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Four-band model for oxygen holes in copper oxide superconductors. II. Phase diagram
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Transport in the doped lamellar copper oxides is carried by quasiparticles, composed of holes which

move on the oxygen ions on the Cu02 planes, with strong magnetic coupling to the neighboring Cu
spins. In the preceding paper, we calculated the bands of these quasiparticles. In the present paper, we

use the lowest of these bands to obtain the critical temperature T, as a function of the concentration of
holes in these planes, using simple BCS equations. We find that the pairing interaction induced by the

magnetic frustration model of Aharony et a1. yields a phase diagram which is quite similar to the one
observed experimentally, provided that one allows hopping between the planes, of order 0.03 eV. We
discuss the variation of the phase diagram with the different hopping and interaction parameters. Some
features should apply beyond the scope of our specific model.

I. INTRODUCTION

In the preceding paper, ' we studied the properties of
the charge carriers in the Cu02 planes of the copper ox-
ide high-temperature superconductors (HTSC). We as-
sumed long-range AFM (antiferromagnetic) correlations,
identified the form of the favored quasiparticle (which is
composed of the eigenstates of the interaction between
the oxygen hole and the spins of its two neighboring
coppers) and calculated its spectrum using the tight-
binding model. Since the hopping amplitude of the quasi-
particles depends on the magnetic environment, we had
tight-binding cells that consist of four oxygen sites and
thus yielded four bands for the spectrum of the quasipar-
ticles. For the actual calculation of the hopping ampli-
tudes we used the effective Hamiltonian, which is derived
from a three-band Hubbard model. In the present pa-
per, we use the lowest of these bands to obtain the depen-
dence of T, on the concentration of holes in the Cu02
planes.

Original attempts to apply new models such as the
resonating valence bond (RVB) or anyons were not very
successful. On the other hand the basic assumptions of
the 8CS theory were supported experimentally.
Specifically, the existence of an energy gap was demon-
strated by infrared absorption, Andreev reflection, Ra-
man scattering, and tunneling. ' Measurements of flux
quantization and Josephson effect show that the charge
of the basic charge carrier is (2e), which indicates the ex-
istence of Cooper pairs. These experiments and many
others support the idea that the BCS theory is a reason-
able starting point. Nevertheless, there have been sugges-
tions to modify the simplified original solution of BCS.
Suggested modifications included using band calculation
methods to obtain the band spectrum and use it explicitly
in the BCS equation, ' ' evaluating a more realistic cou-
pling instead of the simplified assumption of a constant
coupling (e.g. , due to enhanced Coulomb screening), '

taking into account other channels of interactions such as
a magnetic mechanism, ' considering different quasipar-

ticles, and considering the consequences of the very

short coherence length. " In our approach we use such
modifications as well. We use the explicit form of the
lowest band that we derived in the previous paper and we

take into account the role of the magnetic interactions in
the pairing mechanism. For these interactions, we use
the expressions for the frustration model of Aharony and
co-workers. ' Although our results are presented in the
context of that model, their qualitative significance is
quite general. Particularly, we demonstrate how solu-
tions of the BCS equations depend on variations in the
band structure (e.g., the hopping between planes) and in
the pairing interaction (e.g., as a result of varying the ra-
tio between on-site and nearest-neighbor cell interac-
tions).

As we have already mentioned in our previous paper,
there are experimental indications that the phase dia-
grams of Lh2 „Sr„Cu04 (Ref. 13), YBa2Cu306+~ (Ref.
14), and Bi2SrzCaCuzOs+s (Ref. 15), are similar when we
measure T, as a function of the concentration of holes in
the Cu02 planes. For La2 „CuO~, all additional holes (at
least for x ~0. 15) are introduced into the CuOz planes.
Thus, since x is known, the phase diagram is measured
directly. However, in the other two compounds not a11

the additional holes reside in the Cu02 planes and the
determination of x involves assumptions concerning their
distribution. Thus, their phase diagrams are obtained in
an indirect and less precise manner. Nevertheless, the
different phase diagrams strongly support the suggestion
that the concentration of holes in the Cu02 planes is a
key factor in the HTSC. Therefore, we calculate the
dependence of the critical temperature on the concentra-
tion of holes in the Cu02 planes. Our major result is that
when we use a coupling that is induced by the magnetic
frustration mode1, we obtain a phase diagram that has
features, which are similar to those observed experimen-
tally. The rest of the paper is organized as follows: in
Sec. II we discuss the magnetic coupling, in Sec. III we
solve the BCS equations to calculate the phase diagrams,
and in Sec. IV we summarize.
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II. THE MAGNETIC COUPLING

The existence of magnetic correlations in the supercon-
ducting phase of the HTSC may indicate that magnetic
interactions have an important role in the pairing mecha-
nism. The possibility that superconductivity in the
HTSC is mainly due to magnetic interactions between
holes in the CuOz planes, was one of the important re-
sults of the "magnetic frustration model" that was intro-
duced by Aharony and co-workers. ' They argued that a
hole that resides on an oxygen site induces ferromagnetic
coupling between its two copper neighbors. Since in the
absence of oxygen holes the copper spins have nearest-
neighbor AFM couplings, the additional holes frustrate
the spin system. When two holes are added, it was found
that it is energetically favored for the holes to be "close."
Thus, one may say that there is an attractive potential be-
tween the two holes. It was also observed that holes that
have antiparallel spins have larger attraction (taking into
consideration also the Coulomb repulsion) than holes
that have parallel spins. Therefore, we assume hereafter
a singlet pairing of the superconducting holes.

The potential presented in Ref. 12 implies that two
holes would prefer being on two neighboring tight-
binding cells and they repel each other when they reside
on the same cell. Therefore, in wave-vector space the
magnetic coupling has the following form:

V (q)= —
Vo —V, (cosq„+cosq»+b cosq„cosq»), (2.1)

where Vo is the constant coupling, which rejects the on-
site coupling in real space, and V& is the coefBcient of the
q-dependent part of the coupling, due to the nonlocal
magnetic interaction. The value of b is determined by the
ratio between the attraction of two holes that reside on
nearest-neighbor cells and that of two holes that reside on
next- nearest-neighbor cells. For the simple case of Ising
spins that was considered in Ref. 12, we compared the
average attraction in both cases {we should average, since
there are four possible locations in each cell) and we
found it to be 4/9 thus b =8/9. This is only an approxi-
mation, since in our model the charge carriers are quasi-
particles that are composed of three Heisenberg spins.

The form of the coupling implies that the gap may
have the following general form

&(q) =&0+&;cosq +b, ', sinq„+&2cosq»+ &zsinq»

+263cosqx cosqy +63cosqx s1Ilqy

+53 Sinqx COSqy +64Sinqx Sinqy (2.2)

As we mentioned before, the singlet pairing is favored.
Therefore, we keep only the symmetric parts in the gap.
Thus,

b(q) =ho+A, cosq„+hzcosq

+63COSqx COSqy +64Sinqx Sinqy (2.3)

III. THE BCS EQUATION

In this section we solve the BCS equation for the as-
sumed coupling and gap in order to obtain T, as a func-
tion of the concentration of holes in the Cu02 planes. In
the preceding paper we calculated the bands in the plane,
completely neglecting the hopping between the planes.
This was justified for the properties that we ca1culated.
However, for the use of the BCS equation we cannot
neglect this coupling. To take it into account, we add a
simple tight-binding hopping in the z direction and we
obtain the following spectrum

sg=sii(kii )+e,(k, ), (3.1)

where c~~ is the spectrum that we obtained from the four-
band model in the plane and e, (k, )=c cosk, . For the
value of c we follow Schnieder and Frick' who used
c =0.03 eV based on photoemission data. As we see in
Fig. 1, the value of c greatly affects the shape of the densi-

ty of states. It is clear that as c is increased we cross over
from a typical two dimensional tight-binding model (in-
cluding also the van Hove singularity) to a three-
dimensional shape, and in the extreme limit of very large
c we observe the shape that is typical to the one dimen-
sional tight-binding model. The results of Figs. 2, 3, 4,
and 6 were derived with c =0.03 eV.

In order to determine T, we substitute h(q) in the BCS
equation and since Eq. (2.3) has five parameters we obtain
five equations (instead of one in the simple BCS case).
For the first four parameters the equations may be writ-
ten in a matrix form,

'1 VoFo o

V, F&,o
—Vi+o i

VoF) o

1 —V&Fz o

—ViFi, i

bV, I

—Vo+o, i

1 —Vi+o, 2

—bVi+i 2

—VoFi, i

—Vi+z, i

1 —bV, F2,

'6o '

=0,
2

(3.2)

where

tanh(Pek /2 )F cos kxcos ky (3.3)

V, tanh(Ps„/2)
sink„sink

2~,
(3.4)

p= 1/ks T (ks is Boltzmann's constant and T is the tem-
perature) and % is the number of sites. For the parame-
ter A4 we obtain

We identify T, as the highest temperature at which either
the determinant of the matrix in Eq. (3.2) is zero or Eq.
(3.4) is solved. We find that we always obtain lower tem-
peratures for the latter case. Therefore, we consider only
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FIG. 3. The Phase diagram, where V0=0.04eV and V& =0.
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FIG. 1. The density of states for various values of c.
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Eq. (3.2) (in Fig. 2 we present some examples of the
dependence of the determinant on the temperature). The
dependence of T, on the concentration enters through
the determination of the Fermi energy (which is chosen
so that it yields the required concentration at low temper-
atures). Thus, since T, clearly depends on the Fermi en-

ergy, we can calculate T, as a function of x.
We first assume a constant coupling where V, =0 and

we adjust V& =0.04 eV to fit the maximal T, of
La2 „Sr„CuO~ (for this coupling we are still in the
weak-coupling regime). It is clear that in this case the
shape of the phase diagram (see Fig. 3) follows approxi-
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FIG. 2. The determinant of Eq. {3.2) as a function of temper-
ature for various concentration values, where Vo =0 and

Vl =0.07 eV. FIG. 4. The phase diagram, where VO=O and V, =0.07 eV.
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mately the shape of the density of states and it does not
look similar to the experimental phase diagram. This
similarity between the phase diagram and the density of
states, in the case of constant coupling, holds also for the

case where we sum over the entire Brillouin zone, since
the states near cF have a dominant contribution, due to
the 1/ek factor in the BCS equation.

We next assume a coupling where VO=O and adjust
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decrease, due to reduced AFM correlations, and thus we

may obtain even a better fit with experimental data at
high concentrations. On the other extreme of the phase
diagram, we obtain nonvanishing T, 's for concentrations
less than x =0.05, contrary to what is observed for
La2 „Sr Cu04. However, it is believed that in this re-

gime there is localization due to the random potential in-

troduced by the Sr's and this effect is not considered in
our tight-binding model.

Although we have not treated the parameter c as an
adjustable parameter, we next checked how sensitive is
the phase diagram to changes in its value. In Fig. 5 we
present the phase diagrams for various values of c and we
see that if we had to choose its value we could not have
made a better choice. We also find that when we add a
negative Vo to the chosen V, (which reflects the on-site
repulsion) it does not affect the phase diagram at all.
However, when we consider an additional positive Vo, it
has a big effect (see Fig. 6) when we approach VO=0. 04
eV.

IV. SUMMARY
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FIG. 6. The phase diagrams for V& =0.07 eV and various

values of Vo.

V, =0.07 eV. This time the phase diagram (see Fig. 4)
looks much more similar to the one observed experimen-
tally. The value of V, that we choose corresponds to an
attractive potential of order 0.035 eV between holes on
neighboring cells. Aharony and co-workers' estimated
an attractive potential of the order of the AFM coupling,
which is about 0.13 eV. This is almost four times larger
than the estimate that we use. However, the large esti-
mate was made for Ising spins and a long-range order
AFM background, whereas the spins are actually Heisen-

berg spins and the AFM correlations have finite range.
Therefore, we should certainly assume an attractive po-
tential that is lower than 0.13 eV. Moreover, it was noted
by Birgeneau and co-workers' that as the concentration
of the holes is increased the attractive potential should

We studied the phase diagram that is obtained when
we consider the magnetic interactions between the holes
in the Cu02 planes. We solved the set of the BCS equa-
tions and calculated the phase diagram.

We obtained a phase diagram that fits experimental
data quite well with one adjustable parameter, i.e., the
strength of the magnetic interaction V, . An even better
fit is expected if effects of localization are considered at
lower concentrations and effects of decreasing magnetic
correlations are considered for the higher concentrations
regime.

The implications of our results are not constrained to
the specific model that we considered. The drastic effect
of the strength of the coupling between planes, c, on the
density of states and thus on the phase diagram, may be
significant in other cases as well. Moreover, the form of
V, may stem from other mechanisms that yield finite-

range pairing interaction.
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