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This paper presents a theoretical study of the bulk, surface, and interface electronic states of bimetal-
lic superlattices; especially the Mo/Ta superlattice. The calculation of the local density of states at the
interface of this particular superlattice allows an examination of the interface phenomena as a function
of the coupling parameter at the interface. The superlattice surface study shows that localized surface
states may exist in the minigaps.

I. INTRODUCTION

Several studies concerning the structural coherence of
metallic superlattices have been published in the past few
years. Among these are Nb/Cu, ' Nb/Al, Nb/Ta, '

and Ru/Ir.
These works have proved that the best results are

achieved when the two metals that make up the superlat-
tice have the same crystalline structure, and when they
have almost identical lattice parameters.

For example, in the case of Nb/Ta superlattices, both
components have bcc lattices with the same lattice pa-
rameters to within 0.1%. However, a number of pub-
lished reports describe materials formed by the successive
growth of two alternating materials of different crystal-
line structures [e.g. , Ni/Mo (Refs. 7 and 8)]. This is
achieved by making use of the inhuence of different pa-
rameters that are relevant to the "matching" of materials
made of different chemical species and that belong to
different crystalline structures.

Two of the most important achievement are (i) crystal-
lographic parameters: an interesting solution is revealed
by considering a bcc crystal (e.g. , Nb) grown along one
axis [110] top of a fcc substrate crystal (e.g. , Cu) grown
along another axis [111];(ii) thermodynamic parameters:
the poor miscibility between the atomic species Ru and Ir
gives a good epitaxy between their respective structures
hcp and fcc.

Superlattice structures may reveal not only electronic
properties, but also magnetic features, as shown in a re-
cent investigation of the properties of sandwiches or su-
perlattices made of Ag/Fe or Cr/Fe layers. Additional
effects have been measured as (a) a perpendicular magne-
tization for Ag/Fe sandwiches and superlattices " and
(b) giant magnetoresistance effects for Cr/Fe superlat-
tices.

In this paper, the electronic properties of bimetallic su-
perlattices have been explored by applying the interface
response theory to an analytical simple band-structure
model within the framework of the tight-binding method.
This method has been proven capable of simulating the
electronic structure of many systems in solid-state phys-

ics. When dealing with surface and interface problems, it
is based on a parametrization approach in order to repro-
duce bulk electronic properties of the system under
study. The issued parameters are then useful in discuss-
ing physical aspects of the system. This leads to
significant qualitative results that retain the main physi-
cal features of the system. Numerical calculation-based
methods are, nevertheless, sometimes required to reach a
better quantitative simulation of the system.

A complete description of how the bimetallic superlat-
tice is built up from the bulk materials will be followed by
a presentation of the formalism and a description of the
interaction model. The electronic dispersion relations
and the local density of states wi. ll be derived.

Finally, the theory will be applied to a superlattice con-
sisting of two metallic materials (namely, Mo and Ta),
which wi11 provide the example for a discussion of the
bulk, surface, and interface electronic properties of such
a system. It must be noted that the interface-response
theory has already been used in studying certain electron-
ic properties of a polytype semiconductor superlat-
tice. ' '

Ij. FROM THE METAL
TO THE SUPERLATTICE —THE FORMALISM

The following is a presentation of the general theory
that enables the calculation of the two-layered superlat-
tice response function and, consequently, all electronic
properties.

A. The bulk metal

The reference quantity is the bulk-response function

Gz associated with each material and from which the su-

perlattice is made prior to the superlattice formation. To
begin with, the two infinitely extended lattices associated
with each material of type K (E =1,2) must be taken
into account. For each material E, the Hamiltonian Hz,
which contains all required bulk electronic properties,
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will be considered. Its elements are expressed by the fol-
lowing:

HK =EK g C+(l)C(l) —
yK g C+(I +5)C(l),

where EK is the energy of the atomic level for atoms be-
longing to the metal of type K [see Table I]; C+(I) and
C(1) are, respectively, the creation and the annihilation
operators for the atomic site I; and yK is the hopping in-

tegral for the nearest-neighbor sites. In this expression, l
ranges over all sites in the crystal, while 5 ranges over the
sites selected by the range of the interaction potential
within a chosen band-structure model.

The bulk band structure is then simulated using a
nearest-neighbors interaction approximation; 5~~

= 1(0) if
p =p' (otherwise). The bulk response function GK is then
defined by

TABLE I. Interaction parameters of molybdenum and tan-
talum metals. Eo represents the midband energy, y is the hop-
ping integral for the nearest-neighbor sites, and Z is the occupa-
tion number of the electronic band.

Molybdenum Tantalum

E, (eV)

y (eV)

Z

1

2

0.5

0.998

12

0.3

In order to adapt the bulk-response functions GK to
the different steps in building up the superlattice, a refer-
ence function G must be introduced. This is defined as a
block diagonal matrix formed from the elements of the
bulk-response functions GK belonging to the space of
definition of each slab

GK(E)= lim [(E+ie)I HK—]
p~Q G(nKI;n'K'I') =5 G (ll'), (5)

where E is the energy, I is the unit matrix, and c is a
small imaginary part. Two mathematical items are then
required, namely H, (G, ) and H2(62), in the case of a
two-layered superlattice. The bulk electronic spectrum
of each separated metal (K) is obtained from the poles of
GK.

B. The metallic layers

The next step in building up the superlattice is to pro-
duce a slab consisting of LK (001) atomic layers
(1 I LK ) from each of these K-type metallic bulk crys-
tals. This is done by switching off all interactions yK be-
tween the slab-edge layers (I =1, and I =LK) and their
respective surrounding layers in the embedding metallic
medium. The associated Hamiltonian, presumed to cor-
respond to the material of type E located in the nth su-
perlattice cell, is given by the following expression:

H(nK;nK)= g VK(nKI;n'K'I')C+(I')C(l),

with

K'" ""'K")=rK5-5KK

IO I'1 /15/'0+ 5/LK5/', L

where 1~1,1'~L =LK and m =(n, K); n is the unit-cell
index of the two-layered superlattice; and 5 ~ is the usu-
al Kronecker symbol, defined as 5 =5„„.5KK' with

5;I = 1(0) if i =j (otherwise).

C. The bulk metallic superlattice

The next step is to couple these different slabs together
in order to build up the superlattice. This is achieved by
introducing (i) interfacial interactions between two adja-
cent slabs within the same unit cell n by means of inter-
face hopping integrals y between the nearest-neighbor
atomic sites. For example, yK couples the free surface
I =L1 (of slab K =1) and I'=1 (of slab E'=2). This
provides a heterostructure, created from the two metallic
slabs, which is the elementary kit in building up a two-
layered superlattice; (ii) interfacial periodic coupling be-
tween an infinite number of such two-layered heterostruc-
tures by means of an overlapping integral y'.

The associated Hamiltonian is expressed by the follow-
ing:

HI(nK;nK') = g VI(nKI;n'K'I')C+(I')C(1), (6)

I,LK+15/'LK ) ' (4) where

VI("K'"'K' ' = 5-( 5K1)( —5K2)[r—5IL 5KK—-15/1+) 5/15KK 15/, L. 1]

n, n' 15K25K'15IL25/'1+5—nn +15K15K',25'115/'Lz]

In all the above expressions, the dependence on k~~, the
wave vector parallel to the interface planes, and on E, the
energy, is not shown for simplicity.

It is now possible to obtain the operator A 'K which is
defined by the relationship

—K —K—K ~
A' = —6 V

out of which can be calculated the surface-response
operator A 'z of the slab K (I ~ 1,1' ~ LK ).

The elements of A '& are

As(KI;KI') = yK[5/. , GK(10)+51L—GK(I, LK+1)] (9)

within the nearest-neighbor interaction model.
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The corresponding surface-response operator adapted
to the superlattice's case is then defined by the equation

tions are then obtained through standard algebraic calcu-
lations:

A~(nKI;n'K'I')=5„„,5~~, As(KI;KI') . (10)

(I+A')g=G . (12)

From this general equation, the following matrix equa-

The complete interface response operator 3 ' is given as

's+ ~r6

All these steps are necessary in order to calculate the
superlattice-response function g, which can be done by
using the general equation

g (nKL&, n'K'I')
K(K)=

g (n, K + 1, 1;n 'K'I')

g (n, K —1,Lx (, n 'K'I')

g (nK1; n'K'I')

Gx (11')
+5nn G'(L I')

where

(13)

A '( nK 1;nKL& ) A '(nK1; n, E + 1, 1)
K(K)= I (nKL~;nKLz )+ A'(nKLz, nKLI; ) A '(nKLz, n, K + 1, 1)

A'(nK1;n, K —1,Lx, ) I(nK1;nK1)+ A'(nK1;nK1)
H(K)= A'(nKLk, n, K —'1,Lz, ) A'(nKLz, nK1)

We also define

(15)

P(K)= —K '(K)H(K)

and the transfer matrix between the two equivalent planes of the two-layered superlattice R (m'+2;m') as

m'+2
R(m'+2;m')=

m"=m'+1
P(m"),

which complies with the property

det[R(m'+2;m')]=1 for all m',

and where g represents the product-operating symbol.
At this point, the bulk dispersion relations for electrons can be easily obtained by solving

Tr[R (m'+2;m')] =2 cos(k, D) =2g, (19)

where k, and D are, respectively, the propagation-vector component perpendicular to the layer planes and the superlat-
tice parameter (the distance between two equivalent planes). Tr represents the trace of the argument matrix R. This
dispersion relation is, of course, independent of the values of m used in (19). To simplify the calculation we have used
m'=0.

In the particular case where the matrices g(nKI;n'K'I') are 1 X 1 matrices (or scalar), the elements are

g (nKI; n'K'I') =5„„5'Gz(ll') —
[ [ A '(nKI; n, K —1,Lz &

) A '(nKI; nK1)]P '(K)

g (nKL&, n 'K'I' }

+ [ A (nKI 'nKL~ )A (nKI 'n K + 1 1 )]]

Gx (11')
—5„„[A'(nKI;n, K —1,Lz &) A '(nKI;nK1)]H '(K) (20)

where

g ( nKLz, n 'K'I')

g(n, K+1,1;n'K'I')
Gx ( ll')

R (KO)[R (NK')r ~" "
~ —R '(K'0}r ~" " ' ]+5,R (KK'} K '(K')

t —1

(21)
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and

g —(rI' —1)'~', g & 1

rI+i (1—rl'}'~', —1 & rI & 1 .
rI+(vp —1)', g & —1

(22)

Thus, the problem under study here is completely
solved in a closed form. The complete interface-response
operator can now be calculated and the final electronic
energy spectrum of the superlattice can be determined.

This electronic spectrum originates from the modified
spectrum of G. Such modifications arise from the creation
of the superlattice as an additional periodicity (band fold-
ing) and from the introduction of interactions among the
separate material bands that lead to the final band struc-
ture.

D. The superlattice surface layer

+fin 1~Klfil l~n'ofiK'25!'L~ ) (23a)

In the case of the bimetallic superlattice, two surface
configurations are possible, depending on whether ma-
terial 1 or 2 constitutes the top surface layer.

The response function g, associated with the surface of
the superlattice is then given by the relationship

g, (nKI; n 'K'I') =g(nKI; n 'K'I')

In order to study the surface electronic structure of the
superlattice, a further operator is also required (as with
the surface of monocrystals). Using surface-physics ter-
minology, two superlattice free surfaces are created by in-
troducing a "perfect cleavage" plane between the two ad-
jacent slabs, thus, canceling all interactions between these
slabs. The associated operator has the following expres-
sion:

~s(nKI; n'K'I') =y ~5 o42&!I.,fi 'i4''i5!'!

be considered to be simple cubic and its d-band electronic
structure is described by applying the tight-binding
method to a single nondegenerate orbital. As far as the
electronic properties of transition metals are concerned,
the d electrons play the main role and the d-electron den-
sity of states overshadows the s and p densities around
the Fermi level. Although the transition metals crystal-
lize in other systems, Allan' demonstrated that this
model gives good metallic cohesion energy (except for the
first period, where the magnetic properties must be incor-
porated).

The dispersion relation of electrons in the infinitely ex-
tended crystal made of material of type K is'

E!c(k)=Eo —2y!c( cosk a+ cosk„a+cosk, a ), (24)

where Eo is the midband energy, yz is the overlap in-

tegral, a is the lattice parameter, and k„,k, k, are the
wave-vector components. It is already known that

y& =
—,', eV for the 3d series, —,

' eV for the 4d series, and —,',
eV for the 5d series in the periodic table of the elements.

The bulk-associated response function Gz is deter-
mined by Eq. (2). Let us recall that this function con-
tains a11 of the required electronic-structure information
and it is the reference quantity needed to build up the en-
tire superlattice bulk response function from which the
superlattice electronic structure may be obtained.

Assuming that the lattice associated with each material
K has an (x,y) in-plane bidimensional periodicity, the kl
representation can be used to describe the electronic
spectrum of Gz. This representation is aimed at provid-
ing a superlattice-adapted expression of Gz. As the two
different metallic slabs (see Sec. II) are incorporated
within the superlattice, the interaction model should in-
volve their respective electronic structures. In order to
do this, Eq. (2) must first be solved in a closed form be-
tween the different (001) atomic planes, labeled by in-
tegers l and l'. The ensuing slab-adapted expression is as
follows:

g (nKI;02Lz )g (111;n'K'I')
+y 1+yg (111;02L2)

(23b)

t /I —1'I+ i

G~(k
i,
, I, I'; E)II' ' '

y~ t~2

where

(25)

(111 ill)=
1 —yg (111;02L~)

(23c)

As far as the surface layer of the superlattice is con-
cerned, one obtains kx (Pre 1)'—" 0s—c & +1

tie= 'g!c+i(1—g!c)' 1&(ac &+1

0!c+(0!c—1)'" 4 & —1

(26)

It can be noted that both response functions
g (111;111)and g (111;02L2)may be calculated by using
Eq. (20). The energies of possible superlattice surface
electronic states are given by the poles of g, (111;111).

In our model, no surface states exist for each separate
metallic material. In this way, the surface states that
may be revealed by the present theory are insured as in-
trinsic superlattice-induced features.

III. METAL BAND-STRUCTURE MODEL

In this study, a one-band model is used to describe
each of the transition metals's d bands. The crystal will

and

E —E —cos(k a}—cos(k a) .
2y

(27)

Note that the surface-response function associated
with a semi-infinite crystal and built up from this latter
quantity [Eq. (25)] by canceling interactions between two
adjacent planes, has no poles. This means that the simu-
lated semi-infinite crystal has no electronic surface states.

When identifying superlattice electronic surface states,
this hypothesis is extremely important. It supports our
idea that any surface electronic property revealed by
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these calculations is due to an intrinsic superlattice effect
rather than to an alteration of a slab-associated surface
state.

wave functions. Such surface states are well localized if t
satisfies the following condition:

(35)
IV. SUPERLATTICE ELECTRONIC STRUCTURE

In the following, the interface-response-function theory
is applied in order to study the electronic properties of
bimetallic superlattices. The detailed algebraic calcula-
tions are given in Ref. 17.

C. The local density of states

The surface metallic response function associated with
material E is

A. The bulk electronic structure
G»(k ii; 11;E)

VK
(36)

The electron-dispersion relation is expressed by the fol-
lowing equation:

2r)(kii', E)=2 cos(k, D) . (28)

k, and k~~ are the wave-vector components perpendicu-
lar and parallel to the interface, and D =g», L»a» is
the superlattice period. D has a simple form when the
two metals have the same parameter (a, =a2 =a):

2

D=a g L»,
K=1

(29)

where I.K is the number of atomic layers in each metallic
slab K.

If the following notations are adopted;

y(1 g2 )1/21

~7K
(37)

where the summation is performed over the bidimension-
al Brillouin zone. Symmetry requirements may simplify
the numerical calculations here.

In the same manner, the interface density of states be-
tween two slabs of the superlattice is given by the follow-
ing expression:

b» = ——Q Img ( n, IC = 1,1 = I;n ',E ' = l, l ' = 1 ), (38)
1

k

where t» is complex if lg»l &1 [see Eq. (26)]. The local
density of states (LDOS) for the first surface-metal plane
is given by the equation

t» = exp(q» ),
sinhq»(L» —1)

AK=
yK sinhqk

y»»nhq»(L»+1)
~K 7

y sinhqK

(30)

(31)

where g is the interface-superlattice response function. It
is this formula that enables an examination of the inter-
face phenomena. At this point, these results will be ap-
plied to the study of the electronic properties of Mo/Ta
superlattices.

2'(kll', E)= —2C~ C2+B I B&+,4
&
3 (32)

This relation enables the extraction of the electronic
energy allowed in the superlattice for a given k~l.

B. The surface electronic structure

As already mentioned, there are two surface
configurations in the case of a semi-infinite bimetallic su-
perlattice. In order to study electronic surface states, the
key quantities derived from the surface response function
are

and

D(K;K ) y(C» A»' B»C»')— (33)

3 (E;E,K') = A» A» —C»C» (34)

D is the denominator of gz [Eq. (23c)]. The zeros of D
give us the energies of electronic surface states;
t = A '(E;K,K') is the decaying factor of associated

sinhqKLK
CK 7

sin hqK

and Eq. (28), the dispersion relation of the bulk-electronic
states of bimetallic superlattices takes the following form:

V. ELECTRONIC STRUCTURE
OF A Mo/Ta SUPERLATTICK

Molybdenum and tantalum are both transition metals.
Their lattice parameters are, respectively, equal to 3.30
and 3.15 A, and they crystallize into the same bcc struc-
ture. The Mo/Ta superlattices with superlattice wave-
lengths in the range of 20—180 A were made by a sputter
deposition technique. ' Such superlattices grow along
the crystallographic axis [110]. In this study, a structural
coherence was found extending over many layers as deep
as 300 A within both metals. These crystallites are highly
textured in the [110] direction, 27%%uo, but are randomly
oriented in the sample plane. The observed interdiffusion

0

extends over 4 A.
In Table I the interaction parameters calculated with

the help of the one-band model are presented. When the
two metals are brought into contact, the Fermi levels be-
come aligned. Here, zero has been chosen to be the Fer-
mi energy.

Concerning the choice of the overlapping integral y
value, the common procedure is to take the mean of the
two bulk values (y, and y2) for y:

y=xy, +(1—x)yz, with 0&x &1, (39)

where x is the weight factor. This simulates the concrete
situation of the existence of a disrupted interfacial zone.



46 SURFACE, INTERFACE, AND BULK ELECTRONIC STATES. . . 10 381

The choice of the weight factor x will depend on the
number of atoms of each material in the interfacial zone.
The value of x will first be considered as equal to 0.5, cor-
responding to an arithmetic average. This hypothesis en-
ables the calculation of the superlattice electronic band
structure without taking into account the influence of the
interface phenomena. Now, the dispersion relations us-
ing two wave-vector representations will be presented.

S = cos(k„a)+cos(k„a). (40)

This figure corresponds to the two-atomic-plane-thick
films (L i =L2 =2) in order to avoid the complexity of the
existence of too many bands. We start with a

2
0

c

0
S

FIG. 1. Bulk and surface electronic states for a Mo/Ta su-
perlattice made of films with L&=L2=2 atomic planes. The
origin of energy is taken at the Fermi energy EF. The bands are
drawn as a function of S=cos(k„ao)+cos(k~ao). The cross-
hatched area corresponds to the bulk bands of the superlattice.
The surface states are given, respectively, for Mo (1 and 2) at
the surface and for Ta (3 and 4) at the surface. The dotted (or
the dashed-dotted) lines represent the bulk-band limit of Mo (or
Ta).

A. k~~ representation

In Fig. 1 the variation of the energies of bulk and sur-
face electronic states of the Mo-Ta superlattice is plotted
according to S, a reciprocal two-dimensional parameter
related to the k~~ by the relationship

configuration in which the two metals are infinitely
separated —this gives the two bands represented in Fig. 1

(dashed-dotted lines for tantalum and dotted lines for
molybdenum). The next step is to forin the superlattice
structure with these two materials. This, in turn, triggers
the formation of four subbands separated by minigaps.

The k~~ representation of the dispersion relations may
be used if it is assumed that the periodicity is preserved
only in lattice planes parallel to the interface between the
two metals, thus implying that the wave-vector com-
ponent k, (perpendicular to the interface) is no longer a
good quantum number. Consequently, it must be varied
between —m/a and n/a (its bulk limits) in order to gen-
erate the continuum of dispersion relations fitting the
above periodicity requirements prevailing in the superlat-
tice. In this way, the upper and lower energies of each
subband are generated and an energy-representation
frame is obtained, which is then adapted to all electronic
structures associated with defects having the same (x,y)
in-plane periodicity. This means that resonant states in-
duced by the defect may have their energies falling within
one of this continuum's subbands, while the energies of
true defect-associated localized states are situated within
the minigaps separating these subbands.

It is worthwhile to display the separated-metal bands
alongside the superlattice subbands. This is a straightfor-
ward way to examine how superlattice electronic features
are related to their source bands. For example, it can be
better understood why the highest superlattice subband
has a marked tantalum nature while the lowest one has a
more pronounced molybdenum nature. Strong overlap-
ping between separated-metal bands leads to the forma-
tion of the remaining two subbands. The same con-
clusion was also obtained with another calculation tech-
nique in the case of Nb/Ta (001) superlattices. '

The aforementioned may explain why the low-energy
superlattice surface states (Fig. 1, curves 1 and 2) are ob-
tained when molybdenum constitutes the super1attice's
top surface, while high-energy superlattice surface states
(Fig. 1, curves 3 and 4) are obtained when the semi-
infinite superlattice ends in a tantalum layer. At this
point, a change will be made at the interfaces in the in-
teraction parameter y in order to determine its influence
on the superlattice's electronic structure.

When the weight factor x is varied between 0 and 1 the
subbands remain almost unchanged. This means that as
long as the values of y' are fixed by a mean rule, such as
the one given in Eq. (39), the interface has an insignificant
effect on the electronic structure. Superlattice effects
dominate in order to fix the relative position and the
width of these subbands. However, more pronounced in-
terface effects may be obtained if highly asymmetric
values of y (relative to yM, and yT„respectively) are
chosen.

The results obtained for the Mo/Ta superlattice are
shown in Fig. 2. The three values of y are (1)
y =yM, —0. 1 eV corresponding to a weak interface in-
teraction; (2) y=yT, +0. 1 eV corresponding to a strong
interface coupling; and (3) y=(yM, +yT, )/2, an arith-
metic average. In the first two situations, small subband
shifts occur (upwards and downwards). The subband
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FIG. 2. Bulk electronic bands of a Mo/Ta superlattice with different values of the couphng parameter y (as depicted on the
figures).

widths increase as y increases, thus reinforcing the super-
lattice character of the structure. This results in a more
significant dispersion of the subbands. Therefore, the
strength of the shifting of the subbands decreases as the
metal's slabs become thicker.

0.15

a O.O04

Q.QS'
0 01

B. (k„k~~=0) representation

Figure 3 illustrates the dependence of the superlattice
subbands dispersion on the slab thickness. The small
squares indicate the electronic-surface-states's positions
in association with the metal (molybdenum, full; tan-
talum, empty) at the superlattice's surface. The numbers
near these surface-state levels give the decay factor t (E, )

IEq. (35)j of the corresponding wave function. Five
different thicknesses have been studied here (L

&
=L2 =2,

3, 4, 5, and 6).
As the thickness of the slabs increases, the Brillouin

zone is reduced. This produces a folding of the electronic
bands and an opening of gaps in which surface states may
exis .t Concerning the electronic surface states in the

allminigaps, it can be noted that less localized states (sma

~
t (E )

~
) are close to the large-width subbands, and thatS

very localized states are situated near very Hat bulk sub-
bands. In fact, the Hat bands are derived from the metal
at the superlattice's surface, but the others are the result
of the overlapping of the two metals's bulk bands. Con-
sequently, the associated surface states decay slowly in-
side the bulk. This result is even more pronounced when
the slab thicknesses are increased.

The calculation of the local density of states at the met-
al surface and at the interface for the Mo/Ta superlattice
will now be presented. In the case of the Mo/Ta super-
lattice, this calculation provides complementary informa-
tion concerning the interface inhuence on the
superlattice's electronic structure. The following is a
summary of these calculations.

o.44 + 0.04
a 0.14 0.1'f

C. The local density of states

-2

0

r 0.74

0.88
r Q55

-0.49

0. Q.71

~ o 0.87

0-84
0.86

In general, the LDOS of a system is derived from the
imaginary part of its response-function trace. In this
study, the LDOS at the surface plane of one metal will be
calculated, followed by the calculation of the interface
LDOS in the case of Mo/Ta superlattice.
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FIG. 3. Dispersion of the bulk bands at the center of the re-

duced bidimensional Brillouin zone (k~~ =0) in function of k, for
several film widths; Ll =L2=L varies here from 2 to 6: (a}
L =2; (b) L =3; {c)L =4; (d) L =5; (e) L =6. y =0.542 eV; the

other parameters are given in Table I. ~ corresponds to Mo at
the surface and to Ta at the surface.

1 The metal-st4rf. ace LDOS

In Eq. (37), the sum over the domain of the two-

dimensional Brillouin zone is calculated with the help of
the s ecial points method. In Fig. 4, the LDOS com-e sp
puted at the surface plane for molybdenum and tanta u
surfaces is plotted. EF is taken as the origin of the ener-

gies and, because the occupation number of the molybde-
num Z =0.5, the associated midband energy Eo coin-
cides with the Fermi level. Both the molybdenum and
tantalum curves show a maximum density of states for
energies respectively equal to the associated Mo- or Ta-
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FIG. 4. LDOS at the Mo ( ———) or Ta ( ) surface of
the corresponding crystal. The origin in energy is taken at the
Fermi energy E+. The scale of the density of states is in arbi-
trary units. The parameters are given in Table I.

FIG. 5. LDOS at an interfacial atomic layer made of Mo
( —.—) or Ta ( ) in a Mo/Ta superlattice. The scale of
density of states is in arbitrary units. L =L

&
=L2 =2.

like atomic levels. The d band of molybdenum is half
filled, while that of the tantalum contains three electrons,
thus resulting in a higher density for molybdenum. The
di8'erent shape anomalies present on both curves are due
to the discrete nature of the summation over the Bril-
louin zone and, therefore, have no physical meaning.

1.0 ~

O.S .

0.8.

2. The interface LDOS of the Mo/Ta superlattice

At this point, the shape of the interface LDOS and its
evolution with the thickness and the interface coupling
will be examined. In Fig. 5, the interface LDOS of the
Mo/Ta superlattice is plotted as a function of the energy
normalized to yM, . The dashed line represents the tan-
talum plane at the interface, while the solid line
represents the molybdenum plane. This figure corre-
sponds to two-atomic-plane-thick films (L

&
=L2 =2).

These plots have been obtained by taking the arithmet-
ic mean of the two bulk values of the interaction parame-
ters across the interface. The plots have the same shape,
but the energy shifts are at higher values for the tantalum
(lower for the molybdenum) interface plane. This agrees
with the previous idea comparing the superlattice
subbands's nature with the nature of the metals.

In a previous study, ' the effect of the interface cou-
pling has been examined by analyzing the LDOS where
two sharp peaks, symmetrical with respect to the center
of the LDOS, appear. In order to assess their findings,
the authors of Ref. 21 considered the limit case of a very
strong intermetallic coupling. This presents the advan-

0.7.

.).:
&os - f

~ 0.5 .

th0O.i ~

~

T

0.2 -:.i
::f

o.i;f
(

o 'I
-2 2

El +Mo

FIG. 6. LDOS at an interfacial Mo atomic plane of a Mo/Ta
superlattice for two values of the interslab coupling parameters:
y=0. 542 eV ( —~ —); y'=0. 683 eV (... ); L =Ll =L2=2. The
scale of density of states is in arbitrary units.
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0.05-

0.0l-

enhance the interface states's features.
It can be seen that the results of these two cases agree

with those of other calculations. ' This definitely estab-
lishes the local rather than superlattice-interfacial nature
of the states. The relatively strong electronic interface
coupling y significantly extends the range of allowed
states at the interface. These states are confined within
the interface layer, but propagate parallel to the inter-
face. ' They thus have a two-dimensional nature. In
general, it seems that interface-state formation would be
undesirable from the point of view of improving super-
conducting properties.

VI. CONCLUSION

0.01
fl,

0-2 6

Ei&)
10 j2

FIG. 7. Interfacial LDOS in a superlattice made of the same
metal. This situation may simulate a stacking fault in the super-
lattice. y& =1 eV; E, =6 eV; y2=1; E& =6; y =2;
L

&

=L2 =L =5. The scale of density of states is in arbitrary
units.

tage of amplifying the effect rather than considering a
real physical situation. It has thus been shown that such
states do indeed exist for the case of two semi-infinite
metal layers.

In this study, the effect of the interface coupling y is
also considered in two different cases. In the first one
(Fig. 6), physically reasonable values of y are used. The
second (Fig. 7) considers strong values of y in order to

In this paper, the electronic properties of bimetallic su-
perlattices have been studied with the help of the
interface-response-function theory. The one-band model,
which has been used to describe transition-metal elec-
tronic properties, has the following approximations: (1)
all hopping integrals, except for the nearest-neighbor
sites, are assumed to be zero; (2) the magnetic effects in
transition metals are neglected; (3) the semi-infinite met-
als from which the superlattice is constructed have no
electronic surface states.

The simplicity of this model enables us to derive, in a
closed form, the analytic quantities from which the bulk,
surface, and interface phenomena are studied. The appli-
cation to the Mo/Ta superlattice shows that the periodi-
city along the growth axis produces a folding of the elec-
tronic bands in the associated reduced Brillouin zone,
and also, an opening of additional gaps in which surface
states may exist. The energy position and the degree of
localization of these surface states depend on layer thick-
ness and on the nature of the metallic slab at the
superlattice's surface. The dispersion of the electronic
subbands depends on the interface coupling.
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