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Working in the Hartree-Fock approximation, we calculate the ground-state energy of different states

of the two-dimensional electron gas in a double-quantum-well system as a function of the separation of
the wells. Our calculation takes tunneling between the wells as well as the finite thicknesses of the wells

into account. In the absence of interlayer hopping the ground state at small layer separations has a
spontaneously broken symmetry in which hopping matrix elements have nonzero expectation values.

We find that, as the separation of the wells is increased to some critical distance d„ the Hartree-Fock
ground state breaks translational symmetry and the hopping order parameters rapidly diminish.

I. INTRODUCTION

A two-dimensional electron gas (2DEG) exhibits a
variety of phenomena when subjected to a strong perpen-
dicular magnetic field. The integral' and fractional
quantum Hall effects are observed at integer values of the
filling factor v and at some specific fractional values of v.
Below some critical filling factor of order v=0.2, the
electron gas is expected to condense into a Wigner crys-
tal.

Recent advances in material-growth technology allow
the fabrication of multiple two-dimensional electron lay-
ers in close proximity. This introduces new degrees of
freedom associated with the third dimension. The sim-
plest of these structures is the double-quantum-well sys-
tem (DQWS) in which two interacting electron-electron
or electron-hole layers are separated by a distance d. It is
particularly interesting to study the evolution of the
ground state of such a system, as the well separation is
varied, since a variety of new phases are then possible. In
particular, it has been predicted that the electron-
electron interaction among the two layers of the DQWS
will lead to fractional quantum Hall states with even
denominators ' and to increased stability of the Wigner
crystal state.

For a pair of identical quantum wells with interwell
tunneling, the symmetric-to-antisymmetric gap hsAs can
be controlled experimentally and is usually much smaller
than the Landau-level spacing. In the strong-field limit,
hsAs is typically of the order of the Coulomb interaction.
When Coulomb effects are neglected in this limit, the ex-
citation gap at odd-integer filling factors is hsAs and re-
sults in a quantum Hall state. It was shown theoretically

that when Coulomb interaction is added to the picture,
the Coulombic gain in intralayer interactions as the well
separation is increased can exceed costs in hopping ener-

gy and interlayer interaction energy, leading to a collapse
of the excitation gap, which results in the disappearance
of the quantum Hall effect. This was observed experi-
mentally" at filling factors v=1, 3. The collapse of the
SAS gap is also reflected in a vanishing energy for a col-
lective excitation of the uniform state of the DQWS at
some critical separation d, at momentum vector q, . '

This softening suggests that the 2DEG in the DQWS be-
comes unstable against the formation of some kind of
charge-density-wave (CDW) state, or even a Wigner-
crystal (WC) state. (As we discuss below, these states of
broken translational symmetry may be preempted by
strongly correlated fluid states in which translational in-
variance is restored by quantum fluctuations. )

In fact, because Coulomb interactions can lead to mix-
ing of the electronic states of the two wells, a more com-
plex kind of CDW or WC state is possible. For a DQWS
consisting of spatially separated electron and hole layers,
it was shown that, above some critical separation, the
new ground state contains, besides the density rnodula-
tion of the CDW state, a Bose condensate of electron-
hole pairs at q =0 as well as at the wave vectors of the
CDW state. This novel kind of correlated state was
called an excitonic charge-density-wave state. In the
strong-magnetic-field limit, electron-electron systems can
be related to electron-hole systems by making a particle-
hole transformation in one of the two layers. ' The ex-
citonic order of electron-hole systems corresponds in
electron-electron systems to order in which electrons
tend to exist in a particular linear combination of the two
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isolated-well single-particle states even when there is no
hopping between the wells. We will refer to states with
this type of order as coherent states. If we make a spin- —,

'

analogy for the well degree of freedom as in Ref. 7, where
states localized in left and right layers are associated with
eigenstates of a Pauli spin operators (for definiteness say
o „)with eigenvalues +1, respectively, the Hamiltonian of
the system can be shown to be invariant under rotations
about the x axis in spin space. As we discuss in more de-
tail below, electrostatics favor a ground state with S"'=0
(equal numbers of electrons in the two layers), while ex-
change tends to favor spin polarization in the y-z plane.
In this language, the broken symmetry is seen to be a
U(1) symmetry, corresponding to the choice of orienta-
tion in the y-z plane for the total spin.

In this paper, we investigate the nature of the ground
state of the electron-electron DQWS above the critical
separation where CDW and Wigner-crystal states are ex-
pected to occur. We calculate, in the Hartree-Fock ap-
proximation, the energy of di6'erent possible nonuniform
states, specifically including CDW, WC, and coherent
states. Our method for calculating the energy of the crys-
tal states is based on a numerical technique developed in
Ref. 13, which is valid in the strong-magnetic-field limit.
We include in our calculation the tunneling of electrons
between the two wells and also the thickness of the wells.
We show that, above some critical separation d, =1.21,
the Hartree-Fock ground state of the DQWS breaks
translational symmetry in forming a coherent WC state
consisting of two shifted square lattices. The coherent
character of this state disappears quickly, however, as the
separation is increased, and, at larger separation, the
ground-state evolves into two shifted square Wigner lat-
tices with no coherent character.

This paper is organized as follows. In Sec. II we de-
scribe the approximations used to describe the DQWS
and derive the Hartree-Fock Hamiltonian of the 2DEG
in the strong-field limit. In Sec. III, we derive the equa-
tion of motion of the one-particle Green's function from
which we extract the ground-state densities (n(q)).
These densities can be considered as the order parameters
for the different possible states that we define in Sec. IV.
We present our numerical results in Sec. V and conclude
in Sec. VI.

P„,(r)= e' ~~' P„(x —X)Z, (z),

where P„(x) are the one-dimensional harmonic-oscillator
eigenstates, 1 = (Pic /eBO )

'~ is the Larmor radius, and,
for a finite system, the allowed values of the quantum
number X are separated by 2~l /L . The energy eigen-
values of the Landau levels n are given by
e„=(n + —,

' )fico„where co, = eBO/rn *c (m * is the effective
mass of the electrons) and are independent of X. The de-
generacy of each Landau level is thus given by
g =S/2vrl, where S is the area of the two-dimensional
electron gas in each well. We define the filling factor of
the entire DQWS as v=E/g, where E is the total number
of particles in both wells. (We assume that the two wells
are equally filled. ) Finally, Z (z) (j =1 or 2 for the well

to the left or right of z =0) is the wave function of the
electrons in the direction perpendicular to the plane of
the wells and will be defined below.

In order to get a manageable problem, we make the
usual approximation of keeping only one electronic
state in each well. In the presence of tunneling, these two
states mix into symmetric and antisymmetric combina-
tions separated by an energy gap AsAs. In the strong-field
limit, this energy gap is much smaller than the Zeeman
energy, and for filling factor v + 2, the ground state is as-
sumed to be fully spin polarized. (We will also consider,
later on, the case v=3 in order to compare our results
with those of Ref. 11. We will then comment more on
the generalization of our formalism to that case. ) In the
strong-field limit, Ace, &&bsAs, so that we can also make
the lowest-Landau-level approximation (LLLA) of keep-
ing only the n =0 Landau level. With these approxima-
tions, the density operator can be written as

n(r, z) = g gP'(r)Px (r)Z'(z)Z, (z)cx cx ' .
X,X' j,j'

It is convenient to define the operator

—( i /2) q„(X+X')

X,X' X,X —q„1

so that the Fourier transform of the density operator can
be written as

II. HARTREE-FOCK HAMILTONIAN
OF THE 2DEG IN THE DQWS

n(q, z)=gee ~ ' Z'(z)ZJ'(z)p, j.,(q) . (4)

The system that we consider in this paper consists of
two quantum wells of equal width b separated by a dis-
tance d measured from the center of one well to the
center of the other. Two neutralizing uniform positive
backgrounds are located at distance s from the center of
each well. In the experiment of Ref. 11, where the disap-
pearance of some quantum Hall plateaus are observed,
b =139 A, s =600 A, and d —b takes the values 28, 40,
and 51 A.

A magnetic field B=—Boz is applied in the direction
perpendicular to the wells. In the Landau gauge, the
eigenstates of the kinetic-energy operator have the form

The operator p,"(q) obeys, in the LLLA, the commuta-
tion relation

g I p;, (q»pkt(q') l =&,kp i(q+q')e'""' ""
—i(qXq')i /2

where we use the two-dimensional cross product as a
short form for q X q' =—q~ q~

—
q~q~.

Making the Hartree-Fock pairing of the electron
operators in the Hamiltonian of the two-dimensional
electron gas, we obtain the result
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H =ggepjj(0) —gt [p,z(0)+p2, (0)]
J

2

+g
I g gl H.ijkl(q) XIkj (q)]

ijkl q

X (P,"(—q) )Pkl(q (6)

V&(q)—=X;;;;(q)=f d(q'l)JO(qq'l )e ~ ' y(q', b),

I /2-
V, (q)—:H;;. .(q)= —e ~ ' / y(q, b, d) (iWj),

q

(12)

and

H jk! ~
8 I;jkl(q),

2m.e I /eo

(q) = e IIj' & /&e —IqXq'I I (q )
~&p

I'jk 2 (2 )
ijkl

where

2 8
(q) = dz dz'e loll~

—~'IZ I'(z)
Ijk I

p
/ q

i

Xzj(z}zk (z'}ZI(z') .

The HFA has been studied extensively for the case of a
WC in a single quantum well. ' ' At rational filling fac-
tors, it is possible to block diagonalize the HF Hamiltoni-
an into blocks of finite dimension do, where do is propor-
tional to the number of subbands at the filling factor con-
sidered. ' The diagonalization of these blocks is then
performed numerically. If, as is the case here, we are
only interested in computing the order parameters
(p; (q) ), a simpler numerical approach described in Ref.
13 can be employed. In this paper, we generalize this
simpler approach to the case of the DQWS.

In principle, one must calculate the wave function
Zj(z) by taking into account the tunneling as well as the
finite width of the wells. Since in this paper we work in
a single-well basis instead of in the basis of the entire
DQWS, we assume that the effect of the finite width of
the wells approximated by taking the simple form

where ep is the dielectric function of the host semicon-
ductor, t is the tunneling parameter (which is an implicit
function of the well separation to be defined later), and e
is the energy of the noninteracting state defined in Eq. (1).

The usual HFA for the homogeneous electron gas is
obtained by simply setting all (p;j(q) ) =0 for qAO in Eq.
(6}. The quantities (p;j(q) ) can in fact be interpreted as
the "order parameters" of the nonhomogeneous state and
will be discussed in Sec. IV.

The effective Hartree (H) and Fock (X) interactions in
Eq. (6) are defined by

Vz(q)—=X,,jj(q)= I d(q'l)JO(qq'1 )e 'j ' / y(q', b, d)
p

(iAj), (14)

where Jp is a Bessel function of the first kind and we have
defined the form factors

y(q, b)= — (1—e ' ),2 2 b

bq b2q2

y(q, b, d) = sinh e
4 . 2 qb

b 2q 2

(15)

(16)

O

I

1.0

& 0.0
th
C0
U0

C

1\
1

t

t
\

\

\

- (o)

V,

d=tf
b=a

Vq

Va —V

1,0 I I ~ I ~ I I I I f ~ I I I I I I I I / I I I I I I I I I
/

~ I I I I I I I I

0 1 2 3 4
t/21/2

O
4Q

Ol

1.0

V,

d =2t'
b=a

Vd

We may then calculate the tunneling parameter t using
an effective-mass approximation (see Sec. V). The limit of
strictly two-dimensional electron layers can be recovered
by letting b~0: y(q, b)~1 and y(q, b, d)~e 'j . In
Eqs. (11)—(14), V, and V& are the direct (Hartree) and
exchange (Fock) intrawell Coulomb interactions, while

V, and Vd are the direct and exchange interwell Coulomb
interactions. These interactions are plotted in Fig. 1.

Adding to the Hamiltonian of Eq. (6) the interaction of
the electrons with the positive homogeneous background,
we get finally

for ~z+d/2~ ~b/2Z(z = Vb'
J

0 otherwise,
(10) os

C0
CP
OI
C - (b)

Vo-Vt

which has the merit of simplifying considerably the cal-
culation of the effective Hartree-Fock interactions. The
only nonzero elements are given by

0 &
I I I I I ~ I I I t ~ I ~

0 1 2

qt/~'"
3 4

V, (q)=H;;;;(q)= —e ~ ' / y(q, b),
FIG. 1. Effective Hartree-Fock interactions V, —V&, V„Vd

as a function of the wave vector q at well separations (a) d =11
and (b) d =21.
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where

g g V;, (q)p;, (q),
0 q ij

H =gee'p&i (0)—gt [p,2(0)+pi i(0) ]

(17)

& p;;(q=0) &
=v/2, (27)

where I is a unit matrix in layer indices, o. is a Pauli ma-
trix, and co„ is a fermionic Matsubara frequency. Equa-
tions (25) and (26), together with the total-particle-
number constraint

e vs
E =E+

col 1

V„(q)= V, (q)&p„( —q) &
—V, (q)&p„( —q) &

+ V, (q)&p»( —q) &,

V(2(q) = —Vd(q) & p2i(
—q) & .

(18)

(19)

(20)

Note that e' contains the shift of subband energies as a
result of the electrostatic environment of the DQWS.
This finite shift results from a cancellation between the
diverging direct interactions in Eqs. (11) and (13) and the
potential from the neutralizing positive backgrounds.
The remaining corrections due to the finite width of the
electron layers may be incorporated by setting

constitute a set of coupled self-consistent equations for
the order parameters. These equations are very general
and can, in principle, be solved at finite temperature. In
this paper, however, we will only be concerned with
zero-temperature solutions.

Since we are interested in CDW and WC solutions of
the HF equation of motion, we allow for different stack-
ing possibilities of the two interacting CDW or WC
states. We seek solutions where the charge density in one
layer is rigidly displaced with respect to the charge densi-

ty in the other layer. If we take the origin of the coordi-
nates (x,y) to be located at an inversion center in well 1,
we have the relations &pii(r)&=&p»( —r)& and

&p»(r+a) &
= &p»(r) &, where a is the vector by which

the CDW or WC in well 2 is shifted with respect to the
CDW or WC in well 1. In Fourier space, we have

V, (0)—:—,b

3l '

V, (0)=0 .

(21)

(22) and

&p„(—q) & =&p„(q) & (28)

V22 and V2, are obtained by interchanging the indices 1

and 2 in Eqs. (19) and (20).

&p„(q)&=e'q'&p„(q)& . (29)

From the definition of & p, z(q) &, we also have the relation

III. EQUATION OF MOTION FOR 6 ( G, i to„)
&p„(q)&=&p„(—q)&* . (30)

G; (X,X', r)= —.
& Tc,~(r)c «(0) &, . (23)

We now derive the equation of motion of the single-
particle Green's function From the equation of motion for the operators p;~. (q, r),

we get two more relations:

which is defined in such a way that its Fourier transform
—(i/2)q &X+X')

G; (q, r)=g ' g G; (X,X', r)e ' 5
X,X' V

(24)

&p, (
—q)&=e ' '&p„(q)&,

and, if t%0,

&p„(o)&=&p„(0)& .

(31)

(32)

&p,,(q)&=G,, (q, =0 ) . (25)

is related to the order parameters & p; (q) & by the relation If t =0, & pi2(0) & is in general a complex number that we

write as

& p, (0) &
=

I & p„(0) & le'~ . (33)

Using the symmetry relations derived above and
redefining

V,, (q) =e+'q' '-V,,(q),

G,,(q) —=e 'q'~
G;, (q),

&p;, (q)&=—.-' "&p„(q)&,

(i Situ„—e'+ P )I5 + t o „5 (34)

Using the Hamiltonian of Eq. (17) and the Heisenberg
equation of motion fiB IBr( ) = [H pN, ( ) ], —
where p is the chemical potential and X the particle-
number operator, we obtain for the equation of motion of
the single-particle matrix Green's function

e'q ' V(q' —q) G(q', to„)=Iiri5q 0,
Eo

(26)
Eq. (26) simplifies to a set of two coupled equations given

by

(ific0„—e+p)G»(q, co„)+tG2, (q, t0„)—
2

X""'"[V»(q—q')G»(q' ~. )+ V~&(q —q')G21(q '~ )] ~5,,0
col

(35)



46 BROKEN-SYMMETRY GROUND STATES FOR THE TWO-. . . 10 243

and

(i%co„—e+p)G„(q, co„)+tG„(q,co„)—
2

Xe""'"[V~i(q—q'}G»(q' ~.}+V»(q —q')G~i(q' ~.}]=o
E'p

(36)

where

V„(q)=[V,(q) —V (q)+ ' 'V, (q)](p„(—q)),
v»(q)= —v„(q)&p»( —q) & .

In order to solve Eqs. (35) and (36) numerically, we define the "vector"

[Gl1(qi ~.»G21(ql } Gl1(q2 G21 q2 ~ ' ' ' ' G1 1 qN ~ ) G21 qlV

(37)

(38}

(39)

where N is the number of order parameters taken into consideration (q&
——0) and B is the unit vector (with 2N elements),

B:—(1,0,0,0, . . . , 0,0} .

Defining now the Hermitian matrix
r

(40)

tsj, +—, +
2

'
. V'„(q, —

q, ) for j odd and i odd
iq,. Xq. /2

@pl Vq&(q;
—

q, ) for j even and i odd

2 . „&2 V2, (q; —qj} for j odd and i even

V~~(q; —qj) for j even and i even

(41)

we have, in an obvious matrix notation,

[(i%co„e+p)I —F]G(a)„)=—AB . (42)

This matrix equation can be solved by making the unitary
transformation F= UDU~, where UU =I and D is the
diagonal matrix containing the eigenvalues cok of F. Fol-
lowing Ref. 13, we have finally for the order parameters
(p, ), i =1,2, . . . , 2N [defined as in Eq. (39}]at T =0 K,

It is easy to show that, at T=O K, we have, for the
nonhomogeneous states, the sum rule

gl&p;&I'=&p, & . (45)

This sum rule is also valid in the homogeneous states at
integer filling factors.

max

&P &= X 'kU1k
k=1

(43)
IV. BROKEN-SYMMETRY GROUND STATES

IN THE HFA

(p, &=v/2 . (44)

where k,„can be obtained from the total-particle-
number constraint

Using the Hamiltonian of Eq. (17} and the symmetry
relations derived in the preceding section, it is easy to
show that the ground-state energy per electron of the
two-dimensional electron gas in the DQWS is given by

Vb(0)v
E =Ep-

epl 4
t (p, (0) ) + t (p, (0) ) +

i
Vd(0) I (p, (0) & I'

V
21 l d

1 e+— g [[v. (q) —vb(q)+cos(q a) v, (q)] I & p~~(q) & I' —vd(q) I & p2~(q) & I'],
v apl ~p

(46)

where we have defined

e vs vb2

E'pl 2l 12l
(47}

Notice that this energy is (as expected from the analogy
with the spin- —, system made in the Introduction), in-

dependent of the phase P of the order parameter (p,2(0) )
in the absence of tunneling. We discuss the consequences
of this degeneracy in the next section.

The HF equation of motion given by Eq. (42) has a
number of different solutions corresponding to different
states of the electron gas in the DQWS. Each one of
these solutions is characterized by a different set of order
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V. NUMERICAL RESULTS

We now discuss our numerical results for the different
states introduced in Sec. IV. For this discussion, we mea-
sure energies with respect to Eo, which is independent of
the separation between layers and independent of the
state formed by the electrons.

The US is a trivial case. The only nonzero order pa-
rameter is given by (p»(0)) =v/2, and the correspond-
ing energy is independent of d. This solution corresponds
to uncorrelated half-filled Landau levels in each well.

It is clear, from Eq. (46) and Fig. 1, that the UCS is
lower in energy than the US even in the absence of tun-
neling. One can solve Eqs. (17) and (18) analytically, at
filling factors v=1,2, and find that for t&0,

(p»(0) ) =v/2,

sgn[t + Vz(0)(p, z(0) ) ] if v= 1

(p]p(0)) = '0 (48)

while for t =0,

parameters (pj (q) ) . As we see from Eq. (46), the
ground-state energy can be expressed solely in terms of
these quantities. Moreover, it is also possible to show
that their knowledge is sufficient to calculate the response
functions of this system.

' To find the HF ground state
we have to find the solution with minimum energy. In
what follows we consider a limited number of physically
interesting solutions and compare their energies. These
solutions are the following:

(a) Uniform state (US): (p, ~(0))%0; in this solution
translational symmetry is not broken and we do not allow
any interwell coherence.

(b) Uniform coherent state (UCS): (p~~(0)),
(p&2(0))WO; in this case translational invariance is not
broken but we do allow interwell coherence, which, in the
absence of interwell tunneling, breaks a U(1) symmetry
of the Hamiltonian.

(c) Unidirectional charge-density-wave state
(UCDWS): (p&&(nGO))WO, n =0,+1,+2, . . . , in this
case we break translational symmetry in one direction
only but do not allow interwell coherence.

(d) Unidirectional coherent CDW state (UCCDWS):
(p&~(nGo)) (pi2("Go))%0, n =0,+1,+2, . . . ; now
translational symmetry is broken in one direction and in-
terwell coherence is also allowed.

(e) Wigner-crystal state (WCS) [(p&&(G)) ]%0; in this
state translational symmetry is broken in both directions.
The lowest energy state of this type shares the transla-
tional symmetry of the lattice state of point electrons.

(f) Coherent Wigner-crystal state (CWCS)

[ (p, ~(G) ) ], [ (p&z(G) ) ]%0; in this state interwell coher-
ence is allowed in addition to the broken symmetry of the
Wigner-crystal state.

For the Wigner-crystal solutions, [G] is a set of
reciprocal-lattice vectors that defines a two-dimensional
lattice with a period containing one electron.

(p))(0) ) =v/2,

e'~/2 if v=1
(P]P( ) ) 0 f (49)

These solutions are independent of the value of d. Equa-
tion (49) is a consequence of the degeneracy of the Hamil-
tonian with respect to the phase P of the order parame-
ter. In the following numerical results, we set this phase
to be zero and also assume that (p&2(0) ) « t.

At v=1, the Landau level of symmetric states is full.
This state is energetically favored over the US because
when all electrons are in the symmetric combination, the
Pauli exclusion principle creates an exchange hole in both
interlayer and intralayer correlation functions. When t
equals zero, the energy of the UCS is independent of the
phase relationship between electrons in the two wells as
long as it is fixed; for example, the state where all elec-
trons are found in the antisymmetric combination of the
isolated well states has precisely the same energy. This
degeneracy is associated with the broken U(1) symmetry
discussed earlier. For d equal to zero, this Hartree-Fock
ground state at v=1 is expected to be identical to the ex-

act ground state numerical exact diagonalization stud-

ies suggest that at v = 1 the UCS is a good approximation
to the exact ground state for d/l & —1. In what follows

we discuss the Hartree-Fock ground state at larger values
of d /l. We remark that at v= 1,2 a single-particle (tun-

neling) gap between symmetric and an antisymmetric
states exists and is given by

e
~sp,s=2 r+

l
I'd(0)l(Pig(0)) l

col
(50)

which is a decreasing function of the well separation.
We have performed a large-scale numerical analysis of

Eqs. (42)—(44) in order to find the order parameters

(p„(q) ), (p, z(q) ) in the different inhomogeneous states.
For the WCS and CWCS, we find that accurately conver-
gent results are obtained by keeping approximately 14
shells of reciprocal-lattice vectors. For the UCDWS or
UCCDWS, excellent convergence is obtained with

n,„=10.
In Fig. 2(a), the energies of the UCS, UCDWS, and

UCCDWS are compared for different values of d at filling

factor v=1. The corresponding behavior of the order pa-
rameters is shown in Fig. 2(b), together with the Hartree
and Fock contributions to the total energy. (Note that
the Hartree energy vanishes in the uniform state, since it
is canceled by the energy of the positive backgrounds. )

We have assumed, for simplicity, b =t =0 and have
chosen GO=1.2/I for reasons discussed below. Note that
in the absence of interlayer coherence, the energy is al-

ways lowered in the Hartree-Fock approximation by
breaking translational invariance. [The energy per elec-
tron of the US is ——0.314(e /col), independent of the
layer separation. ] However, more energy is gained by
breaking the U(l) symmetry, and, as we have discussed
above, the Hartree-Fock ground state at small layer sepa-
rations is the UCS. The collective excitations of the UCS
have been evaluated by Fertig in the time-dependent
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Hartree-Fock approximation and by MacDonald, Platz-
man, and Boebinger in an approximation that reduces to
the time-dependent-Hartree-Fock approximation at v= 1.
(For a more-thorough discussion of the consequences of
symmetry breaking at t =0 for the collective excitation
spectrum, see Wen and Zee. ) For d/t & —1.2, the col-
lective mode energies vanish for q-Go, this instability
implies that the UCS becomes unstable in the Hartree-
Fock approximation for d/1 ) —1.2. We see this explic-
itly comparing Figs. 2(a} and 2(b); as d/1 crosses 1.2, the
nonzero momentum order parameters become Gnite and
the UCCDWS energy falls below that of the UCS. The
driving energy for this phase transition comes from the
difference between intrawell interactions and interwell in-
teractions, which increases with the layer separations. In
the UCS, intrawell and interwell correlations must be
identical. At larger layer separations it becomes more
important to improve intrawell correlations, and this can
be accomplished only by allowing the phase relationship
between electrons in different wells to fluctuate. Thus we
see in Fig. 2(b) that the interlayer order parameter gets
smaller as the intralayer nonzero-momentum order pa-
rameter increases. The UCDWS that we are considering
here is a state in which the CDW's in the two wells are
shifted by a =A, /2=@/Go with respect to one another.
As for the WCS below, this is the configuration of lowest
energy. The critical distance at which the UCS becomes
unstable against the formation of the UCCDWS is indi-
cated in Fig. 2(b) by the vertical dashed lines. Similar re-
sults were obtained by Chen and Quinn for the electron-
hole DQWS.

The density of states in the inhomogeneous states can
be calculated using the relation

g(~)=v 'g~ U, k ~
5(~—

coq) .
k

(51)

For the UCCDWS, the result is shown in Fig. 2(c) and
consists of two typical one-dimensional DOS's centered
at the energies of the symmetric and antisymmetric
states. The separation in energy between these two states
is proportional to the order parameter (p,z(0)), and
their width is proportional to (p»(Go)). Notice that for
small separation between the wells, there is a gap in the
single-particle density of states for the coherent phases,
even in the absence of tunneling (i.e., t =0), due to the
fact that the order parameter (p&z(0)) is not zero. The
gap is a consequence of the coherent character of these
states. (Note that there will be linearly dispersing gapless
collective modes in these states. ' ' } As the well separa-
tion increases, this order parameter decreases while
(p»(GO) ) increases, so that the SAS gap disappears and
the bandwidth of the one-dimensional DOS increases. In
the coherent states, the existence of the SAS gap is associ-
ated with the incompressibility of the system, which is at
the root of the quantum Hall effect. In the case of the
UCDWS, there is no gap in the excitation spectrum, so it
is not possible to observe the quantum Hall effect. The
collapse of the SAS gap thus leads to the disappearance
of the quantum Hall effect. For systems modulated in
two directions, such as the WCS, there will be gaps in the
excitation spectrum, but the densities at which they

occur will not be magnetic-field dependent and the quan-
tized Hall conductance will vanish. ' From another
point of view, we can argue that the Wigner-crystal state
is expected to be pinned by impurities, so that the Hall
conductivity will vanish. These systems will not exhibit
the quantum Hall effect.

We now consider the Wigner-crystal states. We re-
strict ourselves to the hexagonal and square Wigner crys-
tals with one electron per unit cell. In the classical case
of two separated point lattices, the ground-state energy
per particle [corresponding to E Eo —of Eq. (46)] is given

by

2

classical
col

V—a
2

1/2

+g
16m/

1/'2

e
—2~jG)d

Xcos(2n.G a) (52)
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FIG. 3. Static Coulomb energy of two interacting Wigner
crystals as a function of their separation. The energy is calcu-
lated in the classical approximation for the shifted and unshift-

ed configurations (see text) of the square and triangular lattices.

where for a square (triangular) lattice, (=1(&3/2) and
o.=0.777990(0.782 133). Equation (52) is a convergent
expression at large enough values of d. Figure 3 shows
this classical energy for the case where the two lattices
are directly on top of one another ("unshifted") and
where they are "shifted. " (Notice that the two shifted
configurations for the triangular lattice have the same en-

ergy. ) As expected, the shifted lattices have lower energy
than the unshifted one. At small values of d, the shifted
square lattice has lower energy than the shifted triangular
lattice. This situation is reversed at large values of d.
Notice that the classical energy of Eq. (52) includes only
the static Coulomb energy, while the Hartree-Fock ener-

gy includes, to some extent, the zero-point-motion energy
of uncorrelated electrons.
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Figure 4 shows the energy of the square WC for the
shifted and unshifted lattices [the order parameter
(p,2(G) ) is set to zero]. As expected from the classical
calculation, the shifted lattices have lower energy than
the unshifted ones. This is also true for the hexagonal
lattice, and we can thus consider only the shifted case
from now on. The order parameter (p»(G)) changes
appreciably only at small values of d so that the main
change in the energy comes from the interwell Hartree
interaction. This can be traced back to the fact that, at
filling factor v=1, the minimal value of the reciprocal-
lattice vector of the Wigner crystal for the square lattice
corresponds to Gl/&2=1. 17. From Fig. 1, we see that,
at this wave-vector value, the interwell interaction
changes very little with d.

Figure 5 shows the ground-state energy for the (a)
square and (b) triangular lattices at v= 1 and b =t =0.
We now allow, however, for the order parameters
(p,2(q)) to be nonzero. When this is done, the ground
state is again the UCS at small d but becomes nonurii-
form at large d. We see that the interlayer coherence or-
der parameters drop to zero more abruptly once transla-
tional invariance is broken than in the case of the UCDW
and UCCDW states discussed above. In the HFA (Ref.
17) and for a single well, the triangular Wigner lattice has
smaller energy than the square lattice except at filling
v= —,', where the square lattice is slightly lower in energy.
At large d (i.e., in the limit of uncoupled wells), we also

FIG. 5. Ground-state energy of the UCS, WCS, and CWCS
for (a) shifted square lattices and (b) shifted triangular lattices at
b =t =0, v=1.

t =131 9e (53)
0

where d is in A and t is in MeV. In order to express t in
units of e /col in the equation of motion, we take the
dielectric constant @0=12.5 and calculate l using the rela-
tion v=2mnl, where n is the total areal density of elec-
trons in the DQWS. For the three samples studied in
Ref. 11, the interwell separations were given by d& =139

observe this situation in the DQWS, although the square
and triangular lattices are almost degenerate. In any
case, the energy of the crystal state is lower than that of
the UCDWS at large d. When the distance between the
wells decreases, the difference in energy between the
square and hexagonal WC's becomes bigger, and below
some value of d, there is a small region where the
UCCDWS has lower energy than the CWCS. So, in the
absence of tunneling, the ground state of the DQWS in
the Hartree-Fock approximation goes from the UCS at
small d to a UCCDWS at d/l =1.5 to a square CWC
with very weak interlayer coherence at larger value of d.

We now introduce the tunneling in our calculation.
The tunneling parameter t depends, of course, on the dis-
tance between the wells. We have calculated t in the
effective-mass approximation, assuming the width of the
wells to be given by its experimental value, i.e., b =139
A, with a well height of 250 meV. The effective mass
used in 0.067 mo, where mo is the bare electronic mass.
With these parameters, we have found that t can be ap-
proximated by the analytic expression
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A +40 A, d2 = 139 A + 51 A, d3 = 139 A +28 A, and
the densities by n, =3.8X10" cm, n2=3. 9X10"
cm, n3=4. 2X10" cm . In units of the magnetic
length, we thus have d

&
=2.7661, d2 =2.9741, d3 =2.7121

at filling factor v=1, while at v=3, we have d, =1.5971,
d~ =1.7171, d3 =1.5661.

Figure 6(a) shows the evolution of the ground-state en-
ergy with d including interlayer tunneling for the
different states at v= l. In this figure the well thickness is
neglected. It is taken into account, however, in Fig. 6(b).
It is quite clear that there is a region of values of d where
the square CWCS is the ground state and that the main
effect of adding the tunneling is to shift to higher values
of d the critical well separation d, at which the energy of

the CWCS becomes lower than that of the UCS. Another
effect of t is that the interlayer coherence drops more
slowly with separation after translational symmetry is
broken. This is due to the fact that t favors the existence
of the order parameter (p,z(q) ). From Fig. 6(b), we see
that the effect of the thickness of the well is to weaken
the interaction and hence to decrease the ground-state
energy. Apart from a small shift d, to higher values, the
situation in that case is very similar to that of b =0.

In the strong-field limit where the Zeeman energy is
much bigger than the SAS gap (but much smaller than
the cyclotron energy), the formalism developed in this pa-
per can easily be generalized to include the symmetric
and antisymmetric states with spin opposite to the direc-
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tion of the magnetic field. It is thus possible to compute
the ground-state energy at filling factor v=1. Figures
7(a) and 7(b) show the calculated ground-state energies
for the different states considered in Fig. 6 in the case of
v=3 and with b =0 or 139 A. (The zero of energy is
different in this case. ) As we can see, the situation at
v=3 is qualitatively the same as that for v= 1.

The above figures with tunneling were calculated as-
suming an areal density corresponding to that of sample
1 or 2 (we consider that these samples have approximate-
ly the same density). Comparing with Fig. 6(b), we see
that the value of d (in units of I) of these two samples at
v=1 is such that, according to the HFA, they should be
in the CWCS. The QHE plateaus will thus be destroyed
in these samples. For sample 3, Fig. 6(b) must be recalcu-
lated using a different density. We have done this and
found that the ground state of this sample corresponds to
a CWCS with (p&2(0)) =0.49999. For this value of
(p,z(0) ), we expect that the system present a SAS gap in
the excitation spectrum and this is the reason why the
quantum Hall effect is observed in this sample.

Similarly, Fig. 7(b) was calculated for the density cor-
responding to samples 1 and 2 and we recalculated the
ground-state energy for the density of sample 3. At this
filling factor, the coherent inhomogeneous state exists for
a small range of d only. Samples 1 and 3 are located in
the region where the ground state corresponds to the
UCS and thus will exhibit the QHE. On the contrary,
sample 2 is in the ordered phase and will not.

VI. CONCLUSION

Working in the Hartree-Pock approximation, we have
calculated the energy of different broken-symmetry
ground states of the two-dimensional electron gas in a
double-quantum-well system. The transition from homo-
geneous states (where the QHE is possible and interlayer
coherence is maintained) to inhomogeneous states (where
the QHE is not possible and interlayer coherence is lost)
at a critical well separation is consistent with experi-
ments" and with previous theoretical studies. ' Al-
though the study of the transition from the homogeneous
phase to the CDW and WC states is interesting in itself,
we want to be careful in identifying the state of the sys-

tern above the critical separation with the inhomogeneous
states studied in this paper. This inhomogeneity is creat-
ed in order to strengthen the intrawell correlations and at
a cost in interwell correlations. In the Hartree-Fock ap-
proximation studied here, the electronic ground state is a
single Slater determinant and the intrawell correlations
must be static, leading to inhomogeneity. It is our expec-
tation that these inhomogeneous states are likely to be
pre-empted for total filling factors larger than v-0. 5 by
homogeneous states in which the strong intralayer corre-
lations are dynamic. ' Aside from the absence of broken
translational symmetry, we expect the properties of these
ground states to be very similar to those of the Hartree-
Fock ground states. A comparison between these two
types of ground states asks for further studies of the
transport properties of the CWCS in the DQWS. Such
studies are also needed in order to evaluate the stability
of the different possible ground states studied in this pa-
per. One must be aware of the limitations of the HFA
studied here before comparing HF ground states with
more complex homogeneous states. ' For example, in the
case of v=1, the situation for infinitely separated layers
(corresponding to two noninteracting electron gases with
v= —,') is still a subject of controversy; at other filling fac-
tors near v=1, homogeneous states are expected in the
infinite separation limit. Also, some experiments ' sug-
gest the reappearance of a fractional quantum Hall effect
of a different character for the v=1 state at large well
separation d, a phenomenon that clearly cannot be ex-
plained in the context of the HFA as presented here.

Note added. After this work was completed we learned
of some closely related calculations by Chen and Quinn.
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