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Relation between current and density profiles of interacting electronic systems in a magnetic field
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An exact formal relationship between the equilibrium orbital-current and density profiles of a nonuni-

form electronic system in the presence of a magnetic field is derived from current-density-functional
theory. In the local-density approximation we obtain an explicit formula, including exchange and corre-
lation e8ects, for the equilibrium current in terms of the gradient of density. This formula is shown to
reduce to exact asymptotic results in the 1imit of very large magnetic fields or in the linear-response re-

gime. A surprising consequence of our formula is that in three dimensions, the direction of circulation
of the current, relative to the gradient of the density, can have either sign, depending on the local value

of the density. A nonlocal linear relationship between current and density for rapidly varying density

profiles and/or weak magnetic fields is also derived.

I. INTRODUCTION

It is a remarkable fact of quantum mechanics that a
stationary electronic system at thermodynamic equilibri-
um in a magnetic field can support persistent orbital
currents. In classical statistical mechanics the average
equilibrium current vanishes identically at every point in
space, no matter what the potential energy is. This is be-
cause, classically, the distribution of velocities is not
affected by either the potential or the magnetic field. In
quantum mechanics, however, the noncommutativity of
positions and velocities leads to an intertwining of their
distributions, resulting in the appearance of orbital
currents in nonuniform systems. A prime example of
nondissipative orbital currents is provided, of course, by
the Hall current in the quantum Hall effect' at T=O.

The problem of calculating the equilibrium current dis-
tribution in an interacting electronic system subjected
simultaneously to an external magnetic Geld and a nonun-
iform potential is presently receiving a great deal of at-
tention. This problem arises in various different contexts,
for instance: (1) in understanding the distribution of
currents in quantum Hall systems, including the effects of
impurities and edge states; ' (2) in determining the mag-
netic field associated with the formation of certain
nonuniform structures, such as the Wigner crystal in the
two-dimensional electron gas; and (3) in the physics of
mesoscopic systems. In this paper, we limit ourselves to
macroscopic systems, for which the effect of the bound-
ary conditions is negligible.

An important step toward the solution of this problem
is the exact result obtained by Girvin and MacDonald,
which relates the exact orbital current distribution j(r) of

a two-dimensional electron gas to the gradient of its den-
sity n(r):

j(r}= Vn(r) Xz,fi

2m

where z is the unit vector in the direction of the (uniform)
magnetic field. This result holds only when the magnetic
field is so strong that the many-electron wave function
lies entirely within the lowest Landau level. It is in fact a
special case of a powerful identity expressing the one-
particle density matrix in terms of the density. Equation
(1) can be straightforwardly extended to a three-
dimensional (3D) electronic system, provided that the
many-body wave function lies within the lowest Landau
subband. In this case, the density determines completely
the elements of the one-particle density matrix which are
diagonal with respect to the z coordinate, parallel to the
magnetic field. But since the current lies in a plane per-
pendicular to the magnetic field, it can be calculated us-

ing precisely these matrix elements —hence the result (1)
still holds in 3D. (A detailed derivation of this result is
presented in the Appendix. )

The conditions of applicability of Eq. (1) are obviously
very restrictive. However, the existence of a relationship
between orbital current and density independent of the
form of the external potential for a given magnetic field

can be derived rigorously from current-density functional
theory (CDFT). According to this theory, the exact den-

sity and orbital current distributions of an interacting
electronic system in the presence of external scalar and
vector potentials Vo(r) and Ao(r) (B&,=VX Ao} are ob-

tained by minimizing the functional

E[n(r), s(r), j (r)]= T, [n(r), s(r), vp(r)]+E„,[n(r), s(r), v (r)]+EH [n(r)]
2

+ —f d r j (r). Ao(r)+ f d r n(r) Vo(r)+ Ao(r} +g f d r s(r) Bo(r)
C 2mc 2m&

(2)
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j(r)=j (r)+ n(r}Ao(r),
P7lc

and v(r) is the vorticity field defined as

jp(r)v(r)=VX
n(r)

(4)

In addition, the full current density includes a contribu-
tion j,p;„=(geA'/2mc)VXs(r). This is exPlicitly known
in terms of the spin density, and therefore does not re-
quire any further treatment.

The minimization of the energy functional can be car-
ried out in two steps. In a first step, we fix the density
profile and minimize with respect to j (r) and s(r). This
yields the equations

with respect to density, spin density s(r), and canonical
current density jp(r). T„E„„andEpi are the pseudoki-
netic, exchange-correlation, and Hartree energy function-
als, respectively, and g is the magnetic moment Lande g
factor. The physical orbital current density is given by

II. LOCAL RELATIONSHIP
BETWEEN DENSITY AND CURRENT

In this section we consider physical systems in which
the density profile varies slowly on the scale of the mag-
netic length I =(Pic/eBO)'~ . Since I -=252/Bo~ A,
where Bo is expressed in T, we see that even for the larg-
est attainable magnetic fields I remains of the order of

0
several tens of A. Therefore, we are talking of density

0
variations that take place on a scale of hundreds of A.
This length scale is characteristic of many low-density
systems such as doped semiconductors and semimetals,
and can also be realized in artificial microstructures. In
this regime, the local-density approximation to the ener-

gy functional is expected to be valid. The local-density
approximation to the exchange-correlation energy func-
tional in current-density-functional theory has the form

E„,[n(r), v(r), s(r)]=f d r n(r)e„,[n(r), s(r), ~B(r)~] .

and

5F[n(r), s(r), jp(r)] = ——Ao(r),
fijp(r} c

(5a) where e„[n(r),s(r), 8(r)] is the exchange-correlation en-

ergy (per particle) of a uniform electron liquid of density
n(r) and spin density s(r), in a uniform effective magnetic
field

5F[n(r), s(r), jp(r)]
5 ( ) g2 Bo(r) (5b)

B(r)= — v(r)
N1C

e

We have introduced the internal energy functional
F=—T, +E„,+EH. Now, according to the Hohenberg-
Kohn theorem of CDFT, the F functional is universal,
i.e., independent of Vo(r) and Ao(r). Thus, Eqs. (5a) and
(5b) give us an exact formal relationship between orbital
current and density profiles, which depends only on the
magnetic field but not on the scalar potential. Substitut-
ing the solutions jp(r) and s(r) of Eqs. (5) into (2) we ob-
tain an effective functional which must be minimized only
with respect to n, in order to find the actual ground-state
density.

The focus of this paper is on the relationship between
orbital-current and density profiles. We shall provide an
explicit form for this relationship, using the local-density
approximation to the internal energy functional F. We
shall prove that Eqs. (5), in the limit of strong magnetic
field or slowly varying density (that is, when the local-
density approximation is expected to be valid), yield an
expression for the current which differs from Eq. (I) only
by a density and magnetic-field-dependent factor
y(n, 80) This factor . is directly proportional to the
derivative of the chemical potential p of an interacting
uniform electron gas with respect to magnetic field at a
fixed density n, or, equivalently, to the derivative of the
magnetization with respect to density at a fixed magnetic
field. Only in the limit Bo~~, y reduces to 1. In fact,
we shall see that in three-dimensional systems y can have
an either positive or negative sign, depending on the local
value of the density.

which couples only to the orbital degrees of freedom.
The exchange part of the uniform energy has been calcu-
lated by Danz and Glasser. Recently, we have calculat-
ed the correlation part within the random-phase approxi-
mation. ' Thus, the e„, function can be regarded as
known with reasonably good accuracy.

The approximation of the pseudokinetic energy func-
tional T, [n,j,s] is more delicate. For a given local value
of jp we construct a fictitious vector potential A(r),
which produces jz in a uniform electron gas of density n
and spin density s. The fictitious vector potential couples
only to the orbital degrees of freedom (current and densi-
ty); it does not, in particular, produce any additional Zee-
man splitting. Since j(r)=0 everywhere within the uni-
form electron gas, we find

)
inc ~p (r)
e n(r)

The fictitious magnetic field corresponding to the ficti-
tious vector potential is, of course, the vorticity defined in
Eq. (4). Now the pseudo-kinetic-energy functional can be
expressed as

T, [n(r), j (r),s(r)]= f d r n(r)ek[n(r), s(r), ~B(r)~]

——fd r j (r)A(r)

2

fd r n(r)A (r),
2p72C
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where ek[n(r), s(r), ~B(r)~] is the full (gauge-invariant)
kinetic energy (per particle) of the uniform noninteract-
ing electron gas, and the last two terms subtract the part
of the kinetic energy that pertains to the interaction with

the fictitious field A.
Combining Eqs. (7), (8), and (9) we obtain, for the

total-energy functional,

E[n(r), j (r), s(r)]= f d r n(r)e[n(r), s(r), ~B(r)~]+—f d r +EH[n(r)]p

+ f d r n(r)Vo(r)+ f d r s(r) Bo(r),
2mc

(10)

where e=ek+e„, is the total energy of the uniform elec-
tron gas in the fictitious magnetic field. Next, we mini-
mize the functional with respect to s(r) and j~(r) or,
equivalently, since n and Ao are held constant, with
respect to j(r). This leads to the following set of Euler-
Lagrange equations for the orbital current:

j(r) = y[n(r), Bo(r)]Vn(r) Xz,
2m

where

y(n, Bo)—: 1+n [n(r), Bo]
2mc B BE

e Bn BBo

(12)

j(r) = ——VXM(r),C

e
(1 la) 2mc ~P(" Bo)

Ae BBO
(13)

M(r)= —n(r) [n(r), B(r)]z,BE

BB
(1 lb)

where

mc j(r) e f 3, j(r')X(r' —r)
e n(r) c ~r

—r'~

(1 lc)

In these equations, the function e(n, B) is defined to be
the minimum of the previous function e(n, s, B) with
respect to spin density. Notice that the derivative of
e(n, B ) with respect to the fictitious field has to be calcu-
lated at constant Zeeman splitting, as explained above.

Equation (1 la) shows that the current does obey the
continuity equation V j(r) =0 as required. Equation
(1 lb) says that the local magnetization is obtained by tak-
ing the thermodynamic derivative of the local energy
density with respect to the local magnetic field. Finally,
Eq. (1lc) tells us how to compute the effective magnetic
field from the local intensive variables of the system. In
writing Eq. (11c)we have also included (last term) the ad-
ditional magnetic field generated by the currents accord-
ing to Ampere's law of classical electromagnetism. This
term follows from reinterpreting the "external" vector
potential Ao in Eq. (2) as a "screened" vector potential,
which includes the self-consistent contribution of the or-
bital currents according to Ampere's law. Notice that
Eqs. (11) are derived for an arbitrary magnetic field Bo(r),
not necessarily a uniform one. The functional relation-
ship between j and n depends, of course, on the local
value of Bo.

Equations (11) take a considerably simpler form in the
physical regime of slowly varying density described at the
beginning of this section. In this limit, neglecting the
small Ampere's contribution, we can set B(r)=Bo in Eq. —
(1 lb), so that the r dependence of M arises entirely from
the density profile. Taking the curl of M we obtain

and p(n, B) is the chemical potential of the uniform in-
teracting electron liquid, and its partial derivative is tak-
en at constant density and Zeeman splitting. One can
show that including the variation of the Zeeman splitting
with Bo in Eq. (13) amounts to including the spin-current
contribution, discussed after Eq. (4) with a local relation-
ship between spin and density.

Equation (12) is the main result of this paper. It estab-
lishes a local relationship between the orbital current and
the density profile of a nonuniform, interacting electronic
system. In contrast to Eq. (1), which holds only for sys-
tems confined to the lowest Landau level or subband, Eq.
(12) holds for a broader range of densities and magnetic
fields, provided the conditions of applicability of the
local-density approximation are met. In addition, as
shown in the next section, Eq. (12) reduces to Eq. (1) in
the limit of large magnetic field. The validity of Eq. (12)
presupposes the existence of finite thermodynamic
derivatives of the energy of the uniform electron gas with
respect to density and magnetic field. In the case of in-
compressible systems Bp/Bn ~ 00, and one can show that
y ~ oo (see the next section). Thus Eq. (12) is violated for
incompressible systems —for example a noninteracting
two-dimensional electron gas with an integer number of
fully occupied Landau levels. In that case, one can have
a finite current even in the bulk of the system, where the
density gradient is zero. Another restriction to the valid-
ity of Eq. (12) is that it becomes completely inapplicable
in the case of spontaneous orbital currents, i.e., when

Bo =0, but j&0 due to a spontaneous symmetry break-
ing. In this case one may still consider using the local-
density approximation to calculate the current, but it is
then necessary to revert to the full self-consistent Eqs.
(11), with Bo=0.

III. EXACT LIMITING CASES

In this section we prove that Eq. (12) yields the exact
orbital current in several limiting cases.
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(i) Strong uniform magnetic fteld .The chemical poten-
tial of the uniform electron gas in a uniform magnetic
field can be written as

Ado '6 kF

2 2m
+ + (14)

where co, =(eBD/mc) is the classical cyclotron frequency,

kF is the Fermi momentum in the lowest Landau sub-

band, and p„, is the exchange-correlation contribution to
p. In the limit Bo~~ the second and third term be-
come negligible with respect to the first one, which is pro-
portional to Bo. Thus, using Eq. (13) we immediately
verify that y(n, BO)~1, in agreement with the exact re-

sult, Eq. (1).
(ii) Linear respo-nse regime We .start from a uniform

electron gas of density n in a uniform magnetic field Bo.
We apply a small external potential V(r). In the linear-
response approximation, the Fourier transform of the in-
duced density variation is

response regime, to the well-known Widom-Streda formu-
la" for the off-diagonal conductivity in the quantum Hall
effect. To prove this we begin by observing that the gra-
dient of the density in the presence of a slowly varying
potential is given, according to Eq. (15), by

iq 5n(q)=goo(q)E (q), (19)

j(q=O) =c z XE(q=O),
BBo

(20)

which agrees with the Widom-Streda expression for the
nondissipative current in the quantum Hall effect.

where E (q) is a component of the electric field
E= —VV„. The left-hand side of Eq. (19} can be ex-
pressed in terms of the orbital current, according to Eq.
(12). Taking the limit q~0 and combining Eqs. (13) and
(18a) for y(n, BO) and the small-q limit of the density-
density response function, respectively, we obtain

5n(q) =goo(q) V„(q), (15)
IV. CALCULATION OF 7 AND DISCUSSION

where V„(q) is the Fourier transform of the self-

consistent potential, i.e., the external potential plus the
Hartree contribution, and goo(q) is the static screened
density-density response function. ' The induced orbital
current, in the same linear approximation, is given by

5j (q) =y, 0(q) V„(q), (16)

where go 0(q) is the static screened current-density
response function, which vanishes for a=z or for BO=O.
Eliminating V (q) between Eqs. (15) and (16) we obtain
an exact, nonlocal relationship between density and
current:

x.o(q}
5j (q)= ' 5n(q) .

x~q
(17)

In the limit of slowly varying density we can replace
the response functions by their q~0 limit, and we
recover a local relationship. From the definition of
the linear response functions and the fact that
j(r) = —(c/e)VM(r) Xz, it is easy to see that

and

Bn
Xoo(q}

Bp

o(q) ~i (q Xz)—c BM
e Bp

(18a)

(18b}

where M= n(de/dB) (at —constant Zeeman splitting) is
the orbital magnetization. Substituting Eqs. (18} in Eq.
(17), and assuming that Bp/Bn is finite, i.e., that the sys-
tem is not incompressible, we obtain our Eq. (12) for the
current density, with y given by Eq. (13}. On the other
hand, for an incompressible system Bp/On ~00, we ob-
tain goo(q)-q for q~0, and therefore y~ oo, showing
that one can have finite current even when the density
gradient vanishes.

(iii) Widom Streda formula. We c-an also show that our
formula for the current is equivalent, in the linear

In this section we present our calculations of the
density- and magnetic-field-dependent factor y(n, B&),
which determines the orbital current according to Eq.
(12). Naturally, y(n, B&) is divided in two parts: a kinet-
ic contribution yk and an exchange-correlation contribu-
tion y„,. yk can be calculated exactly from the nonin-
teracting part of the chemical potential, i.e., the first two
terms of Eq. (14). In three dimensions, the Fermi
momentum kF in the lowest Landau subband is related to
the density by

1n=
~ gkFtt (kF), (21)

where the sum runs over the occupied Landau subbands,
and k+N, the Fermi momentum in the Nth Landau sub-
band (o =1 for spin up and o =0 for spin down) is given
by

2' co
k = k — N+(1 —o)—FNo F 2

' 1/2

(22)

Using these formulas, we easily obtain

g [k~~ol N(kFttol ) ']-
N, ayk=1 —2

g (kFN l)
N, o

(23)

in three dimensions. The results of the numerical evalua-
tion of y(n, BO) in three dimensions are shown in Fig. l.
The upper panel shows the noninteracting contribution,
calculated according to Eq. (23) for different values of g
corresponding to spinless (g= oo —one spin component
only), nonpolarized (g=O—no Zeeman splitting), and
ideal (g =2) electrons. The first two cases do not differ in
the noninteracting case. They also give the same ex-
change contribution and only slightly differ in correla-
tion. The lower panel shows the exchange and correla-
tion contributions, the latter calculated in the random-
phase approximation for spinless (g = oo) electrons. Two
things are remarkable. First we observe that the nonin-
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FIG. 1. Upper panel: kinetic contribution to y(n, BO), as a
function of noninteracting chemical potential po/cu, . Solid line
represents results for spinless (g = 00) and nonpolarized (g =0)
electrons, while dashed line represents results for spin-polarized
(g=2) electrons. Lower panel: exchange (dashed line) and
correlation (dotted line) contribution to y(n, BO), for spinless
electrons (g= ~). Notice the strong cancellation of exchange
and correlation efFects.

teracting yI, (and hence the full y) exhibits a strong oscil-
latory behavior as a function of density. In brief, yk is
positive when the noninteracting Fermi level is close to
the bottom of a Landau subband; it decreases into nega-
tive values as the Landau subband becomes increasingly
populated, and finally it reverts discontinuously to a
(larger) positive value when the next Landau subband be-
gins to be populated. While the discontinuous jump of
yk at each Landau subband edge crossing is probably an
artifact of the local-density approximation due to the
nondifferentiability of the energy functional at the sub-
band crossings, the change in sign of yk that occurs when
the noninteracting Fermi level is far from band edges is a
genuine and interesting effect. It predicts, for example,
that if we measure the current in the surface region of an
electron-hole droplet' we can find a reversal in the direc-
tion of circulation of the current as we move from the
inner region, where the density is high, to the outer re-
gion, where the density is low. Mathematically it can be
shown that the sign reversal of y is caused by the off-
diagonal matrix elements of the (kinetic) angular momen-
tum operator between states in different Landau sub-
bands. It is, therefore, a subtle and purely quantum-
mechanica1 phenomenon.

Our second observation concerns the role of the
exchange-correlation effects. Far from the band edge
these give a very small contribution not only because they
are individually small, but because they have opposite

I

signs and largely cancel each other in the final result.
Near the Landau subband edges, we find that both ex-
change and correlation contributions have a logarithmic
singularity when the bottom of a subband is approached
from above, but those singularities cancel against each
other and the total exchange-correlation contribution is
finite. From the knowledge of the asymptotic form of the
exchange-correlation energy per electron for barely popu-
lated subbands we obtain the exact form of the limit of
the exchange-correlation contribution to y when the oc-
cupation of the highest subband tends to zero, and find
that it has a sizeable discontinuity at the band edge
shown in the lower panel of Fig. 1. It must be pointed
out that this conclusion has been reached by assuming
that the Landau subband distribution of electrons is the
same as in the noninteracting gas. Recently we have
discovered' that this is not the case. In the interacting
system Landau subbands are repopulated in such a way
as to avoid having a very small number of electrons in
any one subband. This effect is expected to modify the
behavior of y near the subband edge and possibly further
decrease its discontinuity.

X.,o(q)
"(q) (

—iqxz)
Xo,o(q)

From this we obtain

(24)

„(q)=—X+,o(q)

xo, oq +
(25)

where q+ =q„+iq, y+ o(q) =y„o(q)+iy o(q), and

V. NONLOCAL RELATION
BETWEEN CURRENT AND DENSITY

Figure 1 is paradoxical in that it suggests that the abso-
lute magnitude of oscillations of y, and hence of the
current, increases at a given density with decreasing mag-
netic field. The paradox is resolved by observing that,
with decreasing magnetic field, the magnetic length l in-
creases, and thus we abandon the regime of "slowly vary-
ing density" in which the local-density approximation is
valid. We can study the crossover from local to nonlocal
behavior in the current-density relation within the frame
of linear-response theory. Judging from our experience
with the local regime, exchange-correlation effects are
not too important except near the band edges, and thus
we are left with the simple problem of evaluating the
noninteracting density-density and current-density corre-
lation functions for a uniform electron gas in a uniform
magnetic field [see Eqs. (15)—(17)]. This is readily done
by using standard Green's-function techniques. ' We
start from Eq. (17) and observe that g o(q) must be a
vector perpendicular to q, so that the continuity equation
is satisfied. Thus we can define a scalar response function
X' "(q)by

goo(q)=, , g I+~~(q&)l »
—1 2

2 T cocqzI N M

2
q, q,

(N M)co, — ——kg~

2
q, q,

(N —M)co, — +kF~
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~ci i&2
X+,0(q) =q+ '

goo(q) — » g &N+ 1F~+, sr(q~)Fg ~(q, ) ~ ln
2 4+i q, xM

2
q, q,

(N —M)co, — —kF~-
2m m

2
qz qz

(N —M)co, — +kF~—

—ln

2
qz qz

(N —M)co, + kFM—

2
q,

(N —M)co, + + kFM
2m m

(27)

Here Fz~(q~) is the matrix element of the density-
Auctuation operator for Landau subbands X,M defined as

( —q +iq„)l
Fsrtv (qj. )

2

X exp ~M-x q&
2(2 2l 2

4 N (28)

where Lg (x) is the generalized Laguerre polynomial.
The nonlocal relation between the current and the den-

sity gradient is given by

5j(r)= fd r'yj "(r—r')Vn(r')Xz . (29}

In Fig. 2 we plot yj "(q) as a function of q~/ perpendicu-
lar to the magnetic field [q=(q~, q, ), here q, =Oj. This
determines the nonlocal relationship between current and
density in the linear-response regime. We see that the
"local" regime y~ "(q)-y holds up to a wave vector q~

~oc=o

1 o/~c-0. 3

1t,/me=0. 9
p. Im =1,01

/

/
/

/

/

/-1-
/

/
/

I
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/
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/

/-2-
/

/
/

e

FIG. 2. Linear, nonlocal current-density response kernel
„(q) as a function of q~l for a noninteracting electron gas,

with q, =0. Different curves where obtained for different values
of the noninteracting chemical potential po in units of the cyclo-
tron energy fico, . Notice that in the q~0 limit yj- „reduces to
the value of y appropriate for this value of po/co, (see Fig. 1).

of the order of l ', then the response function begins to
decrease to zero, which means that equilibrium orbital
currents disappear in the absence of magnetic field.
Comparing the plots of y „(q} at different magnetic
fields we may notice that when the magnetic field is re-
duced, at a fixed density profile the region of validity of

„(q)-y decreases, even in terms of q~l. Equations
(27) and (28) are useful to determine the size of the "lo-
cal" regime and to calculate the equilibrium current in
nonuniform systems where the magnetic length is large
compared to the other length scales, and a nonlocal con-
nection between current and density is expected.

VI. CONCLUSION

This paper has presented a study of the relationship be-
tween current and density in an interacting nonuniform
electronic system in a more general frame than previously
considered. Using current-density-functional theory we
have shown the existence of such a relation in a form in-
dependent of the scalar potential. In the limit in which
the local-density approximation is valid we have obtained
an explicit form of the current-density relation. This
form is shown to generalize previously known exact re-
sults, to which it reduces in the appropriate limits. We
have found that the current-density relation in three-
dimensional systems exhibits interesting and unexpected
behavior, entailing a reversal in the direction of circula-
tion of current at certain values of density. A remarkable
cancellation of exchange-correlation effects on the
current far from band edges has been demonstrated.
Near band edges, the logarithmic singularity of the ex-
change contribution to y is exactly cancelled by the
correlation correction, and a finite discontinuity is left.
This discontinuity may be modified by repopulation of
Landau subbands. Finally, we have considered the non-
local linear connection between current and density for
rapidly varying densities and/or weak magnetic fields.
An explicit expression for the nonlocal linear current-
density kernel of a noninteracting electron gas has been
presented.
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APPENDIX

Here we prove the relation (I) for a three-dimensional
system. The Fourier transform of the current operator is
given by

j(q)= g (II, e '+e 'II, ),
i

j (q)= —g e 'II, —
q n(q)

m 2fPl

where: q+ =q, +iq, j+(q) =j„(q)+ij»(q), II+=II,+il1»
are the usual Landau-level rising (+ ) and lowering (

—
)

iqr .
operators, and n(q)=g, e ' is the Fourier transform of
the density operator.

When taking the matrix element of j+(q) between
states belonging to the lowest Landau subband the terms
containing H+, lI vanish, and we are left with

where j+(q) =——q+ n(q)
2m

(A4)

II; —=p;+ —A(r; ),

A is a vector potential of the uniform magnetic field and
i is a particle label.

Using the standard commutation rules, we rewrite

j (q) = —
q n(q)

2m

which leads to

j(r) = Vn(r) Xz
2m

(A5)

j+ (q) =—g II+;e ' —q+ n(q)
2m

(A2)
and ends our proof.
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