" Recent x-ray experi-
ments for Pt(110) find Ising-type critical exponents as
well. Robinson, Vlieg, and Kern' observe a deconstruc-
tion transition at T, =0.53T with P=0. 1160.01 and
v=0.95+0.09 (Pt melts at T =1080 K). In addition
they observe a shift of the liquidlike MR row peak above
the deconstruction transition which scales linearly with
temperature, Q —

~
T T, ~. The —latter can originate only

from step excitations, and therefore is a strong indication
of competition between roughening and reconstruction.
The theoretical results discussed in this paper explain
these experimental results.

Last year I proposed that Pt(110) undergoes a
roughening-induced simultaneous deconstruction transi-
tion, which has the character of a chiral melting transi-
tion with respect to its reconstruction degrees of free-
dom. ' I introduced a model to describe this: the four-
state chiral clock-step model. The purpose of this paper
is to provide more details of this work and to present
more recent results concerning the global structure of the
phase diagram of the four-state chiral clock-step model.
These results allow me to discuss the nature of the phase
transitions along all characteristic paths, and thus to
identify which of them is consistent with the experimen-
tal results for Pt(110) and Au(110).

The interplay between roughening and reconstruction
can be described within the framework of solid-on-solid
(SOS) models. The relaxation and buckling of the MR
reconstructed surface is sizable. In Au(110) it extends to
four layers deep. ' This certainly has a strong inhuence
on the energies of steps and walls, but these atom dis-
placements are not large enough to invalidate the solid-
on-solid description.

The research described in this paper was motivated not
only by recent experimental results, but also by my previ-
ous work on preroughening phase transitions. ' Koos
Rommelse and I discovered the existence of preroughen-
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ing (PR) and disordered flat (DOF) phases by a numerical
finite-size-scaling study of the restricted solid-on-solid
(RSOS) model. ' The RSOS model applies to (110) facets
of simple cubic (sc) crystals. Its phase diagram provides
a comprehensive description of surface roughening and
reconstruction in such facets, because it includes not only
the flat low-temperature phase (at ferromagnetic nearest-
neighbor interactions), but also the reconstructed phase
(at antiferromagnetic nearest-neighbor interactions}. The
reconstructed state in this model has a checkerboard-type
structure, where all nearest-neighbor columns differ in
height by one unit, and all next-nearest-neighbor columns
have the same height. I am not aware of any experimen-
tal realization of this. Low index facets tend to recon-
struct into structures with a much longer period. For-
tunately the RSOS model can be modified, without
changing the structure of its phase diagram, such that it
describes SC (110) facets that reconstruct into the more
familiar missing-row (MR) structure. This is described in
Sec. II.

The RSOS model displays four types of behaviors. '

A surface which is (ordered) flat at low temperatures can
undergo (1) a conventional roughening transition (a path
of type 1, using the classification introduced in Ref. 4), or
(2) a preroughening transition into a DOF phase followed
by a roughening transition at higher temperatures (a path
of type 2). When the surface is reconstructed at low tem-
peratures, it can undergo (3) a deconstruction transition
followed by a conventional roughening transition at
higher temperatures (a path of type 3), or (4) a roughen-
ing transition before it deconstructs (a path of type 4).

Experimental evidence for preroughening has surfaced
recently in the (111) facets of the rare-gas solids, such as
argon and krypton in the form of the so-called "reentrant
layer-by-layer growth phenomenon. "' Moreover, the
so-called "onset of anharmonic vibrations" phenomenon
in fcc metal surfaces such as Cu(110) and Ni(110) (Ref.
15) can be interpreted as a manifestation of preroughen-
ing. There, preroughening can be understood as the re-
sult of the competition between the unreconstructed flat
and MR reconstructed structures. ' Assume that the
MR reconstructed state is close in energy but unfavorable
compared to the flat unreconstructed state. At T)0, en-
tropy associated with step excitations starts to favor the
MR structure, and can stabilize the so-called DOF phase.
The DOF phase contains steps that form a disordered
structure, but maintain long-range step-up —step-down or-
der. ' The average surface height in the DOF phase is
the same as in the MR state, and differs from that in the
unreconstructed flat state by one-half unit. Preroughen-
ing is the phase transition from the low-temperature un-
reconstructed flat phase into the DOF phase. The DOF
phase is identical to the deconstructed fat phase along
paths of type 3, between the Ising-type deconstruction
transition and the Kosterlitz- Thouless-(KT) -type
roughening transition. The MR structure can be viewed
as a close-packed array of steps with alternating step-
up —step-down order. The DOF phase is a diluted "step-
fluid" version of this where the steps are not close packed
anymore and have lost their positional order.

I am not aware of examples of MR reconstructed sc

(110) facets. Au(110) and Pt(110) reconstruct in the MR
state, but they are fcc crystals. In this paper we will be
be preoccupied with the differences between fcc (110)and
sc (110} facets. The difference in crystal structure
changes the behaviors along paths of type 3 and 4.

Paths of type 1 and 2 are not affected. Phase transi-
tions such as roughening and preroughening are large
length scale phenomena. Roughening is described at
large length scales by a sine-Gordon model. ' The ap-
propriate SOS-type model for fcc (110) facets is an aniso-
tropic version of the body-centered solid-on-solid
(BCSOS) model, with an interaction range beyond that of
the exactly soluble model, ' but the scaling properties of
the roughening and preroughening transition remain the
same as in the RSOS model. '

The large length scale properties of the preroughening
transition are described by this sine-Gordon model as
well. At the PR transition the average surface height
changes by half a unit. In the sine-Gordon model this
means that the amplitude of the leading sine-Gordon
operator changes sign. This determines the scaling prop-
erties of the PR transition. None of the other differences
in the microscopic details matter. Therefore phase dia-
grams for sc (110) and fcc (110} facets, i.e., the RSOS
model and BCSOS model, look alike in the region with
paths of type 1 and 2.

In Sec. II we will find that along paths of type 3 and 4,
the differences in the underlying crystal structure do
matter. In sc (110) facets, described by the RSOS model,
the roughening and deconstruction degrees of freedom
decouple in the scaling limit. This implies that sc (110)
facets can roughen before they deconstruct and implies
the existence of an intermediate rough reconstructed
phase. In fcc (110) facets, the roughening and recon-
struction degrees of freedom couple in an intricate
manner. This forces roughening to induce a simultane-
ous deconstruction transition along paths of type 4.

This observation is the starting point of the research
presented here. It leads a study of the scaling properties
of this roughening-induced simultaneous deconstruction
transition. The BCSOS model with the required in-
creased interaction range is not very suitable for numeri-
cal studies. Limited numerical results from Monte Carlo
simulations are becoming available only just now. ' In-
stead, I introduced a so-called cell-spin model; ' see Sec.
2; a model formulated on a somewhat larger length scale.
I called this model the four-state chiral clock-step model,
and studied its phase diagram and the scaling properties
of its phase transitions by means of the finite-size scaling
of its step and wall free energies. These numerical re-
sults are presented in detail in Secs. III and VI.

Section IV contains a discussion of S-T invariance.
This is a symmetry property of the four-state clock-step
model at zero chirality, and related to supersymmetry,
which helps to understand why the numerical results of
Sec. III indicate that the critical exponents of the
roughening-induced simultaneous deconstruction transi-
tion are simply Ising-like with respect to the reconstruc-
tion degrees of freedom and simply KT-like with respect
to the roughening degrees of freedom.

Moreover, the model can be mapped at zero chirality
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into a model where an Ising model is coupled to an XY
model. This means that the roughening-induced simul-
taneous deconstruction transition is related to a similar
transition in fully frustrated XY models. S-T invari-
ance is a new type of symmetry in that context.

Section V contains a discussion of the phase diagram at
strong chirality. In that limit the model reduces to a
description for Au (110) proposed recently by Vilfan and
Villain. ' The model is equivalent to a 1D quantum Hub-
bard model, ' extended with dislocations. I derive the
structure of its phase diagram in the continuum limit by
bosonization. This type of fermion description of two-
dimensional phase transitions is familiar from the theory
of commensurate-incommensurate phase transitions in
adsorbed monolayers.

In Sec. VI these results are combined into a global
structure of the phase diagram, from zero to strong
chirality. The characteristic behavior along the various
types of paths through the phase diagram is discussed. In
Sec. VII we compare this with the current experimental
evidence for Au(110) and Pt(110). The results for Pt(110)
are consistent only with a path of type 4 at small chirali-
ty; i.e., a roughening-induced simultaneous deconstruc-
tion transition which is a chiral melting transition into a
rough incommensurate (IC) lluid phase with respect to
the reconstruction degrees of freedom.

II. STEP AND WALL EXCITATIONS
IN MISSING-ROW-RECONSTRUCTED SURFACES

Missing-row {MR) -reconstructed (110) facets of simple
cubic (sc) and face-centered-cubic (fcc) crystals behave
fundamentally differently, because step and wall excita-
tions in these facets have different topological charges.
To demonstrate this fundamental difference, consider first
the RSOS model. This is a solid-on-solid model where
nearest-neighbor columns of atoms are restricted to differ
in height by at most one unit, dh =0,+1. We discovered
preroughening in this model by increasing the interaction
range form nearest neighbors (K) to next nearest neigh-
bors (L),'

&=+ IK~h(n, m) h(n + l, —m )~

n, m

+K ~h(n, m) —h(n, m +1)~

+L~h(n, m) —h(n+2, m)~ I . (2.2)

This model has a MR-reconstructed phase for E„&0,
L &0, and E )0. I do not know of any example of a
MR-reconstructed sc (110) facet, but it is instructive to
work out the topological aspects of steps and walls in this
type of surface, and then to contrast it with those in
MR-reconstructed fcc (110) facets (i.e., Pt and Au).

The structure of the phase diagrams of the two models,
Eqs. (2.1) and (2.2), is the same, with phase transitions
that belong to the same universality class. (Their transfer
matrices describe the same spin-1 quantum chain. ) The
following discussion is valid for both, but it is phrased in
the MR language of Eq. (2.2).

Figure 1 shows a side view of the MR state, and of wall
and step excitations. The MR state is twofold degenerate
and can be represented by an Ising spin variable
S(n, m)=+1, or an angle variable H=rrn„with
S=exp(i 8) The tw. o Ising spin states represent the two
possible positions of the missing rows, n, =1,2 (mod 2).
Define E„asthe wall energy and E, as the step energy,
both per unit length.

The walls and steps are shown in Fig. 1 as idealized
"sharp" domain walls. Surface buckling and compres-
sion will deform them into less-localized, more soliton-
type objects with a width that might extend over several
lattice constants. This situation is quite similar to that of
domain walls in incommensurate adsorbed monolayers. "
It is important to realize that the following topological
aspects of these excitations are not inAuenced by the
compression or buckling in the top layers, nor by the

(a)

A simple modification in the interactions makes the
RSOS model applicable to (110) facets of sc crystals;

&=g 'CK„~h(n,m )
—h(n + l, m)

~

n, m

+K ~h (n, m) —h(n, m +1)~

+L ~h(n, m) —h(n + l, m +1)~

+L ~h(n, m ) h(n —l—, m +1)~ (2.1)

(b)

(m, o)
I

1 1 1, 2 2 2
I

+ — + — + -)- + — + — +

At low temperatures with K &0 and L &0 the surface is
reconstructed. It is a checkerboard structure where
nearest-neighbor columns differ in height by one step
height, dh =+1, and next-nearest-neighbor columns are
equal in height.

This model describes sc (100) facets assuming that the
interactions in such surfaces are short ranged and surface
distortions, such as buckling and compression in the first
few layers, are small. To my knowledge checkerboard-
type reconstructions like this have never been observed.
Surface reconstructions in low index facets have typically
a much longer period.

(c)

(m, -1)
I

2 2

1

I

+ ~ + + +

(m,.1)
I

1

f

+ — + ~ + — +

FIG. 1. Side view of (a) a missing-row (MR) -reconstructed
simple cubic (110) facet; {b) a wall-type excitation; and (c) a
down and up step. The left-right symmetry in (c) illustrates that

up and down steps have the same energy. The + and —signs in

(b) and {c)illustrate that steps do not a6'ect the MR order.
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sharpness of the walls and steps. The topological charges
of domain walls are determined by the difference in
reconstruction label 0 and height h between the domains
to the left and right of the domain wall, not by the inter-
nal structure of the domain wall. Domain walls cannot
change their topological charge, except when they meet.
At these domain-wall intersections and dislocations the
total topological charge must be conserved.

Wall excitation, see Fig. 1(b), have a topological charge
(d8, dh )=(n, O). Walls do not change the height of the
surface, dh =0. They couple only to the reconstruction
degrees of freedom. Consider a surface where E &E„
such that the wall free energy vanishes before the step
free energy. This surface follows a path of type 3. First
it undergoes an Ising transition into the DOF phase,
where the surface remains Hat but loses its reconstruc-
tion, followed at a higher temperature by a conventional
KT-type roughening transition.

Step excitations, see Fig. 1(c), have a topological
charge (d8, dh ) =(n, 61). This suggests that steps couple
to both types of degrees of freedom. That would imply
that along paths of type 4, where steps are more favorable
than walls, E &E„the surface roughens and decon-
structs simultaneously. This is not true. We can disen-
tangle the order parameters by renaming the Ising spin
states, as 8~8+m, each time we cross a step. This is
equivalent to an alternative setup, where the reconstruc-
tion order is not characterized by the location of the
missing rows, but in terms of the parity, S(n, m)
=exp[inh(n, m)]. Figure 1(c) illustrates that the antifer-
romagnetic spin order persists across steps, and therefore
that steps do not couple to the reconstruction order. A
MR-reconstructed sc (110) facet with E )E, roughens
first, via a conventional KT transition, into a reconstruct-
ed rough phase, followed at a higher temperature by an
Ising-type deconstruction transition, into the decon-
structed rough phase. A numerical study of the RSOS
model, ' Eq. (2.1), confirms this.

The second definition of the MR order, using parity, is
more appropriate also in the context of scattering experi-
ments. The MR diffraction peak persists into the rough
reconstructed phase, because columns with the same par-
ity scatter in phase.

It is useful to formulate a cell-spin model. Consider a
larger length scale. Imagine a rectangular grid across the
surface oriented along the MR grooves. The lattice con-
stants of the grid are large compared to those of the un-
derlying crystal. They must be larger than the widths of
the steps and walls (which are comparable to the length
scale at which the surface buckles and compresses), and
be of the same order of magnitude as the interaction
range. The lattice constant must be small compared to
the correlation length, and also to the density of steps
and walls. These conditions are satisfied close to the
roughening and deconstruction transition in surfaces
where these transitions are close in temperature such that
the correlation length remains large.

Associated with each cell of the grid is an Ising spin,
S„=exp(i8„),to represent the reconstruction inside the
cell, and a height variable h„ to represent the surface
height. The simplest cell spin Hamiltonian has the form

( —,'K, S„S,
(r, r')

+ ( ,'K—,S„S„+Q )[1—2(h„—h„)]] . (2.3)

We can assume that the height variables obey the RSOS
restriction, dh =h, —h„.=0,+1, because steps with a step
size larger than 1 are expensive, and ~dh~) 1 height
differences between nearest-neighbor cells are unlikely
when the step density is small compared to the size of the
cells. Kinks in the steps and walls have their own energy.
Therefore the coupling constants in the horizontal and
vertical direction should be different. This can be taken
care of partially by keeping the coupling constants isotro-
pic, while choosing the cell-spin lattice, the grid, to be an-
isotropic. Equation (2.3) does not include interactions be-
tween steps and walls at nearby bonds of the grid, nor
does it include core energies associated with the merging
and crossing of walls at vertices of the grid. This could
be taken care of by extending the interaction range.
None of these fine tunings of the model will change the
scaling properties of the phase transitions.

In the cell-spin model, Eq. (2.3), the energy of a wall,
(d 8,dh ) =(m, O), is equal to E =E, +K, . The energy of
a step (d 8,dh ) = (0,+1) is equal to E, =K, +2Q. In addi-
tion, the cell-spin model allows steps of type
(d8, dh)=(8, +1). These have an energy E,.=K, +2Q.
In the microscopic model, Eq. (2.2), these steps are for-
bidden. In the cell-spin model they are allowed, because
they represent excitations with a wall and a step inside
the same cell. —2K, is the repulsion energy between
such a wall and step, E, =E +E,—2E„and can be ex-
pected to be negative, K, /K, (0.

We can interchange the roles of the two-step-type exci-
tations in the cell-spin model. Suppose we do not choose
the Ising variable in the RSOS model in terms of the pari-
ty, S=exp(i eh ), but in terms of the location of the miss-
ing rows in the MR reconstruction, as we did initially in
the discussion above. Now the (d8, dh)=(0, +1) steps
are forbidden in the microscopic model, and they are the
ones that represent a bound state of one wall and one
step. In this formulation K, must be negative, E, /K, & 0,
because K, =E +E, —2K, . This transformation inter-
changes the roles of K, and E,. We will discuss this sym-
metry in more detail in Sec. IV.

fcc (110) facets have an anisotropic body-centered-type
structure. Atoms in adjacent layers are not located on
top of each other, but on top of the plaquettes; see Fig. 2.
This difference leads to fundamentally different topologi-
cal charges of walls and steps. Figure 3(a) shows a side
view of the MR state in fcc (110) facets. In this schemat-
ic representation adsorbing a particle corresponds to add-
ing a brick, one unit wide and two units high. The MR
structure in fcc (110) facets is characterized by an angle
variable 0= —,

' m.n„representing the four possible positions
of the missing rows, n, =1,2, 3,4 (mod 4). The MR state
is only twofold degenerate, because for each specific sur-
face height only 0=0,~ or only 0=+—,

'm. can be realized.
These two sets alternate with each change in height by
one unit.

Again we can distinguish between walls and steps, see
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FIG. 2. Top view of a missing-row-reconstructed fcc (110)
facet.

Figs. 3(b) —3(d), and identify their topological charge
(d8, dh ). The walls and steps in Fig. 3 are again only a
guide to the eye. They are shown as sharp objects that
would apply if the surface did not compress nor buckle in
its top layers. The width of the walls and steps in Pt(110)
and Au(110) is yet unknown, but they must look more
diffuse than shown in Fig. 3, because these surfaces show
a sizable compression and buckling (with the MR period-

( lK/2, —l)

(c)

(-m/z, -&) (-m/z, + &)

FIG. 3. Schematic side view of (a) a missing-row-
reconstructed fcc (110) facet; (b) a wall-type excitation; (c) a
clockwise down and up step; and (d) an anticlockwise down and
up step. The left-right symmetry in (c) and (d) illustrates that
step energies of up and down steps are the same.

icity) up to the fourth layer. This has been observed ex-
perimentally, ' and also has been found theoretically in
zero-temperature energy calculations.

It would be very helpful if those theoretical calcula-
tions could be extended to calculate the properties of
walls and steps. We need to know the internal structure
of domain walls (in particular their width). The model
defined below needs as input parameters the values of
domain-wall energies, their interaction energies, their
kink energies, and core energies associated with domain-
wall crossings and dislocations. At this time we lack
sufFicient insight in these aspects. Therefore I leave them
as free parameters. In Sec. VI, after obtaining the full
phase diagram, we will address this issue again.

At every (d8=+ —,'fr)-type domain wall the height
change is odd (these are the steps). At every (d8=ir)-
type domain wall the height change is even (these include
the walls, which by definition have dh =0). Figures
3(b)—3(d) show all the topological distinct domain walls,
with step heights smaller than or equal to 1. There are
two types of steps, clockwise (C) and anticlockwise (AC)
steps. The reconstruction variable 0 rotates clockwise or
anticlockwise when crossing the step from left to right
along vertical bonds of the grid. The internal structure of
clockwise steps, and also of AC steps, is the same wheth-
er the step is up or down. This is illustrated in Figs. 3(c)
and 3(d) by the left-right symmetry. So the step energies
depend only on d0.

Important aspects, such as the observed shift in the
MR difFraction peak in Pt(110),' are determined by the
topological charge of the steps, not by how sharp or
internally relaxed they are. The peak shift reflects a
temperature-dependent average rotation of 0 across the
surface with an incommensurate period. The MR unit
cell translates laterally across each clockwise (anticlock-
wise) step forward (backward) over d8= —,

jm. (d8= —jvr). —

The peak shift implies that the density of clockwise and
anticlockwise steps is different. Indeed, C and AC steps
have a different energy due to the difference in their mi-
croscopic internal structure. The direction in which the
MR peak shifts in Pt(110) (Ref. 12) indicates that the
clockwise steps are energetically favorable.

The steps in MR-reconstructed (110) fcc crystals cou-
ple to both the reconstruction and roughening degrees of
freedom, (d8, dh )=(+—,jrj, +1). The same seemed to be
true for sc (110) facets in the same type of setup where
the reconstruction order parameter is defined by the loca-
tion of the missing rows. But for the sc (110) facets we
found that the steps decouple from reconstruction in the
parity definition of the reconstruction order parameter,
S=exp(i rrh ). Surface roughening and reconstruction
decouple for sc (110) facets. Such a transformation does
not exist for fcc (110) facets. It is impossible to redefine
and link the 0 variables with the surface height, in such a
way that both the C and AC steps do not couple to the
reconstruction degrees of freedom anymore. For exam-
ple, consider redefining the reconstruction variable as
0~0—h mod(4). This sets d0=0 at C and AC up steps
but leaves a d0=~ at C and AC down steps. So surface
roughening and reconstruction are intricately coupled.
Roughening and deconstruction must take place simul-
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taneously in fcc (110) facets where steps are energetically
more favorable than walls.

To determine the scaling properties of this
roughening-induced simultaneous deconstruction transi-
tion we need to formulate a model. One appropriate
model is an extended version of the BCSOS model. In
this model nearest-neighbor columns must differ by
dh =+1. The BCSOS model is exactly soluble with
next-nearest-neighbor coupling only. ' To induce a MR-
reconstructed state requires an increase in the range of
the interactions, at least up to third neighbors. This
makes the BCSOS model less attractive for numerical cal-

I

culations. Limited numerical results for this model are
becoming available only now. '

A more effective way to study the scaling properties of
this phase transition is to define a cell-spin model, like the
one above for the sc facets. Imagine a rectangular grid
oriented along the grooves of the missing rows just like
before in the sc facets. Each cell is large compared to the
MR unit cell, but small compared to the correlation
length. Associate with each cell a 8„=0,+—,

'm. , ~ clock
variable to represent the four MR states. The simplest
cell-spin Hamiltonian has the form

Z= g exp +[K cos(8„—8„+,—b, )+Q cos(28„—28„+,)+E„cos(8„—8„+, )

IO„ I n, m

+Q„cos(28„—28„+, ) ] 'Zs~( t d 8=+—,
' m. ],L ) . (2.4)

This is a four-state clock model with chiral symmetry
breaking, and with every configuration weighted by a
six-vertex (6V) model. The 8 variables describe the posi-
tions of steps and walls and the reconstruction aspect d L9

of their topological charge. The 6V part of the Hamil-
tonian describes the step height aspect dh of the steps. In
the conventional 6V model arrows are placed on all the
bonds of a rigid lattice. The 6V model in Eq. (2.4) is
defined on an annealed fluctuating lattice, the one formed
by the de=+ —,

'm. steps of the clock model. Walls, the
dO=m excitations of the clock model, are excluded be-
cause they do not change the surface height. At each
vertex of this lattice formed by the steps the flux of ar-
rows must be zero. The 6V arrows represent the change
in height at the steps. The height of the terrace to the
left of the step is one unit lower than the terrace to the
right when you orient yourself in the direction pointing
along the arrow. See Refs. 1 and 2 for a similar formula-
tion of the RSOS model as an Ising model coupled to a
6V model.

Equation (2.4) is a hybrid formulation, a combination
of a spin model and a vertex model. This is by necessity.
It is incorrect to simply associate to each cell a height
variable h, and a clock variable 8, and to introduce the
simplest Hamiltonian where a four-state clock and SOS
model couple to each other. We did this in Eq. (2.3) for
the sc facets and found that it introduced new types of
domain walls, the (m, 1) domain walls, which are energeti-
cally unlikely, but are allowed by the topology and will be
generated under renormalization (a wall and step inside
the same cell). For fcc facets this procedure would intro-
duce domain walls with topological charges such as
(d 8,dh ) = (m, 1), which are strictly forbidden, and cannot
be generated under renormalization.

In Sec. IV we will discuss a simpler formulation of Eq.
(2.4), valid at zero chirality, b, =0; Eq. (2.4) can be rewrit-
ten in the form of Eq. (2.3) with E, =K, . A different al-
ternative is to represent the chiral four-state clock-step
model as a vertex model. Each bond of the lattice can be
in six possible states: empty, a clockwise up or down

E„=E[cos(b )
—sin(b, )]—2Q

E„=K[cos(b )+sin(b, )]—2Q

E =2K cos(b ) .

(2.5)

These energies depend only on the clock variable, because
the microscopic structure of steps is independent of
whether the step is up or down, dh =+1 [the left-right
symmetry in Figs. 3(c) and 3(d)]. Clockwise steps,
d 8= —,'~, and anticlockwise steps, d 8= —

—,'m, have a
different microscopic structure and therefore a different
energy. This is called chirality, and is represented by A.
E„andQ„represent the energy of kinks in the steps and
walls. Steps and walls repel or attract each other at short
distances. L represents a repulsion between up-up
(down-down) steps. Other domain-wall interactions are
missing in Eq (2.4). Core energies of domain-wall inter-
sections and dislocations are missing too. It is possible to
include all these aspects, but I believe that Eq. (2.4) con-
tains all interactions essential to study the nature of the
phase transition.

Chiral clock models without these novel height degrees
of freedom are familiar from the theory of
commensurate-incommensurate transitions in adsorbed
monolayers. The analysis in the following sections is
guided by experience from those models where our un-
derstanding of the phase diagram is based on detailed
knowledge of two limit cases, namely zero and strong
chir ality.

step, an anticlockwise up or down step, or a wall. These
six states can be presented by solid and dashed lines with
arrows (the steps) and dots (the walls). The only allowed
configurations are those where at each vertex the flux of
arrows is zero and also the total change in 8 is zero mod
2n. There are 152 such vertex states. This formulation is
most convenient for numerical FSS calculations, and will
be used in Secs. III and VI.

K, Q, and b, in Eq. (2.4) represent the energies of
the steps and walls:
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III. NUMERICAL RESULTS AT ZERO CHIRALITY

This section contains the results of a numerical finite-
size-scaling study of the phase diagram of the four-state
chiral clock-step model, Eq. (2.4), at zero chirality, b =0.
In this limit clockwise and anticlockwise steps have the
same energy. The purpose is to obtain the scaling prop-
erties of the roughening-induced simultaneous decon-
struction transition. Without loss of generality we will
choose isotropic interactions K„=K and Q„=Q,see
Eq. (2.4), and turn off the step-step interaction, L =0.

Figure 4 shows the phase diagram obtained from the
numerical study discussed below. R =E /E, is the ratio
between the step and wall energy. Temperature T is rnea-
sured in units of the step energy E, . At small R, where
walls are more favorable than steps, the surface decon-
structs first into a disordered fiat (DOF) phase, and
roughens only at a higher temperature. This represents
paths of type 3 in the classification of Sec. I. At
R =2.0+0. 1 the roughening and deconstruction lines
meet and merge for R )2 into a single roughening-
induced simultaneous deconstruction transition. This
represents crossover to paths of type 4.

I study the finite-size-scaling (FSS) behavior of inter-
face free energies in semi-infinite strips. The method is
the same as in earlier studies of, for example, preroughen-
ing in the RSOS model. ' In the RSOS model each verti-
cal bond can be in only q=3 possible states (an up or
down step, or no step), but in the four-state clock-step
model q is much bigger, q =6 (a clockwise or anticlock-
wise up or down step, a wall, or no domain wall). The
calculation requires that a state vector of size q be
stored. This scales exponentially with strip size. The
maximum accessible strip width is therefore quite small,
E =7 for the computer I used. Due to this limitation
the results are not as conclusive compared to those in,
e.g. , the earlier study of the RSOS model. Additional nu-
merical work will be needed to confirm some of the re-
sults in more detail. One of the purposes of the following
rather detailed account of my numerical results is to pro-
vide a reference frame for such future work. One of the

075

0-5

0-25—

FIG. 4. Phase diagram of the four-state clock-step model at
zero chirality (6=0), with R =E„,/E, the ratio of the wall and
step energy, and temperature T in units of the step energy E, .

possible alternative methods is a Monte Carlo FSS study,
similar to those applied to the conventional chiral clock
models

The phase diagram and the scaling properties of phase
transitions follow from the FSS behavior of interface free
energies. Consider semi-infinite lattices with different
types of boundary conditions in the finite lattice
direction: 0(n+N, m )=8(n, m )+P and h (n +N, m )

=h(n, m )+k. The topological charges of the step and
wall excitations in the model restrict the possible bound-
ary conditions as (P, k) =(0,2n ), ( ir2n), and
(+,~n, 2n. +1), with n an integer. The free energy for
each of these boundary conditions is related to the largest
eigenvalue A,o of the transfer matrix as
f(p, k)= —N ln(AO). Define il(p, k) as the difference in
free energy with respect to periodic boundary conditions,
il(p, k) =N[f(p, k) —f(0,0)j. Each boundary condition
forces a specific wall, step, or a combination of steps
and/or walls into the surface. Which of these is realized
depends on the ratio between the step energy and the wall
energy, R =E, /E .

Consider, for example, the (P, k ) =(m, O) boundary con-
dition. In the limit R ((2, where steps are frozen out, it
forces a wall excitation, Fig. 3(b), into the surface across
the entire lattice in the infinite lattice direction. So
i)(vr, O) represents the free energy of a wall. In the oppo-
site limit, R &)2, where walls are frozen out, the bound-
ary condition forces two clockwise steps with opposite
dh, Fig. 3(c), or two anticlockwise steps with opposite dh,
Fig. 3(d), into the surface. In this limit, il(ir, O) represents
the free energy of two steps. The character of i)(ir, O)

changes at the wetting line. This is the line inside the or-
dered low-temperature phase where il( ir, 0) becomes
equal to two times il(+ —,'ir, +1). The wetting line starts at
zero temperature at R =2, and ends at the multicritical
point M, at R =2; see Fig. 4. (I did not verify this nu-
merically. ) At the R (2 side of the wetting line the
boundary condition forces a wall into the surface. But
towards the wetting line, for increasing R and increasing
T the wall changes in character from a sharp object, as in
Fig. 3(b), into a composite broadened object, composed of
a bound pair of two clockwise or two anticlockwise steps
with opposite dh, as in Figs. 3(c) and 3(d). At the wetting
line this bound pair (the composite wall) unbinds into two
independent step excitations.

The structure of the phase diagram and the scaling
properties of the phase transitions follow from the FSS
scaling behavior of these i)(P, k )'s. They vamsh at
different phase transitions. For example, i)(m. , 0) is conju-
gate to the missing-row (MR) order parameter. Its van-
ishing indicates the disappearance of the MR reconstruc-
tion order. il(~, 0) is zero in the rough deconstructed
phase, and also in the DOF phase. il(~, 0) is nonzero in
the Aat reconstructed phase and would also be nonzero in
the rough reconstructed phase. The latter phase is absent
according to the arguments in Sec. II, but we want to
confirm this numerically.

q(0, 2) represents the free energy of a clockwise-
anticlockwise step pair, both with dh =1. It couples only
to the surface roughness. il(0, 2) is zero in the rough
deconstructed phase and finite in both fiat phases (the
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1.7

A

C4

1.6

1.4

inside the rough phase. At R &2 these crossing points
lead to the same estimate of the roughening-induced
deconstruction line as the previous quantities. Actually,
it seems to be a much better indicator, because correc-
tions to scaling in this quantity are virtually absent. The
reason for this is yet unclear; often this indicates the pres-
ence of an exact duality-type symmetry in the model.

Figure 9 gives a resume of the different conditions used
to determine the structure of the phase diagram. It
shows the dashed lines from Figs. 5 —8. These follow
from power-law extrapolations, W(N) = W, + AN
with %=exp[ E(s)lk&T)—, to the data at finite N. I
compared extrapolations with free and various fixed
values of the leading correction to scaling exponent x.

The success of FSS studies like this resides in the fact
that the g's are known to arbitrary high precision at a se-

I I I
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I I I I t I

I
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C4

2.25
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1.50

I I I I I I I I

0 1

I

2

R= E(s)/E(w)

FIG. 9. Resume of the various estimates for the location of
surface roughening and deconstruction. The shown curves are
the dashed lines (the extrapolations) from Figs. 5 —8 and 12, and

are numbered accordingly.

1 I I I I I I I I I I 1 I I I I I I I I I I I

1 1.5 2 2.5 3 3.5 4

R=E(s)/E(w)

FIG. 8. Finite-size-scaling estimates for the location of sur-
face roughening from the crossing points of g( —,

'
m, 1). The solid

lines show the crossing points at successive values

(N, N+1) =(3,4), (4,5), (5,6), and (6,7). Corrections to scaling
in this quantity are small.

quence of strip widths, N (N, and that their finite-size-
scaling behavior is smooth and often dominated by one or
only a few corrections to scaling exponents at already rel-
atively small values of N . For example, the leading
corrections to the scaling exponent x have been deter-
mined accurately for several models. However, in the
present case the upper limit to the strip width is so small,
N =7, that I feared that the asymptotic scaling region
would not be reached sufFiciently to draw reliable con-
clusions about the structure of the phase diagram and the
critical exponents. Fortunately the corrections to scaling
behave quite smoothly. Moreover, I checked the FSS be-
havior of a rather large set of quantities and detected no
anomalies. All numerical results support each other.

The above results confirm the existence of the
roughening-induced simultaneous deconstruction transi-
tion; the roughening and Ising deconstruction line merge
at R =2.0+0. 1. Originally I expected the transition at
R & 2 to be first order. But there is no evidence for that.
The deconstruction and roughening critical lines merge
smoothly, and we will see next that the critical exponents
do not seem to change.

The curves in Fig. 7 represent finite-size estimates of
the line where the roughness parameter is equal to the
universal value it must take at a KT-type roughening
transition, KG =

—,'m. KG should not be able to reach this
value if the transition is first order. The KT instability
would be preempted by a different mechanism. The
E& =

—,'~ condition should still extrapolate to the correct
transition temperature, because at the transition KG
jumps to ~, but each estimate at finite N should underes-
timate the roughening temperature. The lines in Fig. 7
indeed underestimate T„but not in a very significant
manner. The effect is of the same order of magnitude as
the FSS corrections in the deconstruction-type finite-size
estimates in Figs. 5 and 6. Moreover this type of conver-
gence from the low-temperature side of T, is common in
numerical studies of KT transitions as well. More
significant is that the FSS estimates in Fig. 7 do not cross
with those in Figs. 5 and 6, and nowhere to the right of
the multicritical point M. I would have considered a
crossing to be an indication of a possible first-order tran-
sition.

Compare Figs. 5 and 6. The crossing points in Fig. 5,
and the condition Ng(vr, O)= —,'vr in Fig. 6, must agree
about the location of the transition line, irrespective of
whether the transition is first or second order. In both
cases q(m, O) jumps from its finite value at the low-

temperature side to zero at the high-temperature side,
and the crossing points must converge to this point. We
already checked this, but now we need to focus on the
values of Ng(m. , O) at the crossing point.

If the transition is second order, the value of Ng(m, O)

at the crossing point must converge to the universal FSS
amplitude Nrj(vr, O) =2mxH, with xH the order-parameter
critical exponents characteristic of this second-order
transition. If the transition is first order, g(~, 0) is not
likely to scale as a power law. Figure 10 shows the values
of Nrl(vr, O) at the crossing points. They converge well,
indicating a second-order transition at R &2. At very



COMPETITION BETWEEN SURFACE ROUGHENING AND. . . 10 395

2.00 I

I

I 1 I I

I

I I l I

I

I I I I 1.2 I

I

I I I I

I

I

1.75

1.50
4~5

1.25 1.0

1.00

0.75

0.9

0.50 I I I I I I I I I I I

R=E(s)/E(w)

0.8
1.5

I

2
I

2.5
I

3 3.5

R=E(s)/E(w)

FIG. 10. Finite-size-scaling estimates for the universal ampli-
tude 2 of the interface free energy g(m, O)= A/N. The solid
lines show the value of Ng(m. ,O) at the crossing points shown in
Fig. 5, at successive values (N, N+1)=(3,4), (4,5), (5,6), and
(6.7). The convergence is smooth towards the dashed line,
which represents a power-law extrapolation.

small values of R where the model reduces to the Ising
model, the amplitude converges rapidly to the correct Is-
ing value. At intermediate values, 0.75&R &2, where
the DOF phase becomes very narrow, the convergence is
bad, likely due to the corrections to scaling from the rnul-
ticritical point M. Along the roughening-induced recon-
struction line, at R & 2, the convergence improves again.
The dashed line shows the extrapolated values using a
power-law fit Nri(n, O)&=Nr.i(n, O)+ AN " with x the
leading correction to scaling exponent; x is of order
x =1.0 for R &2. The universal amplitude is equal to
Nrl(a, O) =0.81+0.03, consistent with the value at an Is-
ing transition. This is a surprise. It suggests that the
roughening-induced deconstruction transition has Ising-
type critical exponents.

The specific-heat critical exponent a=(2yr —2)/yr
can be determined from the FSS behavior of the ternpera-
ture derivatives of the g's. At T, these derivatives should

scale as d(Nrt) l(dT) = AN . I checked this for all three
g s at the crossing-point lines and also all other criteria
used above to determine T, . Estimates for the amplitude
A and exponent yT are constructed from the values of
d(Nr)) l(d T) at consecutive values of N. The results con-
verge reasonably. They are not very accurate, because
N =7, but for every g it leads to a yT=1.0+0. 1 along
the entire critical line (for 2&R &4). Figure 11 shows
the results for i)( —,'m, 1), which are better than those for
the other two q's, because of the virtual absence of
corrections to scaling in this quantity. It is likely that
logarithmic factors are present in the FSS behavior of
these temperature derivatives. The coupling between the
Ising and roughening degrees of freedom might generate
such terms because the roughening sector contains mar-
ginal operators. At the available system sizes, N =7,
the above simple power-law fit seems adequate, however.

Another interesting quantity that informs us about the
nature of phase transitions is the central charge c. This

FIG. 11. Finite-size-scaling estimates for the thermal critical
exponent yT along the roughening-induced simultaneous decon-
struction line from the scaling behavior of the first temperature
derivative, dg( —,'n, 1)/dT, at the crossing points of g( —,'m, 1)
shown in Fig. 8. From each pair of crossing points, at
(N, N+1) and (N+1,N+2), two estimates for yT are con-
structed; one from the two lower sizes, N and N+ 1 (the solid
lines), and one from the two upper sizes N+1 and N+2 (the
dashed lines).

parameter characterizes the universality class of two-
dimensional phase transitions from the perspective of
conforrnal 6eld theory. For example, at Ising-type tran-
sitions c=0.5, and inside a rough phase c=1.0. The
central charge can be obtained from the universal FSS
amplitude of the singular part of the free energy with
periodic boundary conditions,

f(Oy0)~ fyes 67TCN (3.1)

Each pair of strip sizes, N and N + 1, yield a FSS estimate
for c, c (N, R, T), at each temperature, which at T, should
converge to the value of c characteristic for the phase
transition under consideration, and converge to zero
away from criticality.

Inside the rough phase the c(N, R, T) converge to the
correct value c =1, and at low T converge to zero as ex-
pected For R &. 1 each c(N, R, T) at fixed N has a max-
imum as function of T. c (N, R, T) swings up and shows a
maximum. This is in accordance with the so-called c
theorem, and its gives us yet another way to estimate
the location roughening-induced deconstruction line.
The c theorem implies that higher-order critical points in
the phase diagram must have a larger value of c. So at
the roughening-induced deconstruction transition c must
be larger than its value inside the rough phase, c=1.0,
and the c (N, R, T) should indeed have a maximum.

These lines of maxima, c (N, R), are shown in Fig. 12.
As expected, they scale with N to the same estimate of
the roughening-induced deconstruction line as our earlier
criteria. The dashed line in Fig. 12 is included in Fig. 9.
The value of c at these maxima, see Fig. 13, converges to
c =1.50+0.05 for all R & 2. This value of c is surprising.
It suggests that Ising (c =0.5) and KT roughening
(c = 1.0) critical behavior are simply superimposed. Also
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this transition is described first in terms of a RSOS model
with antiferromagnetic nearest-neighbor interactions, Eq.
(2.2), and then in terms of a cell-spin model which is an
Ising model coupled to a RSOS model, Eq. (2.3).

The four-state chiral clock-step model, Eq. (2.4), can be
written in the form of Eq. (2.3) when chirality is absent,
b, =0. In Eq. (2.4) and Figs. 3 the 4 possible top positions
of the missing rows are represented by the angular vari-
able 0. Choose an alternative representation in terms of
two coupled Ising spins; 8 = (0, —,

'n. , m., ——,
' ~) as

(S,T)=(++},(+,—), ( —,—), ( —,+). Equation (2.4)
takes the form

Z= g exp g {—,'KT T,

+(—,'K, T,T;+Q)

X[1—2(h, —h, . ) ]] (4.3)

spins into height variables, h, . o. represents the parity,
o,=exp(2vrh, }, and the 6V arrow on each 0 Bloch wall

denotes whether the step is up or down, dh =+1 [com-
pare with Eqs. (2.1) and (2.2) in Ref. 1],

Z= g exp g ['K(T T +SS }
IS,, T, I (rr')

+QS,S;T,T, ]
'

XZ6v( {S„T,],L ) (4.1)

Z= g exp g PKT, T,, +( ,'KT, T,. +Q)~,o, ]-
Io,, T, I (r, r')

XZ6v({o ] L ) . (4.2)

This can be rewritten as a RSOS model coupled to an Is-
ing model, by combining the six-vertex arrows and o.

with r and r' nearest-neighbor sites. The 6V model de-
scribes the height fluctuations in the surface, and is
defined on the joint lattice formed by the Bloch walls of
both Ising models; bonds where S- and T-type Bloch
walls overlap are excluded.

In the MR-reconstructed phase the magnetizations
(S ) = ( T ) and the polarization (ST ) are nonzero.
When the magnetizations (S ) = ( T ) vanish the surface
deconstructs. At R «2 the two types of Ising spins are
strongly coupled and their Bloch walls appear in pairs.
These bound pairs represent the wall excitations of Fig.
3(b). In the DOF phase the polarization (ST) remains
nonzero. When the polarization (ST) vanishes the sur-
face roughens. This happens at a higher temperature,
where the bound pairs of the two types of Bloch walls
break up. At R =2 the two species of Bloch walls are
weakly coupled. At R &&2 they repel each other, they do
not form bound pairs anymore, and at T, the magnetiza-
tions and polarization vanish simultaneously. The surface
roughens and deconstructs simultaneously. Above T, the
two species of Bloch walls form an infinite large backbone
lattice for the 6V arrows (which denote the change in
height at these steps). At small values of L such a 6V
model is certainly in its rough phase. Below T, the sur-
face is flat because the Bloch walls form only finite
disconnected lattices for the 6V arrows (compare with
Refs. 1 and 2).

Redefine the spins such that the 6V model arrows live
on one type of Bloch walls only. This can be achieved in
two ways: define o.=ST and keep S or T. This choice
gives rise to the S Tinvariance. In th-e (o, T) representa-
tion Eq. (4.1}takes the form

For simplicity L is set equal to L=0; L represents a
next-nearest-neighbor interaction between the height
variables.

Equation (4.3) is identical to (2.3), with one essential
constraint: S-T invariance implies that K, =K, =K. In
the alternate (0,S) representation K, and K, are inter-
changed. S-T invariance represents the fundamental
property that the height and reconstruction degrees of
freedom cannot be disentangled. Recall from Sec. III
that for sc (110) facets, interchanging S and T has the
effect of disentangling the MR and roughening degrees of
freedom. In sc surfaces E, and E, are not equal.

S-T invariance expresses the following symmetry prop-
erty of MR reconstructed fcc (110) facets. Although we
use a four-state clock variable to describe the reconstruc-
tion, the MR state is only twofold degenerate; 8=0,~ are
realized only at even heights, and 0=+—,'m only at odd
heights (or vice versa). We could try to represent the
reconstruction by an Ising variable. Equation (4.1) is a
symmetric formulation, where we refuse yet to equate
8=0 with 8=—,'m or with 8= ,'rr. In the —(0—,T) repre-
sentation this symmetry is broken, 0=0 is equated with
8= ,'rr, and 8=—~with 8= ,'nTh—e —(o.,.S) formulation
represents the opposite choice. S-T invariance expresses
the absence of a preferred choice. The presence of a pre-
ferred choice would imply that K,AK„and that it would
be possible to disentangle the MR order parameter from
the steps, like we did for the MR reconstructed sc (110)
facets.

Consider the limit K, =O and K, AO. The Ising and
roughening degrees of freedom decouple. At an ap-
propriate choice of Q/K, the Ising critical point is locat-
ed inside the rough phase. This is a realization of a con-
formal field theory with the most simple type of super-
symmetry, with central charge c =1.5. Supersymmetry
means that an action is invariant under a continuous
transformation that mixes fermion and boson degrees of
freedom. It requires that the fermions and bosons are
both massless. This applies to our problem, because an
Ising model is a fermion theory (at its critical point the
fermions are massless), and the RSOS model is a boson
theory (in the rough phase the bosons are massless), but it
holds only asymptotically, in the scaling limit, because it
requires a continuum limit. This type of supersymmetry
does not impose a connection between the Ising critical
temperature and the roughening temperature. It does
not restrict the value of the roughness parameter KG, be-
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cause in the rough phase the discreteness of the surface
height variables is irrelevant; collectively they behave like
Gaussian variables P„that take any real values (continu-
ous height variables). The transformation P„~A,P and
K ~A, K leaves the Gaussian model invariant. There-
fore supersymmetry does not exclude the existence of a
reconstructed rough phase.

At small values of K, the deconstruction transition
remains in the same universality class as at K, =O, be-
cause at K, =0 the K, interaction has an irrelevant scal-
ing index, y, =3 (the correlation functions of the MR and
roughening degrees of freedom factorize). S Tsym-metry
implies the same type of behavior in the opposite limit,
K, =0. The line K, =K, separates these two regions, and
must be an unstable separatrix under renormalization
transformations. According to the c theorem ' the cen-
tral charge of a higher-order critical point in a phase dia-
gram must be larger than that of the lower-order critical
points. This implies that c 1.5 at the roughening-
induced simultaneous deconstruction transition at
K, =K„and that this transition potentially belongs to a
new type of universality class. Surprisingly, the numeri-
cal results of Sec. IV indicate that the central charge and
the critical exponents hardly change.

S-T invariance has the character of a fermion-boson
exchange similar to the above-mentioned supersymmetry;
the S spins become part of the height variables while the
T spins are extracted from the height variables. On the
one hand S-T invariance is weaker than supersymmetry,
because it is only a discrete Z2-type invariance; only a
subgroup of full supersymmetry. On the other hand it is
stronger, because it is an exact invariance of the model
which holds on the lattice, not only at T, in the scaling
limit but at all temperatures. This second aspect requires
the roughening and deconstruction temperatures to coin-
cide. The first aspect probably explains why S-T invari-
ance has such a benign e8'ect on the values of the critical
exponents, but needs to be studied in more detail in the
context of conformal quantum field theory. The question
is whether in the scaling (continuum) limit full supersym-
metry is restored. The presence of the marginal (sine-
Gordon) operator in the roughening sector (the one that
causes the KT instability) might change the properties of
the field theory. Details of the critical properties of the
transition, such as the precise shape of the specific-heat
peak, must depend on this. I find numerical evidence for
an Ising-type exponent a=0, but the essential singularity
(typical for conventional roughening transitions) is likely
intertwined with this Ising behavior. At present my nu-
merical accuracy is too limited to study this.

There is one quantity in the numerical study where the
Ising and roughening degrees of freedom are required to
truly mix, namely the step free energy g( —,

'm. , 1). It is

defined as the difference in free energy of a semi-infinite
strip with periodic and step-1-type boundary conditions,
8(x,y) =8(x+N„,y )

—
—,'m, h(x, y) =h(x +N, y) —1.

This quantity has an unusual universal finite-size-scaling
(FSS) amplitude, Nrl( ,' m, 1)= 1.03+0.03; s—ee Sec. IV.
The question is whether this value is consistent with the
other result that the Ising and roughening critical ex-

ponents hardly change. To make progress it is necessary
to reformulate this boundary condition into the Ising-
RSOS model formulation of Eq. (4.3). It is advantageous
to do this in a general context.

Let us first focus on the reconstruction variables, and
ignore the height degrees of freedom. The four-state
clock-step model reduces then to the conventional
Ashkin-Teller (AT) model,

%„T=g[Kcos(8,—8, )+Q cos(28, —28, )] . (4.4)

The AT Hamiltonian is invariant under a set of global
transformations, R„+,on all angle variables 8 (see Table
I). The generators are the rotation 8~8+ ,'vr, de—noted

by R
& +, and the twist 0~ —0, denoted by R 0

Each R„+is associated with a specific boundary condi-
tion. Consider semi-infinite lattices with as boundary
condition in the finite lattice direction, 8(x,y)
=+8(x +N„y)

—n —,'n. Each can be implemented in
terms of periodic boundary conditions, but with modified
interactions along a seam running across the entire lattice
in the infinite lattice direction. At the seam the interac-
tions are modified as

K cos(8~ —R„+8~)+Q cos(28L —2R„~8&)

with L and R nearest-neighbor spins, respectively, to the
left and to the right of the seam. Spin L sees spin R ro-
tated and twisted in accordance with the specific bound-
ary condition. The location of the seam is arbitrary. It
is gauge invariant, and can be moved to the right by per-
forming the transformation R „+to all the spins be-
tween the old and the new location of the seam. Thus, all
possible boundary conditions with gauge-invariant seams
are characterized by the global transformations R„+that
leave the Hamiltonian invariant.

The (S, P representations of these symmetry operators
R„+are listed in Table I. Exchanging the spin labels,
S~T, corresponds to the twist Ro, L9'= —0. Reversal
of one type of spin, T'= —T and S'=S, corresponds to
the rotational twist R, , 0'= —0+ —,

'm. . The step free en-

ergy g( —,m., 1), which is the focus of this discussion, is gen-

erated by the rotation R, +, and is a combination of
these two operations, i.e., S'= T and T'= —S.

The phase diagrams of the four-state clock-step model
and the Ashkin-Teller model look very much alike. In
the AT model two Ising lines merge into a single transi-
tion line, the so-called Baxter line, which plays the same
role as the roughening-induced simultaneous deconstruc-
tion transition line in the four-state clock-step model.
The critical behavior along the Baxter line can be under-
stood as the result of the coupling of the S and T spins
via the interaction Q, which has a marginal scaling in-

dex. At the decoupling point, Q=0 (i.e., at R =2) the
universal finite-size-scaling amplitudes follow easily in the
(S, T} representation from the well-known results for the
Ising model. For example, R, + couples the two Ising
models at the seam into a single Ising model of width 2X
with antiperiodic boundary conditions. Therefore the in-
terface free energy g( 1, + ) scales as
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TABLE I. Symmetry operations for the reconstruction variables in the four-state clock representa-

tion, 0, and the two Ising spin representations (S,T}and (0., T).

Operator

Rl ~
e

R2p8

0 representation

0 =0+-,'~
0'=0+ m.

0'= —0
(0'+ —'m) = —(0+ 4m)

S'= —S
S'= T,
S'=S,

T'= —T
T'=S
T ——T

(S, T) representation

S'= —T, T'=S
(o, T) representation

0 =0

r/( I, + ) = (2N)f,'(2N ) —2(Nft'(N) ) = N—' (4.5a)

with

ft'(N) =f„,s
— cN— (4.5b)

and

f (N)=f„s+ cN— (4.5c)

the FSS behavior of the free energy of an Ising model at
criticality, on a semi-infinite strip of width N, with
periodic (p) and antiperiodic (a) boundary conditions;
c =

—,
' is the central charge.

In the four-state clock-step model the Baxter line is re-
placed by the roughening-induced simultaneous decon-
struction transition line. S-T invariance suggests that the
critical properties along this line should be interpreted as
the result of the interplay between the Ising and roughen-
ing variables in the Ising-RSOS model representation of
Eq. (4.3). In the (cr, T) representation the interactions in
the bulk have the form

—,'E(T,T;+T,T;o,cr;)+Qcr,cr, .

R
& + (see Table I) corresponds to the symmetry operation

o'= —0., T'=o T. To implement the R
& + boundary

condition the interactions at the seam must be modified
as

,K(crL, crR)TI T„Q—o I.cr—g .

From the perspective of the o. spins the boundary condi-
tions are antiperiodic. From perspective of the T spins
the boundary condition is more complicated. It is a dy-
namic mixture of open, periodic, and antiperiodic bound-
ary conditions: when the e spins at both sides of the
seam are aligned, o.l =o +, the boundary condition looks
open; when a u-type Bloch wall follows the seam,
O.

L
= —o.z, the boundary condition looks periodic if

o.
L
=+ 1 and antiperiodic if o.

L
= —1.

Let us include now the height degrees of freedom. The
step heights are restricted by the reconstruction vari-
ables: de=a, m. implies no change in surface height, and
d0=+ —,

'm. implies a step dh =+1. The four-state clock-
step model is therefore invariant under the following glo-
bal transformation of variables: 8—++0+n —,

'
m and

h ~+h +m, with the constraint that n and m must both
be even or both be odd. This can be represented by the
operator R =R„+R"+.

In Eq. (2.4) the step heights are represented by the ar-

rows of the six-vertex model. The arrows live on the
d8=+ —,'~ walls of the four-state clock variables. In

terms of these arrows, the R" +-type boundary condition
implies that the net polarization in each slice of the cylin-
drical (semi-infinite) lattice is equal to m. For antiperiod-
ic boundary conditions, R",the arrow on a step rev-

erses its direction each time the step crosses the seam;
and the polarization m is conserved only mod 2.

In the (o, T) representation the six-vertex arrows live
on the Bloch walls of the 0. spins. Each o type of Bloch
wall is accompanied by an (odd) change in surface height.
This implies that in the (o, T) representation m is odd for
antiperiodic o'= —o boundary conditions, and m is even
for periodic type cr'=a boundary conditions.

The step free energy rl( ,' n, 1) —is generated by
R =R, +R ", +. From the above discussion it follows that
in the Ising-RSOS representation, Eq. (4.3), the interac-
tions at the seam must be modified as

—,'&[exp(i~hi ) —exp(i~h„)]TL,T„—Q[1 —2(hL —h„)] .

From the perspective of the RSOS model variables this
is a simple step-1 boundary condition, h (x,y)
=h(x+N, y)+1. From the perspective of the Ising
spins, T„this is a more complicated dynamic boundary
condition: most of the time it looks like an open bound-
ary condition, because in most configurations the steps
will not coincide with the seam, i.e., hL =hx. Sometimes
a step will follow a segment of the seam. Then it looks
along this segment like a periodic boundary condition if
hL is even, and like an antiperiodic boundary condition if
hL is odd.

The seam is only gauge invariant when K, =E,. The
operator R, +, which is used to move the seam, inter-
changes the K, and E, terms in the Hamiltonian. At
K,PIC„the rotational invariance of the Hamiltonian,
8~0+ —,'m, is lost, and i)( —,

'm. , 1) cannot be generated by a
gauge-invariant boundary condition. At E,AE, the scal-
ing properties of g( —,'m. , 1) will be different.

I do not know how to proceed from here to obtain an
exact result for rl( —,'m, 1), but let us try the following as-

sumption. The numerical results suggest that the Ising
spins T and the height variables h basically decouple.
Moreover, at the roughening temperature the density of
steps in the RSOS model is still small, and the probability
of them following segments of the seam is even smaller.
Therefore treat the T spins as subject to an open bound-
ary condition. This gives the estimate
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g ( 2 rr» 1 ) = [f&
(N. ) f»p( N ) ]+ rl asos ( 1»N )

' =0.9817 (4.6a)

with

f, (N)=f„s— cN (4.6b)

the finite-size-scaling behavior of an Ising model with
open boundary conditions, and

r/pesos( 1» N) = —KaN (4.6c)

where r =1,2, 3,4 the four sites around the dual site R.
The trace over the step variables, dh, , =0, +1, factor-
izes, and after integrating them out they leave us with a
model with only the angular variables 1(ii (on the dual
lattice sites) and the Ising spins T, (on the old lattice
sites),

Z = g g [exp[ —,'(K, +K, )T, T, '+Q]
1 gg, Tr I ( R, R')

+exp[ —,'(K, K, )T,T, ' —Q)2—cos(gz g„')]. (4.7)—

the FSS behavior of the step free energy in the rough
phase; with KG= —,'m at the roughening transition. This
estimate, Eq. (4.6a), is remarkably close to the numerical
value of Sec. III, r)( —,

' m., 1)= (1.03+0.03)N '. It might be

exact, or the contribution of the nonopen boundary seg-
ments is very small. We can conclude that the numerical
value of the universal amplitude of rI( —,'ir, 1) is also con-
sistent with simple superimposed Ising and KT roughen-
ing behavior.

The final issue of this section is to point out a connec-
tion between the four-state nonchiral clock-step model
and frustrated XY models. Consider the Ising-RSOS
model representation, Eq. (4.3). A duality transformation
on the RSOS degrees of freedom maps Eq. (4.3) into an
XY model coupled to an Ising model. Associate a step
variable, dh„„t=dh, &, =0,+1, to each bond of the lattice
and represent the constraint that along every closed path
the sum of all the steps heights must be equal to zero as
an integral over new periodic degrees of freedom
0 ~ iijz (2ir located on the dual lattice site R,

277

J dgexp[ig(dh, ~+dh23+dh34+dh4, )]

=2rr6(dh, 2+dh2 3+dh3 4+dh4, )

small differences can influence the scaling behavior is a
topic of future research. A related question is how S-T
invariance generalizes to these frustrated XY models. 5-
T invariance applies to a larger set of Hamiltonians than
the one of Eq. (4.7). For example, removal of the
dh =0,+1 restriction in Eq. (4.3) does not destroy S Tin--
variance. The cr spins in Eq. (4.2), now defined as
a„=25(h„—h„)—1, still represent the presence of steps.

The six-vertex model in Eq. (4.2) is replaced by a general-
ized vertex model with arrows of length +1,+2, +3 . . . .
Each arrow represents again the height change at the
step. The arrows are restricted by the same rule as in the
6V model, namely that the total flux of arrows is equal to
zero at each vertex. Perform to this generalized model
the S-T transformation, T~a.T and cr ~o, as described
between Eqs. (4. 1) and (4.2). This interchanges K, and
I( „justlike before, and leaves the Hamiltonian invariant.

U. THE STRONG CHIRALITY LIMIT

The structure of the phase diagram of the chiral
clock-step model, Eq. (2.4), at strong chirality can be
studied by the fermion method. This is the same tech-
nique as was used before in the theory of commensurate-
incommensurate (C-IC) transitions in adsorbed mono-
layers. For a review see Ref. 24.

Consider values of b and Q in Eq. (2.4), where the en-
ergies of clockwise steps and walls, E„andE, both be-
come much smaller than the energy of anticlockwise
steps, E„;see Eq. (2.5). Anticlockwise steps become
frozen-out. Every bond of the lattice can only be in four
states: empty, an up or down (clockwise) step, or a wall.
This is actually the model for Au and Pt (110) proposed
by Villain and Vilfan. ' They pointed out that this two-
dimensional statistical mechanical model is equivalent to
the one-dimensional Hubbard model, but they did not
fully pursue this equivalence.

Consider the quantum Hamiltonian

N
&= g [E,(o„+cr„+r„+r'„)+(E2E, )cr„o„r„+—r,,

n=1

t(a„+o„+,+o „+,a „—++r.„+r„+,+r„~,r„)
Qd(CJ rn on+ 1m + i+ cJn rn cT + irn + 1) ]

(5.1)

See, e.g. , Ref. 33 for more details about this method of
performing duality transformations.

The new model is similar in structure to models stud-
ied in recent years in the context of the fully frustrated
XY model, with phase diagrams of the same structure
as Fig. ~, with an Ising and KT transition line that
merge. Surprisingly the most recent numerical results
suggest that in these models the central charge along the
merged critical line differs from c =1.5; Granato et al.
find c =1.5 and a crossover to a first-order transition, '

Thijssen and Knops find c = 1.66. However, these
mode1s are slightly different from each other, and also
from the one discussed here. Whether and how such

where E, is the energy of clockwise steps, and o.„—and ~„-
are two anticommuting fermion variables on each site of
the chain: [o „+,o ] =5„, [r„+,r ] =6„,and

[o „—,r+—
] =0. This Hamiltonian is related to the transfer

matrix T of the four-state clock-step model in the strong
chirality limit as T=exp( —&/king T). The ground-state
energy of the quantum Hamiltonian, &, is equivalent to
the free energy. The quantum fluctuations are equivalent
to thermodynamic fluctuations. The world lines of the
fermions, in (1+1)-dimensional space time, are equivalent
to the steps in the two-dimensional surface.

This equivalence is exact in the so-called time-
continuum limit where K„»K and Q„»Q;see Eq.
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(2.4). In general it is approximate, but only in the sense
that nonessential features, such as further than nearest-
neighbor fermion interactions, are neglected. I will re-
frain from presenting a formal derivation. It is straight-
forward and completely analogous to earlier ones for
models describing C-IC phase transitions in adsorbed
monolayers.

An up step is represented by the state (1,0), a down-
step by (O, l), and a wall as a coinciding up and down step,
(1,1). The hopping term represents the meander entropy
of the steps. A hop occurs with probability
t -exp[ E„I—kB T], and creates a kink in the step E.t, is
the kink energy. The dislocation operator creates excita-
tions where two walls (or four clockwise steps with a total
height change equal to zero} are annihilated or created at
neighboring sites. The probability of this is related to the
core energy of the dislocations, Ed, as
ud =exp[ E„/kB—T]-t'.

This model is exactly soluble in the absence of disloca-
tions, ud =0. It is the Hubbard model solved by Lieb and
Wu. In the continuum limit it is equivalent to the n =2
Gross-Neveu model. This continuum limit is well under-
stood; see Emery, Luther, and Peschel. We need to
reproduce this and incorporate dislocations. The follow-
ing derivation is quite straightforward from the perspec-
tive of this earlier work on the Hubbard model. I follow
the notation from Ref. 34. The derivation is somewhat
technical, but the final result, Eqs. (5.20)—(5.22), can be
understood on a much more qualitative level. Some
readers might want to skip forward to Eq. (5.20).

After a Fourier transformation the Hamiltonian reads

&=g [ [E, 2t cos(k—) ](crz cr L + q t+, Tg ) J
k

%=HO+ f dx [ABOB(x}+A,UOU(x} —uOD(x)]

with

gfo=v fdk[+R+(k)+„(k)—+L+(k)+L (k)

+4R (k)4R (k) —4L (k)4L (k)]

+Afd, x[pR(x)+pL(x))[pR(x)+pL(x)] .

(5.3)

(5.4)

v is the slope of the energy bands at the Fermi surface,
v=2t sin(kR). The fermion density operators are related
to the original density operators on the lattice as

p„=o„+o„——kF =pR(x)+pL(x),+

p„'=q.„+q.„—kF =pR
—(x)+pL(x) .

(5.5)

A., A,z, and XU are renormalized coupling constants. For
the following discussion it is only important that for
small interactions they are proportional to E —2E, . u is
the renormalized dislocation coupling constant. The
three additional terms in Eq. .(5.3) create excitations that
are able to create energy gaps. All other higher-order ex-
citations can only renormalize the coupling constants and
are neglected.

The backward scattering operator

two energy bands at the Fermi surface. Define left and
right moving fermion variables O'L(k) and VR(k} for the
linearized branches of the o. band, and @L(k) and @R(k)
for those of the ~ band. Shift these branches to the ori-
gin, k~k+kF. This leads to a Dirac-type Hamiltonian
of the form

+ g(E~ 2E~)tri+, tri, +qqt+q't
q

k, l, q

B(x) +R (x)+L (x)@L(x)@R(x)

+qrL+(x)%, (x)C R+(x)4, (x) (5.6)—g 2udcos(k+1)[o'I+, rt crq I, T

k, l, q

+o'a q t trq —t q —
q t]—(5.2)

In the absence of dislocations ud=0 and interactions
E =2E„the fermions decouple. The model reduces to
two independent tight-binding models with plane waves
as eigenstates. Its phase diagram contains only two
phases. The insulator state at E, )2t represents the
reconstructed flat phase, and the metal state at E, &2t
represents a rough deconstructed phase. In the latter the
correlations decay as power laws, not only the roughen-
ing correlations but also those associated with the recon-
struction degrees of freedom. In this phase the MR
diffraction peaks have a power-law shape. The simul-
taneous roughening and deconstruction transition has the
character of a Pokrovsky-Talapov (PT) transition with
respect to both types of variables. (The scaling properties
of PT transitions will be discussed below. ) Dislocations
and interactions complicate this simple phase diagram,
however.

The continuum limit is constructed from the perspec-
tive of the metal phase of the two decoupled tight-
binding models at ud =0 and E =2E, . Linearize the +%L (x)%„(x)@L(x)@„(x) (5.7)

represents the process contained in the cr„+o.„~„+~„in-
teraction in Eq. (5.2) where fermions are scattered be-
tween opposite branches with q=2kF. At E =2E„
where the two massless Dirac theories decouple, the criti-
cal dimension of the fermion operators %' and 4 is equal
to xo =

—,'. The critical dimension of the backward
scattering operator Oz follows from power counting and
is marginal at this decoupling point, xz =2. We will see
below that this operator becomes relevant (xB (2) and
creates a gap immediately at E & 2E, . This gap is locat-
ed at the Fermi surface and moves with the location of
the Fermi surface, since q =2k+. These backward
scattering excitations are associated with the
roughening-type degrees of freedom, and this gap is asso-
ciated with the flat phase where up-down steps condense
into pairs and form wa11 excitations. From the Hubbard
model perspective this gap is identified with a "spin-
density wave. "

The umklapp operator

OU(x)-qrR+(x)VL (x}&R(x)4L (x)
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represents the process in the o.„+cr„~„+~„ interaction
where fermions are scattered between opposite branches,
with q =m using the k ~k+2~ periodicity in momentum
space. Unlike backward scattering, this process is
effective only when the energy bands are half filled,
kF= —,'~. Only then does it connect states with small en-

ergy. At the decoupling point the critical dimension of
the umklapp operator follows again from power counting
and is marginal, xU=2. We will see below that this
operator becomes relevant immediately at E & 2E„and
creates a gap at k =—2~. This gap is associated with a
higher-order reconstructed phase; a solid-type phase with
a step excitation at every site and AF up-down order.
The lattice-type cutoff in our cell-spin model is artificial,
however, and therefore this higher-order phase with this
artificial periodicity has no relevance for fcc (110) metal
surfaces. From the Hubbard model perspective this gap
is identified with a "charge-density wave. "

The dislocation operator obtains in the continuum lim-
it the form

+ o'
+R 01,—1/2 ~ +R 0 —11/2

+ a O
L 0, 1/2, %L 01 1/2

(5.13)

and the same for the ~ operators. This means that the
backward scattering, umklapp, and dislocation operators
can be represented as

OB(x) 02,0{X)0—2,0{x)+0—2, 0(x)02,0{x)

OU(x) 020(x)020(x)+0 20(x)0 20(x) (5.14)

p~(k) = ,'~2[p$—(k)+pp(k)],

p~(x) =—2'~2[P$(k) —p~(k)] .
(5.1 5)

Fortunately this remains true also in our case, in the
presence of dislocations. The Hamiltonian decouples as

OD(x)-00, (x)00'(X)+00 &(X)00 '(X) .

Emery, Luther, and Peschel found that the two types
of boson variables decouple under the linear transforma-
tion

OD(x) —%R (x)VL (x)@R+(x)4L (x)

+VR(x)+L(x)4R(x)4L{x) . (5.8)

&=&„+%q
with

(5.16)

Also this operator is marginal at the decoupling point,
xD =2. We will see below that it becomes relevant im-
mediately at E &2E„and creates a gap at the Fermi
surface. We will associate this gap with the deconstruct-
ed Quid phase. It transforms the above "spin-density
state" into the disordered Aat Quid phase.

The next step is the conventional bosonization of the
1D fermion theory. One of the best discussions about
this is the original paper by Tomonaga. The two cou-
pled Tomonaga-Luttinger models in ~0 obtain the form

and

f dk j(v ——2'')[PR" (k)PR( —k)+pL( —k)pL{k)]

—~PR(k) L(k)l

+LBfdx[0",~20(x)+0"-2~20(x)] (5.17)

+APR(k)PL(k)]

f dk I (v+-,'A, )[p„(k)PR( k)+pL( ——k)pL(k) ]

L
.&0= f dk [v[p„(k)pR(—k)+pL( —k)pL(k)

+A.U f dx[0 "~, 0(x)+0-2~20(x)]
—u fdx[00~2(x)+00 ~2(x)] (5.18)

+PR{k)PR{ k)+PL( k)PL(k)]

+A[PR(k)+PL(k)]

X [p'„(—k)+pL( —k)]] . (5.9)

The density operators do not commute anymore due to
the introduction of the bottomless Dirac sea,

[p~'( —k),p~'(i)] = 5(a„a2)5(p,,p2)5(k, 1) . (5.10)

The fermion operators are equivalent to string opera-
tors in terms of the density operators. This goes back to
the work of Luther and Peschel on the XYZ spin- —,

'

quantum chain. Define

The p" variables represent the surface reconstruction
degrees of freedom. They count the number of steps ir-
respective of whether the step is up or down. They keep
track of the winding number of the reconstruction 6 vari-
able in Eq. (24). The p" variables represent the surface
roughness degrees of freedom. They count the number of
up steps minus the number of down steps. They keep
track of the change in surface height.

Equations (5.17) and (5.18) can be rewritten as scalar
field theories. Define scalar field variables and their con-
jugate momentum operators as

d8
p (x)=

(5.19)
l

q (x)=—8+

and

0„{x)=exp[ —
—,'%8+(x)—M8 (x)]

8 (x)=2vri f dy[p„(y)+p (y)],

(5.1 1)

(5.12)

with a = r, d. The Hamiltonians read

&„=f dx —v(p "(x)) + (v —
A, )

1 dq(x)
dx

+KBf dx[Oz~z 0(x)+0" 2~& 0(x)]

2

(5.20)
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and
'2

%d =fdx —v(p (x) ) + (v+ A, )
2 dq "(x)

2 2' dx

+AU f dx[O~~~ c(x)+0 2~20(x)]

—u fdx[OO vz(x)+Oo &z(x)) . (5.21)

The operators O&M are combinations of sine-Gordon
and dislocation operators, and represent electric and
magnetic charges in the Coulomb gas formulations of
these models.

The stability of the free scalar field theory, at
u =A,&=A, U=O, with respect to the excitations with to-
pological charge, Oz M, is determined by the value of the
critical dimension x&M of these charges. The x&M
vary continuously with the interaction parameter A, as

are simply proportional to E —2E„buthigher-order ex-
citations renormalize the A, s. For increasing tempera-
ture, at fixed E~ 2—E„A,

„

increases (becomes less attrac-
tive). For example, anticlockwise (AC) steps appear in
terrace-type C-AC step pair excitations; see Fig. 16(a).
Such an excitation is small in size (has a short lifetime)
because the AC step has a large mass. Moreover, it re-
quires that there is enough empty space between steps to
fit in between. Under renormalization (at larger length
scales) it vanishes, but leaves an effective repulsion be-
tween the steps. See Ref. 24 for a more-detailed discus-
sion of this type of effect. So for increasing temperature
A,

„

increases. This implies that the X„=Oline bends to
the left in Fig. 15(a).

A different type of roughening transition occurs at
fixed A, &0 at increasing temperature. This roughening
transition has the character of a Pokrovsky-Talapov (PT)

2

x~M= +M x
4x

(5.22)

KT

with x' a continuously increasing function of A, . At small
1,, x" behaves as x"=&(I—A, lv). The critical exponents
in the H sector vary in the same way, but x" is a con-
tinuously decreasing function of A, because k appears in
H with a minus sign. At small )(,, x =&( I+klv).

We are now ready to discuss the phase diagram of the
chiral four-state clock-step model at strong chirality.
The above derivation of the continuum limit, although
straightforward, is quite technical, and not very transpar-
ent for those readers not familiar with the technique.
Fortunately the results are easily understood qualitative-
ly.

flat phase
(backward sc

flat phase

(a)

h phase

IN

flat phase

Ew - 2Es

PT

One of the major results is the decoupling of the
roughening and reconstruction sectors in the continuum
limit. This implies that from the large length scale per-
spective the two types of degrees decouple. Figure 15(a)
shows the phase diagram of the roughening sector, Eq.
(5.20), at a fixed value of the chirality. %" is a sine-
Gordon model just like the continuum limit of a conven-
tional SOS model. The backward scattering operator is
the sine-Gordon operator. According to Eq. (5.22), the
critical dimension of Oz is equal to x&=2/x". At the
repulsive side, A, & 0, O~ is irrelevant, x~ & 2, and we can
ignore its excitations. So H' behaves at A, &0 like a free
massless scalar field theory. This is the same as the metal
phase in the fermion representation. This massless phase
represents the rough phase, and it is located in the upper
right corner of the phase diagram, Fig. 15(a). In this
phase the only effect of the backward scattering operator
is to renormalize the coupling constants, in particular A, .

The KT-type roughening transition takes place at the
line A, =O where the backwards scattering operator be-
comes relevant, xz &2. At the attractive side, A. (0, the
surface is flat. The correlation length is finite, because
the backward scattering excitations create a gap at the
Fermi surface.

In Fig. 15(a) the line A. =O bends to the left. This is be-
cause E —2E, is the bare coupling constant, unlike k,
the renormalized one. Assign extra labels to the A, 's in
Eqs. (5.20) and (5.21). In lowest order A,„=i,d and both

ising

deconstructed
chiral fluid pha

IN

reconstructed solid phase

—KT

ucted
solid phase

PT

(b) Ew - 2Es

KT

deconstruc
flat phase

PT

(c)

reconstructed flat phase
I

Ew - 2Es

FIG. 15. Schematic phase diagram of the four-state chiral
clock-step model at strong chirality from the continuum limit
formulation: (a) the roughening sector, from Eq. (5.20); (b) the
deconstruction sector, from Eq. (5.21); and (c) the combined full
phase diagram.
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(a)
o»

(c)

FIG. 16. Typical step and wall configurations: (a) a clock-
wise (C) step becomes an anticlockwise (AC) step when it turns
backwards to form an elementary terrace excitation; (b) a wall
splits temporarily into a C up step and a C down step; (c) an ele-
mentary dislocation creates two walls which later both split up
into two steps; (d) a dislocation pair creates a local structure
consisting of four C steps (two up steps and two down steps).

transition. This is the metal-insulator-type transition as-
sociated with the bottom of the energy band in the 1attice
model and takes place when F., =2t [see Eq. (5.2)].

As mentioned above, it is possible to understand this
phase diagram, Fig. 15(a), on a less technical level. The
decoupling of the roughening and deconstruction sectors,
.P„and&d, in the continuum limit tells us to ignore the
reconstruction aspect d8 of steps and walls for the dis-
cussion of the roughening of the surface. This means that
with respect to the roughening degrees of freedom wall
excitations do not exist (they are invisible because they do
not change the height), and that clockwise and anticlock-
wise steps are indistinguishable. This suggests that as far
as the roughening degrees of freedom are concerned we
can replace the full model by a conventional SOS model.
P„hasindeed the structure of a sine-Gordon model, i.e.,
the proper continuum limit of a SOS model. But this
must be too simplistic, because topological constraints
imposed by the I9 variables remain. When a step turns
backwards it changes from a clockwise into an anticlock-
wise step. By freezing out the anticlockwise steps, we
have frozen out the possibility for steps to turn back-
wards. They cannot close on themselves to create small
terrace-type droplets, see Fig. 16(a), where the height
changes by 1. This explains the PT nature of the
roughening transition at the repulsive side of the phase
diagram. Disallowing turn-back excitations in a conven-
tional SOS model has indeed the effect of replacing the

KT-type roughening transition by a PT transition; the
SOS model reduces to a tight-binding-type free-fermion
model.

The backward scattering operator O~ represents a
different type of excitation which resembles a simple ter-
race droplet. A wall excitation is invisible from the
roughening perspective, but can split into an up step and
a down step, and later recombine; see Fig. 16(b). In the
presence of a background sea of walls, when the wall free
energy has vanished, these excitations are governed by
the step free energies only, and therefore behave like in a
conventional SOS model (conventional sine-Gordon mod-
el) and should induce a conventional II T transition.
Indeed, we will see next that the walls form such a back-
ground sea at the attractive side, A,d (0 [everywhere to
the left of the KT transition line and above the Ising line
in Fig. 15(b)].

The Hamiltonian &d of the reconstruction sector con-
tains the umklapp and the dislocation operator. At the
decoupling point both are marginal. They are relevant at
opposite sides: OU is relevant when the steps repel each
other, A, d & 0. Its critical dimension is equal to
xU=2/x". OD is relevant at the attractive side, kd &0.
Its critical dimension is equal to xD =2x .

The umklapp excitations create a gap in the energy
spectrum, but only at half-filling, kF= —,'m. At all other
filling factors the umklapp operator is ineffective. As
mentioned above, the umklapp gap represents a higher-
order reconstructed phase and is an artifact of the lattice
cutoff. The corner of the phase diagram where this phase
is located at very strong chirality is not of interest to us.
Consider filling factors close to the bottom of the band,
where we can ignore OU. Figure 15(b) shows the phase
diagram of the reconstruction sector, again at a fixed
value of the chirality. It contains a reconstructed solid,
IC floating solid, and chiral deconstructed fluid phase.
OD is irrelevant in the upper right corner of the phase di-
agram (the repulsive side). There the reconstruction sec-
tor is in the massless phase of the scalar free-field theory
(the metal phase in the fermion representation). The
reconstruction diffraction peak has a power-law shape
and is shifted to an IC position proportional to the steps
density. The phase boundary between the floating solid
and reconstructed solid phase is a PT transition. Like the
roughening sector this transition takes place when the
Fermi level drops below the bottom of the band in the
lattice model.

The dislocation operator represents the excitations
where two walls are created from the vacuum; see Fig.
16(c). Dislocations become relevant at the line A.„=O.
At this line the floating MR solid melts into a chiral
deconstructed fluid; the MR diffraction peak becomes
Lorentzian but remains shifted. The same argument
above, which predicts that the line A,, =0 bends to the left
in Fig. 15(a), implies that the line A.&=0 bends to the
right in Fig. 15(b).

Finally, the transition between the MR solid and chiral
deconstructed fluid is an Ising transition. This is not ob-
vious in the continuum theory. Consider the fermion
Hamiltonian, Eq. (5.1), in the limit of strong attraction
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—ud(a„+a„++,+a„a„+,)] . (5.23)

In the Hamiltonian of Eq. (5.1} only steps can hop.
Therefore the hopping term in Eq. (5.23) is a second-
order process where the wall splits into an intermediate
state with two steps, and is of order t'-t l(2E, E).—

Figure 15(c) shows the full phase diagram of the four-
state clock-step model at strong chirality. It follows by
superposition of the phase diagrams of the roughening
and reconstruction sectors, Figs. 15(a) and 15(b). One im-
portant feature is that the PT transition lines and also the
multicritical point M' of the roughening and reconstruc-
tion sectors coincide. Consider Eq. (5.1): In the tight-
binding model limit, ud =0 and E„—2E, =0, the two PT
transitions are already present, and they coincide. The
step interactions and dislocations do not alter this part of
the phase diagram. They do not renormalize the energy
levels at the bottom of the energy band, because the den-
sity of steps vanishes at the PT transition. Therefore the
location of the PT transition 1ines does not change with
the inclusion of interactions and dislocations.

VI. THE GLOBAL PHASE DIAGRAM

In the preceding sections we studied the chiral four-
state clock-step model, erst at zero chirality and then at
strong chirality. We obtained a good understanding of
both limits; see Figs. 4 and Fig. 15(c). From this it is pos-
sible to propose the structure of the global phase diagram
and to discuss how recent experimental results for Au
and Pt (110) relate to this. Figure 18 shows the most like-
ly structure. Temperature is measured in units of the
average step energy, E, = —,'(E„+E„).R =E~ jE, is the
ratio between the wall and step energy. Chirality varies
along the b, =E„E„axis[defined s—lightly differently
from Eq. (2.4)].

Paths of type 3 are located at the R &2 side of the
phase diagram. An Ising-type deconstruction transition
is followed by a KT-type roughening transition. Chirali-
ty does not affect this. The only new aspect is a possible
shift in the MR diffraction peak at nonzero chirality.
This will be discussed below.

Paths of type 4 are located at the R &2 side of the
phase diagram. The line in Fig. 18 marked as L is a line
of Lifshitz points. The sequence of phase transitions and
their nature changes at this line. We will distinguish be-
tween paths of type 4a (at the small chirality side of L)
and type 4b (at the large 6 side of L)

Along paths of type 4a the surface deconstructs and
roughens simultaneously. The flat reconstructed solid
phase transforms directly from the MR-reconstructed flat
phase into the rough deconstructed chiral fluid phase.
The scaling properties of this phase transition are the

E 2—E, «0. Only the states (cr, r) =(0,0) and (1,1) are
allowed. Define new fermion operators a*=a.+—~*. Then
the Hamiltonian reduces to the conventional Ising model
(quantum spin —,' XFmodel),

N
&= g '[E a„+a„t'—(a„+a„+,+a„++&a„}

n=1

same as at zero chirality, apart from one new aspect. The
missing-row diffraction peak starts to shift at T, at the
high-temperature side; the reconstruction variables un-

dergo a so-called chiral melting transition. The proper-
ties of this transition will be explained below.

Along a path of type 4b the surface roughens and
deconstructs simultaneously via a Pokrovsky-Talapov
(PT) -type transition. These are two independent but
simultaneous PT transitions, one with respect to the
roughening and another one with respect to the recon-
struction variables. The surface enters a phase which is
rough and simultaneously a fioating incommensurate (IC)
solid with respect to the reconstruction variables. This
means that not only the roughening-type correlations but
also the reconstruction-type correlations decay as power
laws. The MR diffraction peak starts to shift at the PT
transition. At a higher temperature the reconstruction
degrees of freedom melt via a conventional KT transi-
tion. The floating IC reconstructed rough solid melts
into the rough deconstructed chiral fluid phase. This se-
quence of transitions follows from the fermion analysis at
strong chirality, discussed in Sec. V. More details will
follow below.

The structure of the phase diagram, Fig. 17, is based
on the detailed knowledge of the two limit cases dis-
cussed in the preceding sections, and on the analogy with
the phase diagram of conventional chiral clock models
(the ones that describe IC monolayers). The major uncer-
tainty is the existence and precise location of the Lifshitz
line L that emerges from the multicritical point M' at
strong chirality. Does the Lifshitz line exist, or does it
coincide with the line M —M;, i.e., do paths of type 4a
exist, or is there an immediate crossover to paths of type
4b at nonzero chirality'? Moreover, the scaling behavior
at the Lifshitz points must be interesting. Lifshitz points
exhibit anisotropic scaling behavior. At this stage I have
no information about the scaling behavior along the
Lifshitz line.

Additional numerical work will be needed to settle

FIG. 17. Schematic structure of the full phase diagram of the
four-state chiral clock-step model, with R =E /E„4=E„—E„and temperature T measured in units of the step
energy E,.
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these questions. At present this is beyond the scope of
the type of finite-size-scaling (FSS) analysis presented in
Sec. III. The maximum attainable strip width is too
small. The numerical FSS results at nonzero chirality
presented below are of limited value.

This uncertainty about the existence of the Lifshitz line
exists also in conventional chiral clock models. Numeri-
cal evidence for the three-state chiral clock model (the
most extensively studied version) supports the existence
of a Lifshitz point, but the few exact analytical results
that address this issue can be interpreted as supporting
both possibilities. It is fair to say that the Lifshitz point
issue has not been settled beyond dispute in the three-
state chiral clock model. At this stage we cannot expect
to do better in the four-state clock-step model which is a
more-complex model.

Pt(110) and Au(110) follow specific paths through the
phase diagram, Fig. 17. The values of R and 5 for these
surfaces can be determined in principle from microscopic
energy considerations, such as the embedded-atom
method and pseudopotential method. Unfortunately
no reliable estimates exist yet. Instead, we will discuss
the experimental signature of each type of path and
determine which one is consistent with the experimental
evidence.

The scaling properties of the phase transitions and the
appearance of a shift in the MR-type diffraction peak are
the most important experimental signatures. At low tem-
peratures, in the MR-reconstructed flat phase, the MR
peak is located at the commensurate position, but it must
start to shift at some temperature, because the high-
temperature rough deconstructed phase has the character
of an incommensurate (IC) fluid with respect to the
reconstruction degrees of freedom.

Clockwise and anticlockwise steps have a different mi-
croscopic structure, and therefore a different energy;
b, AO. The high-temperature deconstructed rough phase
contains more clockwise than anticlockwise steps. There-
fore the clock variable 0 rotates across the surface in the
direction perpendicular to the missing rows with a period
incommensurate with the lattice periodicity. Loosely
speaking, Q is proportional to the difference in density of
clockwise and anticlockwise steps. Q is actually smaller,
because specific types of excitations, such as the disloca-
tions, create small-scale structures that do not contribute
to the large-scale modulation. For example, the recon-
structed solid phase contains "droplet" excitations as
shown in Fig. 16(d), but the pitch remains zero, Q =0, be-
cause the long-range 0 order is preserved. The proper
definition of Q

' is in terms of correlation functions such
3,S

G(x,y)=(exp[i[8(x+xo y+yo) 8(xo yo)]] )

MR diffraction peaks.
In certain cases an IC fluid phase contains sharp boun-

daries, so-called disorder lines, where Q locks in to a
commensurate value, and the fluid becomes commensu-
rate. An example is the disorder line in the ANNNI
model (which describes IC adsorbed monolayers close to
a twofold-degenerate commensurate ground state),
where Q remains strictly equal to zero at small chirality
until the disorder line is crossed. In other cases, such as
the fluid phase in the three-state chiral clock model, such
a disorder line is absent. But there the concept of a chiral
fluid becomes meaningless for most practical purposes
when the periodicity Q

' becomes larger than the corre-
lation length g. At Q '-g the shift in the diffraction
peak becomes equal to its width. The line Q

' —g plays
a role similar to that of a disorder line.

The four-state chiral clock-step model contains a disor-
der line at the R (2 side of the phase diagram (paths of
type 3). I did not check this numerically, but its ex-
istence becomes quite apparent from the one-dimensional
(1D) version of the model. The 1D model lacks a phase
transition. The deconstructed rough fluid phase extends
a11 the way to T=0. The transfer matrix of this very sim-
ple, and its leading (A,o) and next leading (A, , ) eigenvalue
can be obtained analytically. Their ratio yields the so-
called mass gap, m =In(lo/A, &). The real part of m is in-

versely proportional to the correlation length g. m is a
complex number if the fluid is incommensurate,
m =In(ko/k&)=g '+ig The. fluid becomes incommen-
surate when A, , becomes complex. (ko is always real. ) In
the 1D model the pitch Q becomes nonzero immediately
at 4 & 0 at the side of the phase diagram with paths of
type 4 in the 2D model. At the side with paths of type 3,
however, m remains real at small chirality. This implies
the presence of a disorder line at this side of the phase di-
agram in the 1D model. There is no reason to expect that
this is different in the 2 D model.

We will now discuss the characteristic behavior along
the various paths through the phase diagram. Consider
paths of type 4b. The decoupling of the reconstruction
and roughening fiuctuations in the continuum limit at
strong chirality (Sec. V) implies the following behavior.
The MR peak starts to shift at the Pokrovsky-Talapov
(PT) transition. In the rough deconstructed floating IC
solid phase, between the PT and KT line, the steps form a
meandering striped structure. They run parallel along
the MR direction across the entire lattice (dislocations
only occur in bound pairs). At each step the reconstruc-
tion variable 0 rotates clockwise by one unit d0= —,'~.
The step heights dh are randomly correlated such that
the height-height correlation function diverges logarith-
mically,

-exp[ r /g+igx ]—(6.1) (6.2)

with r =~ +gy, a js the lattice anisotropy parameter,
and the missing rows are running parallel to the y direc-
tion. Scattering experiments measure the Fourier trans-
form of these types of correlation functions. The incom-
mensurability is characterized by the pitch Q, and reveals
itself in scattering experiments as a shift in the liquidlike

2xg—exp[igx]r (6.3)

The reconstruction-type correlation functions decay as
power laws, e.g. ,

G( y)x=(e p[ix[0( +xyx+oyo) 0(xo yo)1] &



46 COMPETITION BETWEEN SURFACE ROUGHENING AND. . . 10 407

The critical exponent xz varies continuously inside the

rough floating IC solid phase. At the PT transition the
roughening and reconstruction degrees undergo a simul-

taneous but independent conventional PT transition. x&
takes the universal value x 8

= 1 (this follows from the free
fermion model), Eq. (5.1), at E =2E, and t=ud=0,
which becomes exact in the limit where the step density
vanishes, i.e., at the PT transition; and is in complete
analogy with the theory of commensurate incommensu-
rate phase transitions in adsorbed rnonolayers. The pitch
vanishes at the PT transition as Q —

~
T T, ~'—. Define

the pitch critical exponent x& as Q -g u. The value

x& =
—, is inconsistent with the experimental evidence for

Pt(110).
Another aspect that is missing in the experimental evi-

dence for Pt(110) is the anisotropic scaling behavior typi-
cal for PT transitions. The correlation length in the
direction along the MR grooves diverges as

l~~
—~T —Tpi ~

while in the direction orthogonal to the
MR grooves it diverges as li —

~
T T~ ~

—'~ . The
diffraction line shape becomes anisotropic at the PT-type
roughening-induced simultaneous deconstruction transi-
tion.

At higher temperatures the reconstruction degrees of
freedom melt at the KT transition. Pairs of dislocations
shown in Fig. 16(d} unbind. The line shape of the MR
peaks changes from power law to Lorentzian.

Consider paths of type 3. The surface deconstructs via
a conventional Ising transition, followed by a KT-type
roughening transition at higher temperatures. Chirality
does not affect this. The only question concerns the be-
havior of the pitch Q at strong chirality and R =2. The
question arises whether this shift starts at the roughening
transition, the Ising transition, or somewhere in the DOF
phase at a disorder line. At small chirality or R «2 the
MR diffraction peak does not shift at all (when there ex-
ists indeed a disorder line}, or not sufficiently to be mean-
ingful (when the correlation length is smaller than the
pitch, g(Q ').

In the DOF phase the surface contains a disordered ar-
ray of wall excitations. %'alls have a topological charge
d8=m. In cases where they are sharp objects, as shown
in Fig. 3, it is meaningless to distinguish between whether
8 rotates clockwise or anticlockwise across the wall. So
sharp walls do not contribute to the peak shift, and in the
limit R «2 where the steps are frozen out and the walls
are sharp Q must remain equal to zero in the DOF phase
at all values of A.

Along paths of type 3 close to R =2 in the limit of
strong chirality this becomes less clear. There the walls
can be thought of as bound states of two clockwise steps
(an up and down step, or a down and up step). At large
length scales it is still meaningless to distinguish between
whether 8 rotates clockwise or anticlockwise over m.. But
at resolutions better than the wall width it becomes visi-
ble that 8 rotates clockwise.

Insight into this can be obtained again from a one-
dimensional (1D) version of the model. Consider the 1D
four-state chiral clock-step model at strong chirality,
with a modification to ensure that it describes the DOF

G(x,y) = (exp [iq [h (x +xa) —h(xa)]] ), (6.4)

which is more directly related to the experiments than
Eq. (6.1), is directly accessible. The scattering experi-
ments measure the Fourier transform of this correlation
function. The MR diffraction peak does not shift until
the disorder temperature.

It is reasonable to conclude that also in the two-
dimensional DOF fluid phase the pitch remains zero as
long as the correlation length is larger than the wall
width. g diverges at the Ising-type deconstruction transi-
tion, but the wall width I, is finite. Therefore I do not
expect the peak shift to start at the Ising-type decon-
struction transition. At a higher temperature the surface
roughens. This KT-type transition is driven by the
terrace-type step excitations shown in Fig. 16(b) as ex-
plained in Sec. V. A wall splits temporary into two
clockwise steps. This implies that close to the roughen-
ing transition I takes over the role of correlation length
and diverges. g remains finite, because it represents the
correlation length associated with the 0 variables, which
do not become critical (g is a measure of the average dis-
tance between the walls in the disordered array of walls,
which form the background, the "vacuum, " for these
terrace-type excitations}. This implies that close to the
roughening transition l becomes larger than g. The
above 1D results suggest that the DOF fluid is then in-

phase (instead of the deconstructed rough phase). Con-
sider a 1D lattice with on each site a 8=(0,—,'ir, m., ——,

'n. )

variable. Assume that only do=a. walls are allowed, but
give them a fixed width I, and let inside the wall 8 be ro-
tated clockwise by ,'n —E. is the wall energy (the energy

of the bound step pair). This model describes a 1D ver-

sion of the DOF phase in the limit of strong chirality,
and can be solved exactly. It is easy to calculate the
MR-type correlation function Eq. (6.1). Again, the
transfer matrix is simple. The ratio of the leading and
next-leading eigen values yields the mass gap,
m =in(AQ/A, , )=g '+iQ. Ai is real at low tempera-
tures, but becomes complex at md ——l ' [with
w =exp( E lk—ttT)]. This means that the DOF phase
is commensurate at low temperatures (Q=O), until a
sharply defined temperature, a disorder point (like the
disorder line above), where the DOF fluid becomes in-
commensurate (QAO). At the disorder point the correla-
tion length g = 2iti is smaller than the wall width
(=0.7l . In the commensurate DOF fluid, at lower tem-

peratures, the correlation length is larger.
Consider a second model, a 1D BCSOS model, where

at T=O the surface is in the MR-reconstructed ground
state. At T)0 only the clockwise step excitations of Fig.
3(c) are allowed, and they only appear in pairs (up-down
or down-up pairs), at a fixed distance l . This condition
ensured again that this model describes the DOF fluid at
strong chirality. Also this mode lis exactly soluble. The
results are the same. Again the fluid remains commensu-
rate below a sharply defined disorder temperature, and
again the correlation length at the disorder temperature
is slightly smaller than the wall width. The advantage of
this second model is that the correlation function
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commensurate, and the MR diffraction peak is shifted. I
expect that Q becomes nonzero at a disorder line inside
the DOF phase, located at 1

Consider a path of type 4a. The peak starts to move
immediately at the roughening-induced simultaneous
deconstruction transition. Define the pitch critical ex-

X
ponent x& as Q -g ~. At the IC melting transition the
correlation length g and the IC wavelength Q

' diverge
simultaneously. By definition, Q vanishes at T, as

XQ-g ~. The scaling properties at a chiral melting
transition are determined by the value of x&. ' If
1&x& &2, it is clear that all critical exponents must
remain the same as at 6=0, because then the correlation
length diverges slower than the wavelength Q ', and in
the scaling limit the correlated spins are unafFected by the
periodicity. At best the wavelength Q

' acts as a
temperature-dependent effective finite-size (FS) cutoff.
If x& =1 it is not clear why the critical exponents should
not change. Nevertheless, numerical evidence for the
chiral three-state clock model supports a value x&=1
and no change in the exponents.

Assume that also in the chiral four-state clock-step
model x&=1, and that all critical exponents remain the
same as at 6=0. This implies a linear vanishing of the

misfit Q —
~
T T, ~

~ ——
l
T T, . Th—is is remarkably

consistent with the observations of Robinson et al. for
Pt(110): they find that the intensity of the half-order
peak scales as

~
T T, l

~ with—P=0. 11, and that the peak

width scales as g- ~
T T, ~

' with—y T = 1.05, both con-
sistent with the above numerical results at 5=0, and they
observe a linear vanishing of the misfit.

To check whether indeed x&=1 and the critical ex-
ponents do not change in the four-state chiral clock-step
model, I calculated the pitch Q numerically with the
same FSS method as described in Sec. III. Q is obtained
from the complex part in the next-leading eigenvalue of
the transfer matrix, A. &, for periodic boundary conditions,
m +iQ =in(A, o/A, , ). This "mass gap" I is dual to the in-

terface free energies q of Section III. Recall that the g's
are nonzero in the MR-reconstructed phase and vanish in
the rough deconstructed phase. The mass gap behaves in
the opposite way, m is inversely proportional to the
correlation length in the deconstructed rough phase, and
vanishes in the MR phase.

A couple of technical comments are in order. The
next-to-leading eigenvalue of the transfer matrix becomes
complex at b,&0 only if the "time"-evolution direction is
chosen to be perpendicular to the missing rows, the x
direction in Eq. (6.1). In the calculations of Sec. III the
state in each "time" slice is represented by a q
dimensional vector, with 1 ~q ~6 the six possible states
of each vertical bond (a wall, a clockwise or anticlockwise
up or down step, or nothing). In this representation the
absolute value of the reconstruction variable 0 is not
represented, and therefore it does not contain the com-
plex eigenvalue which keeps track of the average winding
number in 0. Therefore I enlarged in this calculation the
state vector by a factor 4, and stored the value of 0 be-
tween two specific vertical bonds. Fortunately the max-
imum obtainable strip size remained X =7.
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FIG. 18. The crossing points at R =3.0 and 5=0.25 of (a)
the interface free energy g(~, 0); (b) the interface free energy
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are shown: the crossing points as function of N and N + 1.

1.50 I f I I }
I I I I

lI

1.48

A

C4

C4

Q)

1.46

1.44

1.42

1.40 l

0.1 0.2 0.3
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At b,+0 the lattice isotropy is lost. Therefore the sim-

ple relations between the universal FSS amplitudes and
the critical dimensions of the operators that generate the
specific boundary conditions (the ri's) or the order param-
eter (the mass gap) are lost as well. Only the crossing
point analysis of Sec. III can still be applied.

I limited my analysis to R =3. Closer to the multicriti-
cal point at R =2, crossover scaling behavior confuses
the issue. At large values of R an Ising-type critical line
(which is of no interest to the MR reconstruction)
emerges from the AF side of the phase diagram and con-
fuses the issue.

At R =3.0 and b =0.25 the crossing points of
Nri(m, 0), and Nri( ,'m, l) clearly —ind. icate convergence to a
different estimate for the critical point than the crossing
points of the mass gap, Nm (see Fig. 18). This indicates
the presence of two transitions; we must have passed the
Lifshitz line and crossed over to paths of type 4b.
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At 5=0.125, the crossing points of Nm and Ng's give
the same T, within the numerical accuracy,
&=1.44+0.01 (see Fig. 19). The numerical accuracy is
not good enough to distinguish between a single IC melt-
ing transition (path of type 4a) or two transitions with a
very narrow floating IC solid phase (path of type 4b) ex-
tending all the way to b, =O (which implies the absence of
a Lifshitz line). An analysis assuming a single transition
gives results consistent with the above speculations: the
temperature derivatives of g, of sl(n. ,O), and also of
ri( —,'sr, 1) scale with an exponent yr ——0.95+0.5; the pitch

Q scales at the crossing points of m consistent with a
value x& =1, but the convergence is not very convincing.
I did not pursue these calculations further. The small
maximum strip width is too much of a limiting factor.

VII. EXPERIMENTAL EVIDENCE

In the preceding sections we discussed the phase dia-
gram of the four-state clock-step model; first at zero
chirality, in Secs. III and IV; then at strong chirality, in
Sec. V; and finally the results were combined into a global
phase diagram in Sec. VI, Fig. 17. We discussed the
scaling properties along the three characteristic paths
through the phase diagram. Let us now compare these
characteristic behaviors with the experimental results for
Au(110) and Pt(110).

The deconstruction transition in Au(110) (Refs. 7, 10,
and 11) is reported to have Ising-type critical exponents.
The Ising exponents rule out a path of type 4b. The ab-
sence of a significant peak shift at the deconstruction
transition disfavors a path of type 4a. Roughening tran-
sitions are difficult to resolve, because their thermo-
dynamic singularities are weak, and involves a subtle
change in peak shape. The characteristic power-law line
shape of the rough phase must be distinguished from
finite-size effects. Indications for a roughening transition
in Au(110) have been reported at a temperature 50 K
above the deconstruction transition. ' '" This suggests a
path of type 3. No peak shift has been reported at any
temperature. This suggests a small value of R =E /E,
or small chirality.

Robinson, Vlieg, and Kern' observed the onset of a
shift in the MR peak in Pt(110) immediately at the decon-
struction transition. The linearity of the shift
Q —

~
T T, ~

is consistent wit—h a path of type 4a (with
x&=1) and rules out a path of type 4b (x&=—,'). No
direct evidence for roughening has been observed yet (i.e.,
a change in line shape). Roughening might take place
simultaneously (path of 4a) or at a higher temperature
(path of type 3). To explain the results in terms of a path
of type 3 is difficult, however. The peak shift would be

very small, except maybe when R =E /E, =2 and b, is
large. In this limit the wall excitations are composite ob-
jects, pairs of clockwise steps with opposite step height.
This is the description proposed by Vilfan and Villain. '

However, in this limit the peak shift is not likely to be
linear. Vilfan and Villain presented an argument for a
peak shift proportional to Q -l lg, which would imply

x& =2. My analysis in Sec. VI (the analogy with an ex-
actly soluble one-dimensional model) suggests a different
behavior, the presence of a disorder line. The peak does
not start to shift at the deconstruction transition, but
only at a higher temperature (but before roughening).
At disorder lines the pitch scales typically with the same
(effective) exponent x& =

—,
' as at a Pt transition (as

X

Q —~T TDo~
—~, with TDo the disorder temperature).

Neither suggestion agrees with the experimentally ob-
served linear peak shift. Therefore, only a path of type
4a explains the experimental results for Pt(110).

It is not allowed to turn the argument around and to
conclude that the experimental results for Pt(110) imply
the existence of the Lifshitz line in Fig. 17. Suppose the
Lifshitz line does not exist. Then the PT and KT transi-
tion lines (path of type 4b) must be very close to each oth-
er at small chirality, and experimentally this is probably
not distinguishable from a true path of type 4a.

One of the most significant implications of the above
discussion is that the chirality in Pt(110), and probably
also in Au(110), must be weak. This is somewhat of a
surprise. Villain and Vilfan ' assume that chirality is
strong, and also Robinson, Vlieg, and Kern' imply it in
the analysis of their experimental data. One possible ex-
planation might be the buckling and relaxation in the
MR state, which extends to four layers deep in
Au(110). ' ' Steps and walls in the surface are probably
relaxed from the sharp objects shown in Fig. 3 into more
diffuse ones at a similar length scale. This does not affect
their topological changes, nor the description in terms of
the chiral four-state clock-step model, but might reduce
the chirality considerably compared to simple estimates.
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