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Van Hove correlation functions in an interacting electron gas: Equation-of-motion approach
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An extension of the classical van Hove correlation functions to a three-dimensional system of identical
fermions is investigated, taking into account interaction effects. This is done within the framework of a
Singwi-Tosi-Land-Sjolander-like static local-field approximation, combined with second-order effects of
plasmon damping. As a main result the relaxation of the Fermi hole around an instantaneously removed
electron is presented.

I. INTRODUCTION II. BASIC RELATIONS

A generalization of the classical Van Hove correlation
functions, the self and distinct parts of the dynamic struc-
ture factor, has been investigated recently by Macke
et al. ,

' concentrating on the free jellium system. A first

attempt to calculate interaction efFects in the quanturn-
mechanical self part has been made by Schinner, using
(renormalized) first-order perturbation theory. The sub-
ject of the present work is the development of a static
local-field approximation for the Van Hove functions in
the interacting jelliurn system.

This paper is organized as follows: In Sec. II we write
down the basic definitions and the fundamental quantities
of our approximation. Using an equation of motion ap-
proach leads us to a formula of similar structure as the
well-known Singwi-Tosi-Land-Sjolander (STLS) result for
the dynamic susceptibility.

An additional factorization step, however, is necessary
to evaluate this formula in our case. This will be carried
out in Sec. III. As an important result we find an in-
teresting relationship between the short-wavelength limit
of our approximation and the classical convolution ap-
proximation by Vineyard.

Plasmon damping is built into our model in Sec. IV, us-
ing the (renormalized) second-order calculations by
Bachlechner et aI. ' As will be seen from the numerical
results presented in Sec. V, the efFects of a finite plasrnon
half-width govern the large-time behavior of the "dis-
tinct" correlations. A brief discussion in Sec. VI ends
this paper. The following conventions are used.

Energies and momenta are measured in units of 2ez
(EF denotes the Fermi energy) and k~ (the Fermi momen-
tum), respectively. Excitation spectra (structure factors)
are given in units of mkF/(2mn ) (m denotes the electron
mass, n the mean density). For reasons of brevity spin in-
dices are not written down explicitly. All numerical cal-
culations have been carried out at r, =2, with r, being the
usual density parameter. ek and nk denote the free
single-particle excitation energy and the free momentum
distribution, respectively, v is the Fourier transform of
the Coulomb potential. Furthermore, we use the abbrevi-
ations AEk q E'k+q E'k and ANk q n k 6 k+q The
Lindhard polarizability is denoted by y (q, cv).

A. DeSnitions

S (q, t)=—g (ckpq(t)ck q) I]I5qo, —=1
k

S'(q, t) =S (q, t) Sd(q,—t),
where

(2)

P&(t)—:g Ck, tck+
k

(4)

denotes the density operator in field quantization.
For the pair-interaction free-electron gas it can be

shown easily that the above definitions of the quantum-
mechanical Van Hove correlation functions are identical
to those valid in the classical system '

(Sa)

(5b)

There is, however, some evidence that this identity
does not hold within an interacting electron gas: The
basic concept of the distinct part as the probability of
finding two necessarily diferent particles at given loca-
tions in space and time is not consistent with quantum
physics unless a particle is removed from the system.
The definition (Sb), however, describes a space-time dis-
tribution in equilibrium so that the equivalence with Eq.
(2) is questionable in the case when the interaction builds
up nontrivial correlations. Consequently, we chose the
definition of S"in field quantization as our starting point.

Although many interesting properties of these func-
tions have been presented for the free fermion system, '

much less is known about the inhuence of the interaction.

Following Macke et al. ' we write down the decornpo-
sition of the dynamic structure factor S(q, t) into its self
and distinct parts S'(q, t) and S"(q,t), respectively (for
particle number X)) 1 ),

S (q, t) = g( pq(—t)ctkck
q ) I]I5q p, —1

k
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The renormalized first-order calculations by Schinner
provided a first step in this direction: Interaction effects
turned out to significantly change the qualitative behav-
ior of the self-correlation function in q-co space. This
theory, however, does not include the plasmon excitation
and suffered from a mathematical breakdown in the
small-q regime. Thus, the need for a more refined ap-
proximation method became obvious.

B. Local-field approximation

and

Jkq= 2 p tk+q p —q
p

is the STLS static local field

kF
p.q v S —1

nuqq2 (2n )2

(lod)

(10e)

icr (q, t)= 8(t)S —
(q, t),

i o d(q, t) = —8( t)S (q—, t),
(6a)

(6b)

Static local-field approximations provide a reliable
basic description for static as well as dynamic quantities
of the interacting electron gas. ' Although it is well
known how such a theory has to be constructed for the
density-density response function y(q, co), it is not obvi-
ously seen how this can be accomplished for S' or S .
Since both Van Hove functions together contain more in-
formation than the dynamic structure factor alone, it is
not possible to trivially derive them from, e.g., g(q, cu).

The basic idea of our approximation is to introduce a
retarded and an advanced response function,

( )do (q, co}=

with

( )doo '„'(q, co)

1 —(1—
Q~ )u~ y (q, co)

Sq denotes the static structure factor.
From its physical meaning the term proportional to v

in Eq. (10a) is a renormalized correction for each isolated
free single-particle excitation with initial momentum k.
Since the momentum coupling between the effective
single-particle excitations within this approximation is as
a whole taken into account by the local field only, the
curly bracket in Eq. (10a) must vanish for each k. This
immediately leads to

as counterparts to y(q, c0). Fourier transform of Eq. (6}
leads to

cr (q, c0)= lim f dc0' '+nz . 1,S (q, c0')

~0+ 2' —oo N CO ( )1'g

and, consequently,

and

Xi,q nv~q, o
cr v(q, c0):—lim g~~0+ k CO AEk +k &(-)

f'(q, ~}=h'(q ~) l' .

(12a)

(12b)

S (q, cu)=io (q, co) io "(q,co)—. (8)

Sd(q, co)= —2Imcr (q, c0) . (9)

Equation (9} then clearly shows the close analogy be-
tween od(q, c0) and y(q, c0).

As a next step we investigate the equations of motion
for o." and o. , respectively. Leaving more detailed cal-
culations to Appendix A we present some important
points here: Taking the second time derivative of Eq. (6),
Fourier transform and "STLS"-like' decoupling lead to

g DER ~ (c0 bE& ~)icr q(q, c0)—i/—q z
.( )d

k

.( )d—(1—9 )v EN&~gio f(q, co) =0,
k'

(loa)

Later on in this section we will restrict our investiga-
tions to the case of S (q, c0) having a vanishing imaginary
part, so that Eq. (8) reduces to

Of course, the more comprehensive way of decoupling
the equations of motion for the Wigner matrix'

pz z(t) =cz,cz+z „instead of those for the density pz(t),
would have led to the same result Eqs. (11)and (12).

Again we note the close resemblance between Eq. (11)
and the well-known result for y(q, c0)

x(q ~)= x'(q, ~)
1 —(1—Q~)v~y (q, cu)

(13)

o d~ (q, c0)= [erg(q, cu)]' (14)

Contrary to Eq. (13}we, however, cannot simply approxi-
mate o ~ (q, c0) in Eq. (11) by its interaction-free value: As
will be seen later this would lead to an unsatisfactory re-
sult for the static limit of S . Since any static local-field
approximation neglects energy- and momentum-coupled
multipair processes, it is consistent with this to neglect
such processes in S," too. Consequently, the expectation
value /z z in Eq. (12a} will have a vanishing imaginary
part, which immediately leads to

with

1io„(q, t) =8(t) g(c c„,c„+—,c ),N
(lob)

and the validity of . (9). Furthermore, the real and
imaginary parts of o v(q, co) obey the Kramers-Kronig
relation

s,"(q,~')
Reer v (q, c0)= Pf de'

27T —oo Q) Q)
o z(q, t) —= —8( t) g(c~cz, cz+,c )— —(10c)

p where S& (q, c0) = —2 Imo d~u(q, c0).

(15)
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C. Further investigations

Combining Eqs. (9) and (11)we find

e, (q, co)
S"(q,co) =Si, (q, co)

e, (q, co) +e2(q, co) S (q, t)= co—s(co~t)+O(q ), (20)

knowledge about o i, leading to Z (q ~0+ ) = ——', . Con-
trary to the plasma excitation in S(q, co) the plasmon
strength in S (q, co) does not vanish for finite, but arbi-
trarily small q. As a consequence we find

e2(q, co )+2 Reo dv'

e, (q, co) +e2(q, co)
(16)

with

e(q, co)=—1 —v (1—Q~)g (q, co),

e, (q, co):—Ree(q, co), and e2(q, co) =—Ime(q, co) .

(17a)

(17b)

Obviously, the quantity e(q, co) as introduced above is
connected with the dielectric function e(q, co) by the rela-
tion

with co being the classical plasmon frequency. This re-
sult seems to stand in contradiction to the exact normali-
zation condition S (q =O, t) = —l. A more detailed
mathematical analysis, however, shows' that Eq. (20) is
valid even within the exact electron gas. The q~0 limit
does not exist in the mathematical sense which means
that, despite the validity of Eq. (20), the normalization re-
quirement is indeed fulfilled at the isolated point q =0.
This pathology originates from the fact that the q =0
contribution of the two-particle interaction U in the jelli-
um system is exactly canceled by the background charge.

1 —9'

e(q, co) =e(q, co)
1 —

~e q, co
(18) III. FACTORIZATION APPROACH FOR o y

and is identical with e(q, co) in the case of vanishing
local-field (random-phase approximation, RPA).

Leaving the detailed discussion of how to construct a
realistic approximation for cr i, (q, co) to the next section,
we obtain the following results by a closer inspection of
Eq. (16).

(i) The most important quantities involved in our
theory have the syminetry properties: (a) S (q, co),

e, (q, co), and Imo v(q, co) are even functions in co; (b)

e2(q, co) and Reo i (q, co) are odd functions in co. Conse-
quently, S (q, t) is real and even with respect to t. From
the analysis by Macke et al. ' it is known that within
second-order perturbation theory this symmetry is bro-
ken, i.e., S (q, t)AS (q, t—). The physical meaning of
this is still not known and will be left to future investiga-
tions, as including that type of multipair process lies
beyond the scope of the present work.

(ii) The term proportional to ez in Eq. (16) describes
the plasma excitation (plasmon). Its dispersion relation is

the same as in the corresponding theories for S(q, co).
Due to the symmetry properties (i) there are, however,
two plasmon peaks at frequencies co=+co~~(q), which are
undamped outside the particle-hole continuum. This be-
havior is especially unsatisfactory, as we want to describe
the (nonlinear) dynamic response of the systein after one
electron has been removed instantaneously: The un-

darnped plasma oscillations dominate the space-time
response function on an unphysical long time scale. Con-
sequently, in Sec. IV we shall build energy- and
momentum-coupled second-order processes into our
theory.

From Eq. (16) we get the plasmon strength Z (q),

In the well-studied local-field approximation for the
dynamic susceptibility y(q, co) the numerator (i.e., the in-
homogeneity of the equation of motion) is usually evalu-
ated within the free system [cf. Eq. (13)]. Although it is
known that this procedure causes some problems con-
cerning the third moment sum rule, ' the major aspects
of y are nevertheless well described.

In the case of our theory, however, one finds from Eq.
(11) that the inhomogeneity crv alone determines the
static limit, i.e.,

S"(q, t =0)=S —1=S (q, t=O), (21)

the proof of which will be given in Appendix B. There-
fore it is clear that evaluating o. z just within the
interaction-free system we would impose an unphysical
initial condition on the behavior of our time-dependent
response functions. Again, Eq. (21) shows that the task
of realistically approximating this quantity is a highly
nontrivial one, since comprehensive calculations are
necessary in order to obtain a good static structure factor

9-13

Consequently we will use S as an input into our
theory, obtained from the best available results, namely
the Monte Carlo calculations by Ceperley and Ald-
er. ' Since the quantity u~ is a combination of an
"exact" expectation value with a free system's time
dependence, the following factorization is suggested:

Z"(q)=2m Reodi, [q, co i(q)]

a
X e, (q, co )

a
8(q, —q), (19)

Sv (q, co)=l S" (q, co)

—(1—I )—,'[S' (q, co)+S' (q, —co)] . (22)

where q, is the plasmon critical wave vector. In the

q~O limit Eq. (19) can be evaluated without detailed
Herein S and S' denote the free distinct and self-parts,
respectively. I" is chosen according to Eq. (21),
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(23)

S~ being the free static structure factor.
The physical meaning of the ansatz Eq. (22} becomes

more evident when rewriting the quantity Sf (q, co) as

Sy~(q, a) ) = — g 'le „+ 5(co b—Eg q ),
k

with

(24)

1 for k& &1 and k2 &1

—,'(1—I
~& & ~) for k& &1 and k2&1 (or k2&1 and k& &1)

0 otherwise .

(25)
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(b)

'Wz z then is the "probability" that an excitation from

momentum k, to momentum k2 is forbidden. In the free
system (I'

s =1) only the excitation process between two
occupied momentum levels is forbidden. Interaction
effects are taken into account by reducing the probability
for an excitation to occur even in the case when a filled
and an empty Fermi sphere overlap.

Although this interpretation gives strong evidence for
the physical meaningfulness of the ansatz Eq. (22}, a
quantitative analysis is still pending. As a systematic ap-
proach we evaluate Eqs. (10d) and (12a) within (renormal-
ized} first-order perturbation theory. This method of sub-

Sz (q, t}=(S —1)ReS' (q, t) for q &2 . (26)

stituting an effective (screened) static potential into the
expressions of finite order perturbation theory has al-
ready been applied successfully in various fields, e.g., the
first-order analysis by Schinner, and the plasmon damp-
ing calculations by Bachlechner, Bohm, and Schinner. '

Leaving the detailed calculations to Appendix C we
present only the results here: In Fig. 1 we compare vari-
ous approximations for S~ (q, co), namely the first-order
perturbation theory with bare Coulomb potential and
screened Thomas-Fermi potential, respectively, as well as
the free system and the ansatz Eq. (22). We note a good
conformity of the factorization approach with the results
of the renormalized first-order theory. As expected, the
unscreened first-order calculations show the well-known
breakdown in the region of small q (cf. Ref. 2).

Although both theories, the renormalized first-order
analysis and Eq. (22), provide good descriptions of the
quantity Sz in Fourier space, the former has a great
disadvantage as we look at the real-space correlations:
Not even the use of a screened potential can prevent the
pair-correlation function at zero particle separation g (0)
from becoming negative at metallic densities, when evalu-
ated within first-order perturbation theory. Consequently
we shall use Eq. (22) within the following calculations.

Finally, we want to point out another very interesting
consequence of our ansatz Eq. (22): Noting that for q & 2
the free distinct part S (q, co) exactly vanishes, and that
the free static structure factor equals one, we immediate-
ly find

0.50-

0.00
0.00

I

0.20
I I

0.40 0 60

m/2E„

0.80

FIG. 1. Plot of the function Sz vs co for fixed q. The curves
correspond to bare first-order theory (full line and crosses, re-
spectively), screened first-order theory (short-dashed line), the
factorization ansatz Eq. (22} (dash-dotted line), and the free sys-
tem (long-dashed line). (a) q =1, (b} q =0.5.

This relation can be seen as a quantum-mechanical coun-
terpart to the very successful classical convolution ap-
proximation by Vineyard. Equation (26) also holds for
the total S (q »2, r) within our approximation, as can be
derived directly from Eq. (16}. It therefore reflects the
classical limit of our model. Further investigations are
currently in progress to show whether these quasiclassical
correlations in the Fermi fluid can lead to new types of
approximations for other quantities of the quantum-
mechanical many-body system, too.
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IV. PLASMON DAMPING

X5(co +p' p)p %, (28)

As we have mentioned earlier, the scope of the present
paper is to evaluate the quantum-mechanical Van Hove
functions for the interacting Fermi system within a static
local-field approximation. This type of approach of
course neglects energy- and momentum-coupled mul-
tipair excitations, leading, for example, to plasmon damp-
ing and a broken time symmetry of S (r, t). Leaving the
latter to future investigations we concentrate here on
building a finite plasmon lifetime into our theory, since
we believe this effect to be of special physical relevance.

Recent progress has been made in understanding
plasmon decay in simple metals, both theoretical and
experimental. Following the work of Bachlechner
et al. we write down the plasmon full width at half max-
imum AE, /2 for an electron gas

b,E, /2-=co Im e(q, ~co)= cobq +O(q ) . (27)

The main contribution to the q coefficient b arises from
the decay of the plasmon into two electron-hole pairs. It
can be investigated within the formalism of second-order
perturbation theory and yields '

Im e """'(q,co&)

2 2
9COP q

J dp f d k Jd k'n~n~ pnq. n~. +p5m2'

1 IF„(co)=-
co + I

and Z (q) is given by Eq. (19).

(31)

V. NUMERICAL RESULTS

In this section we present various numerical results of
our theory. The calculations were carried out by combin-
ing Eq. (16) and the facto rization ansatz Eq. (22).
Therein the static structure factor was obtained from the
Monte Carlo results by Ceperley and Alder. ' The lo-
cal field 9 was either set to zero (referred to as "RPA"}
or has been calculated from Eq. (10e) (referred to as
"STLS"}. Furthermore, the plasmon contributions were
separated from Eq. (16) by using Eq. (30) and the damp-
ing theory presented in Sec. IV.

(i) In Fig. 2 we compare S (q, co) for "STLS" and
"RPA" local fields with the free system. It is especially
noteworthy that the distinct part in the interacting sys-
tem has a nonvanishing spectral density within the com-
plete particle-hole continuum ( ~co~ q+q /2) while
S (q, co) equals zero for ~co ~q —

q /2.
(ii) Calculating the full dynamic structure factor

S(q, co) within the well-known STLS approximation, Eq.
(3) and (i) then immediately yield the self part S'(q, co). It
is of great interest to compare this result with the previ-
ous analysis in renormalized first-order perturbation
theory: Fig. 3 shows the remarkable agreement of both
completely different approaches, which we take as addi-

where
se )use i

U exU ex csex
P 2P P'

gse 7 ctse+ 3(&se)2+ [k2p2 (k.p)2]P 2 P 2
P

COp
2 &2

+ex —3 &ex+ 1&exctex+ & ctexaex+2P P
P ~ P P 2 ~2 P P 2

P

(29a)

(29b)

(29c)
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/(
/

/

/
/

/

/

/

/

/
II

/

U
se/ex

&
se/ex Ia (29d)P se/ex

P

for the imaginary part of the dielectric function e(q, co~ ).
In Eqs. (28) and (29) a potential renormalization step
similar to that of the first-order calculations in Sec. III
and Ref. 2 has been carried out. This means that the bare
Coulomb interaction has been replaced by a static, but
spin-dependent, potential U" '" for the direct and ex-
change contributions, respectively. Using the effective
potential derived by Singwi then leads to a good agree-
ment of this theory with the experiment. '

Now, to build these results into our model we note that
the plasmon peaks in S (q, co) are well separated from the
contributions of the particle-hole continuum, except
when q =q, . This allows us to simply replace the 5 peaks
in the corresponding term of Eq. (16) by

$d, (q, co }=Z d(q) [F„[co co~~(q)]—
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(30)+F„[co+co)(q)]},
where Fr(co) with bE, &2=2I denotes the Lorentzian
shape of the plasmon peaks

FIG. 2. Plot of the distinct part S"(q,co) vs co for fixed q. The
curves correspond to the local-field approximations (cf. Sec. V)
"STLS**(full line), "RPA'* (short-dashed line), and the free sys-
tem (long-dashed line). (a) q = 1, (b) q =0.5.
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1.25

1.00-

0.75-
U

0.50-

1.00-

0
0.50-

0.00

0.25-

'
i y o our approxima-tional strong evidence for the validit f

tions.
(iii) With the use fse of S (q, t) another very interestin~

quantity can be calcul dculated, i.e., a time-dependent general-
ization of the static pair-correlation function g (r):

3 1
g(r, t):1+——— dq q sin(qr)S (q t) .

2 T 0
q, (32}

Obviousl (r t =0)y, g, —0', reduces to its static counterpart
g (r). From its physical meaning Eq. (32) describes how
the Fermi hole around an electron is filled up when this
electron has been removed instantaneously at time t =0.
n ig. 4, g (r, t) is plotted versus r for various times.

better b lookin
iv This "decay" of the Fermi hole can b t d' dn es u ie even

e er y ooking at another quantity closely related to
g(r, t):

4
Ntt(t)=— f dr r [I—g(r, t)] . (33)

Ntt t} ts the total charge (in electron charges) within a

e electrons, i.e., R =2r, att (aa denotes the Bohr
ra ius), one obtains the results presented in Fi . 5. I
seen th at the plasma oscillations dominate the b h

in ig. . t is
e e e avior

quan ity. A more detailed analysis shows that the
decay of Na (t) for large times obeys a power law, namely

1.25

1.00-

0.75-

0.50-

0.00

Fl
FIG. 4. The e

for v
g neralized pair distribution fun t (, )unc ion g (r, t) vs r

d
various times: t =0 (full line) t =1 ( hs ort-dashed line), t =5

( ash-dotted line), t = 10 (long-dashed line).

0.00 I

0

m/2E„

FIG. 3. Com arip 'son of the self-part at q = 1 for renormalized
first-order perturbation theory (Ref. 2) (full line), the present" TLS" approximation (short-dashed line) and the f

—0.50-

I

10
I I

15 20 25

t [units of (2E„) ]

FIG. 5.G. 5. Total charge (in electron charges) within a sphere of
radius 2r, a& vs time. The curves correspond to the present
theory using screened plasmon damping (full line), unscreened

damping (short-dashed line), and the free system (long-dashed
ine).

R
N (t)= (yt) cos(tu t) for yt »1, (34)

where y =bto l2 with b from Eq. (27). Since for the re-

full c
normalized model (cf. Sec. IV) one obt

' —10, h
u curve in Fig. 5 would remain almost unchanged when

simp y setting y=0. This just reflects the fact that the
plasmon is a well-defined excitation. Nevertheless, the
asymptotic behavior (i.e., the envelope curve of the oscil-
lations is of significant physical relevance, especiall
from the experimentalist's point of view, which proves

y

t e great importance of a refined plasmon damping mod-
el within our theory.

VI. CONCLUSIONS

The subject of this paper was a closer investigation of
ove correlation functions in an interactin

many-fermion system. Contrary to the well-known static
pair-correlation function, the physical interpretation and
content of its time-dependent counterpart Eq. (32) is not
so obvious. Its importance, however, mainly lies in the

irect connection of classical liquid-state concepts with
quantum systems: The distinct part of the dynamic struc-
ture factor as defined by Eq. (2) describes the probability
o nding two different electrons separated by given dis-
tances in space and time. Later o

' th'
shall oint out s

on in is section we
s a point out some possible experimental applications
that can make use of the knowledge of this function.
Furthermore, it could turn out to b fo e o even greater in-
terest to use our present results within new dynamic ap-
proximations (see, e.g., the work by Kerr; see also the
discussion in Sec. VI of Ref. 1). C 1 k
multiparticle process that involves the uasi-

date for applying the ideas pointed out within this paper.
T e mathematical analysis of these functions was done

within the framework of a static local-field approxirna-

straightforwardly for the total excitation probability, i.e.,
t e dynamic structure factor S ( q, to }, in the case of its
distinct part unexpected problems arise: The numerator
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in the well-known STLS result Eq. (13) has to be replaced
by a much more complicated quantity, in order to obtain
the counterpart Eq. (11). This function cr"v (q, co) cannot
be approximated by its interaction-free value since it con-
tains the initial condition for t =0. Furthermore, the
long-wavelength limit (q ~0) reflects a fundamental
pathology of the jellium system.

To evaluate the function

harv

the factorization ansatz
Eq. (22) has been made, motivated by a microscopic
analysis. As an important consequence of this, in the
short-wavelength limit (q~ ~ ) our theory reduces to a
generalization of the classical Vineyard approximation.
We call this a qttasiclassical limit since in Eq. (26) the
self-part still has a nonvanishing imaginary part. We be-
lieve that further investigations of this type will lead to a
deeper understanding of how to generalize classical ap-
proximations to the quantum many-body problem.

Despite the fact that our theory gives reasonable re-
sults for the principal structure of the investigated func-
tions, some important questions could not yet be
answered: Although we were able to build a finite
plasmon lifetime into our model, those terms leading to a
broken time symmetry had to be neglected within this
framework. A dynamic local-field approximation or,
better, a Baym-Kadanoff analysis, as done by Green,
Neilson, and Szymanski for S(q, co), will most probably
reveal new aspects of this topic.

Furthermore, it will be of great importance to investi-
gate how the "distinct correlations" can be accessed by
the experiment (the self part is complex in the exact sys-
tem and thus not observable). Obviously, a direct mea-
surement of, e.g., the time-dependent pair-correlation
function Eq. (32) is a highly nontrivial task. In this case
one most probably will have to rely on computer experi-
ments, as is also necessary already for the usual static
pair function. However, it should be possible to find
traces of the relaxation process described by Eq. (33) in,
e.g., the photoelectric effect or electron-positron annihila-
tion in simple metals.

Perhaps the most promising way to gain experimental
access to the quantities discussed here could lie in the
Geld of ion-induced electron emission and secondary-
electron emission: ' In theoretical models for the
secondary-electron yield the response of the electron gas
to instantaneously removing electrons turns out to be of
great relevance. Investigations to build our results into
these theories are currently in progress.

It is, however, beyond the scope of the present paper to
discuss experimental setups in a more comprehensive
way, since our intentions were to concentrate on analyz-
ing special aspects of the internal structure of the elec-
tron gas. Consequently, from our point of view the most
important result is that the classical concept of self
motion and distinct motion can be successfully general-
ized to the case of an interacting quantum fluid.
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APPENDIX A

In this appendix we give a brief description of the ma-
jor steps leading to Eq. (10). Following the work of
Singwi et al. ' we start by writing equations of motion
for the density operator:

'p X kqkt k+
k

2
Pq X kq k k+

k

+U (1 Q ) g bE& qbN& zpq(t)

(A 1)

(A2)

where for brevity reasons the momentum dependence of
the c and c operators and the corresponding summations
are omitted. Inserting Eqs. (Al) and (A2) into Eq. (A3)
then immediately leads to Eq. (10a).

It should be noted that from Eqs. (Al) and (A2), of
course, the well-known STLS result for the dynamic sus-
ceptibility can also be derived: Starting from the
definition of g(q, t)

g(q, t)—: i 8(t) & [p—z(t), pz(0)] ), (A4)

and again expressing j and p in the second term deriva-
tive of Eq. (A4) by Eqs. (Al) and (A2), we arrive at a
counterpart of Eq. (10a), from which Eq. (13) is easy to
derive.

APPENDIX 8

The subject of this appendix is to prove Eq. (21). We
start by defining an auxiliary quantity

o v(9~~)
ag(q, co) =- (81)

1 —AU (1—Q~)y (q, co)

where A. is an arbitrary real number. Now, introducing

Sg(q, co)—:—21mcrq(q, co),

our task reduces to the proof of

(B2)

Therein 9 is given by Eq. (10e). It is especially
noteworthy that Eq. (Al) just reflects the particle conser-
vation and, consequently, is exact. To derive Eq. (A2) the
terms nonlinear in p have been approximated by factor-
ized expectation values.

Taking the second time derivative of the quantity
+8(+t)[S (q, t}—S (q, 0)J yields

i—8(+t)&c ip (t)c)-a
at

=+5(t}&ctip,(0)c)—8(+t)&c p (t)c), (A3)

One of us (A.S.) wishes to thank especially Professor
D. Neilson for valuable and illuminating discussions.
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aA,
Sf(q, t =0)=0,

since from Eq. (B3) the equal sign in Eq. (B4)

(B3)
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S (q, t =0):—S& i(q, t =0)=S2 0(q, t =0):S—l, (q, t =0)

follows immediately. The left-hand side of Eq. (B3) can
be written as

where we have introduced the quantity

X2.(q ~) —=
x'(q ~)

1 —AU (1—9 )y (q, co)
(B6)

d 00

Sz(q, t =0) ~ v (1—Qq)lm dcocrz(q, co)g2(q, co),

(B5)
in analogy to Eq. (Bl). Using the Kramers-Kronig rela-
tion Eq. (15), that is valid also for yz and cT&, yields

Sf(q, t =0) ~ J dco f dco', [Imcri(co)lmy&(co')+Imo 1(co')Imp&(co)] .
00 CO N N

The right-hand side of Eq. (B7) is identical to zero which is easily seen by exchanging co and co'.

(B7)

APPENDIX C

Our aim is to evaluate the quantity Sl, (q, co) within first-order perturbation theory. As a starting point we write
down the spectral theorem

( 2 ( t)B (0) ) =[e 't ~s'+ 1] '( [2 (t),8 (0)]+), (Cl)

where P denotes the inverse temperature; A (t) and 8 (t) are operators in the Heisenberg representation. Applying Eq.
(Cl) to the expectation value (c,c2) and neglecting terms of order U in the anticommutator leads to (p~ oo )

n, (p)= 8(p —ek )+O(U )

for the momentum distribution. p denotes the chemical potential in first-order theory. A similar calculation yields

1l ]1l2(1l3 1l 4 ) 1l31l4(1f i n 2 )
i 2 3 4 ~ ln2(514523 513524)+

6'4+ 6'3 E'2

X5k+k k+k [Uk —k5ucr5un —
Uk k 5~~5++ j+O(U ).

(C2)

(C3)

Herein n is an abbreviation for 1 —n, and 1—:k, 0'&.

Using expression (C3) we finally obtain

S„" (q, co)=S" (q, co)+bSl (q, co)+O(V )

with [a=(4/9lr)' ]
r

AS' (q, )—= 8(1+q —
~ +~)

q

(C4)

pk
[nk+q —pnk( k+q nk —p) k+q k —p( k+q —p k

w
(C5)

and

"q=q&+ I.p=»+&~+p+k' ~+"(/1 0,', cos(q» p.q=—pqk„v+—=——+ . (C6)+-
From Eqs. (C4) to (C6) the numerical results of Fig. 1 have been calculated, using a Monte Carlo algorithm to carry out
the fourfold integral.
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